用户名: 密码: 验证码:
运动模拟器结构参数优化与数字样机研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
运动模拟器用来替代真实设备训练操作者对设备的操纵能力及研发相关设备,在科研、生产、生活中发挥了重要作用。六自由度并联运动模拟器由于其位置精度高、承载能力大、动态性能优越,从而在航空、航天、海洋等领域内得到了广泛的应用,但其并联闭环结构导致了其内在缺点:工作空间小、存在奇异位置、非线性强、耦合影响大。大型高精度、高动态响应并联运动模拟器,一般采用液压驱动,液压系统自身的非线性特性结合并联机构的强耦合性给控制带来了较大难度,使机构控制很难满足动态响应要求,现有大型六自由度运动模拟器的控制带宽均较小,严重制约了它的应用。
     本论文以大型高精度、高动态响应并联运动模拟器为研究对象,系统地开展了从结构参数设计到模拟器控制的研究。首先建立了系统的动力学模型,充分考虑了液压支路质量惯量的影响,分析了大型运动模拟器液压支路的动态特性;将结构参数设计与液压系统动态响应带宽相结合,提出了基于系统固有频率的结构参数优化设计方法,研究了不同构型结构参数的影响规律,并将此方法成功应用于实际运动模拟器的设计中,有效提高了其控制带宽,为大型高精度六自由度并联运动模拟器的设计提供了一种新的方法;建立了基于接口的运动模拟器机电液多领域数字样机模型,采用连续性判断及修正方法,保证了数字样机联合仿真模型的精度;基于数学模型、数字样机及实验验证,分析了并联运动模拟器耦合特性,并利用支路间的耦合规律,提出了基于耦合支路的解耦控制策略,有效减弱了支路及广义自由度间的耦合输出,为并联运动模拟器的控制策略研究提供了新的方案。
     论文的主要研究内容如下:
     第一章,在综合国内外文献的基础上,介绍了运动模拟器特别是六自由度并联运动模拟器的发展历史、结构特点及应用前景。重点从运动学、动力学、控制策略、硬件控制方案及综合优化设计等方面介绍了并联运动模拟器的研究现状及研究热点,分析了其发展趋势及有待进一步研究的问题,最后根据本课题研究的目的和意义,给出了主要研究内容。
     第二章,基于Lagrange法建立了液压六自由度并联运动模拟器的完整动力学模型,考虑了活塞杆及油缸的全部质量惯量,构建了系统等效质量惯量矩阵,并进行了准确性验证。通过数值计算对比分析了传统简化模型与完整模型的差异,作了等效质量惯量矩阵的分布特性研究,并引入平台加速度和质量比研究了支路对系统静力学、动力学的影响,为大型液压六自由度运动模拟器动力学研究提供了准确可靠的理论基础。
     第三章,将运动模拟器的结构参数设计与液压系统动态响应带宽相结合,提出了基于固有频率的结构参数优化设计方法。建立了广义固有频率数学模型,并对模型进行准确性验证。在此模型基础上,分析了不同构型动静平台直径比及铰点角度对频率的影响。重点针对6-6 SPS构型研究了不同结构参数对固有频率的影响,结合液压系统得到了液压关键参数的影响规律.经过优化设计及工作空间等验证校核,完成了大型液压六自由度运动模拟器的结构参数优化设计。
     第四章,针对液压六自由度运动模拟器涉及机、电、液、控制等多领域的特点,开展了基于接口的多领域建模方法研究,探讨了多领域多软件接口的控制策略,建立了液压六自由度运动模拟器的多种通用联合仿真模型,并针对多领域联合仿真模型的精度问题,开展了接口类型及处理方式对模型精度的影响研究。提出了采用连续性判断及修正方法,消除了不连续性现象,保证了联合仿真模型的精度。
     第五章,对运动模拟器进行了数字样机数值计算及实验研究。重点针对并联运动模拟器的内在交联耦合特性,通过数学模型、数字样机及实验验证,系统研究了两个方面的耦合特性:并联机构支路不一致带来的广义自由度耦合、支路间的交联耦合。基于支路间的耦合规律,提出了两种解耦方式,将传统基于广义自由度解耦的控制方式降阶,有效减弱了支路及广义自由度间的耦合输出,为并联运动模拟器的控制提供了新的方案。
     第六章,概括了全文的主要研究工作和成果,并展望了今后需进一步研究的方向和内容。
Motion simulators are test equipments which can be used for developing new facilities and for the training.6-DOF parallel motion simulators possess a number of advantages such as higher rigidity,better positioning accuracy and load capacity.Therefore,they have been used in various applications.However,due to the multiple closed-loop structure and kinematic constraints,they also have disadvantages such as smaller workspace,higher nonlinearity, stronger coupling,furthermore,there are numerous singularities in workspace which make the simulators lose their stiffness,precision and load-carrying capacity.Large 6-DOF simulators are often driven by fluid power,and in general,the control of hydraulic actuators is more challenging than that of their electrical counterparts.The factors such as nonlinear flow/pressure characteristics,variations in the trapped fluid volume due to the piston motion,fluid compressibility,flow forces and their effects on the spool position,and friction,all contributing to the significant nonlinear behavior.This will influence the actual control bandwidth,which is less than half of the natural frequency in general.Currently the control bandwidths of large simulators are relatively small.
     This thesis deals with large hydraulic parallel simulators in applications with requirements of high precise positioning and good dynamic performance.A Lagrangian dynamic formulation which considers the whole leg inertia is developed,and the influence of legs on the dynamics is studied.Based on the accurate inertia model,an optimal design method to expand the bandwidth for the control of large hydraulic 6-DOF simulators is proposed,the influence of design parameters on the generalized natural frequency are investigated,and this optimal method has been put into application in the design of a large hydraulic simulator.In addition,a co-simulation model of the hydraulic parallel simulator is built,including hydraulic system, mechanism and control strategy.With the simulation model,mathematical model and experiments,the coupling characteristics has been studied.Based on the coupling laws among the legs,two kinds of decoupling methods are proposed.The effectiveness of the decoupling methods is validated.
     In Chapter 1,based on the research information home and abroad,the history,features and applications of the motion simulators especially 6-DOF parallel simulators are introduced.The related technologies are presented in detail with the latest progress of last few years,including kinematics,dynamics,control strategy,controlling hardware,optimizations and so on.Some trends and difficulties of the development for the parallel simulators are also summarized. Finally,according to the purpose and significance of the study,the major research contents of the thesis are introduced.
     In Chapter 2,a Lagrangian formulation which considers the whole leg inertia is developed for the dynamics of large parallel simulator,and the accurate equivalent mass matrix is obtained and verified by ADAMS model.Numerical examples are carried out to validate and confirm the efficiency of the mathematical model.Furthermore,the effect of leg inertia on the equivalent mass matrix is studied,and three parameters(acceleration of the moving platform,mass ratio of leg to upper platform,mass ratio of cylinder to piston) are used to investigate the influence of leg inertia on dynamics more detailed.
     In Chapter 3,an optimal design method,based on generalized natural frequency,to expand the bandwidth for the control of large hydraulic 6-DOF parallel simulators is proposed.An ADAMS model is built to validate the generalized natural frequency mathematical model.The influences of the diameter ratio and the joints angle ratio on frequencies are studied for different configurations.A detailed investigation of the influences of design parameters on natural frequencies is carded out for 6-6 SPS configuration.With workspace verification,the optimized structure parameters for one large hydraulic 6-DOF simulator are obtained.
     In Chapter 4,a co-simulation model of the hydraulic parallel simulator is built including hydraulic system,mechanism and control strategy.Based on the interface,the combined simulation modeling strategy for multiple research areas is studied,and the detailed models and different universal co-simulation methods are presented.The influential factors on the model's accuracy are investigated,and a method to detect and correct the model discontinuity is developed to ensure the accuracy of the co-simulation model.
     In Chapter 5,combined with the co-simulation model,mathematical model and experiments,the complex coupling characteristics of the hydraulic 6-DOF parallel platform is investigated.Firstly,the dynamic coupling of the parallel simulator is studied based on the dynamic consistency of six actuators.Furthermore,the load coupling among the six actuators of the platform is investigated in detail.Finally,based on the coupling laws among the legs,two kinds of decoupling methods are proposed.The effectiveness of the decoupling methods is validated.
     In Chapter 6,conclusions of the thesis are summarized and the future research work is put forward.
引文
[1]徐阳.前景光明的现代仿真技术[J].自动化博览,2001,18(3):43-44.
    [2]康凤举.现代仿真技术与应用[M].北京:国防工业出版社,2001.
    [3]周自全,刘兴堂,余静.现代飞行模拟技术[M].北京:国防工业出版社,1997.
    [4]孟浩,赵国良,王岚.船舶运动半物理仿真系统[J].系统仿真学报,2003,15(3):457-459.
    [5]韩俊伟,姜洪洲.用于航海模拟的六自由度并联机器人的研究[J].高技术通讯,2001,3:88-90.
    [6]闫野,赵汉元.飞行器六自由度仿真方法[J].国防科技大学学报,2000,22(3):80-83.
    [7]黄艳俊,苏建刚.用于机载火控性能测试的六自由度运动模拟器参数设计[J].液压与气动,2005,(3):21-24.
    [8]孙双蕾,王军政,汪首坤.车辆运动模拟器运动参数实时监测系统[M].火力与指挥控制,2004,29(6):77-80.
    [9]赵丁选,山田宏尚.遥操作工程机器人系统临场感技术研究-6自由度临场运动感觉反馈技术的研究进展[M].工程设计学报,2002,9(3):127-130.
    [10]GWINNETT J E.Amusement devices:US,1,789,680[P/OL].1931-1-20.
    [11]POLLARD W L G Spray painting machine:US,2,213,108[P/OL].1940-8-26.
    [12]POLLARD W L V.Position controlling apparatus:US,2,286,571[P/OL].1942-6-16.
    [13]Gough V E..Contribution to discussion of papers on research in automobile stability,control and tyre performance[C]//Proceedings of the Institution of Mechanical Engineers:Auto Division,1956-1957,171:392-395.
    [14]STEWART D.A Platform with six degrees of freedom[C]//Proceedings of International Mechanical Engineerings,London,1965/66,180(15):371-386.
    [15]CAPPEL K L.Motion simulator:US,3,295,224[P/OL].1967-1-3.
    [16]HUNT K H.Kinematic geometry of mechanisms[M].Oxford,Great Britain:Oxford University Press,1978.
    [17]MCCALLION H,PHAM D T.The analysis of a six degrees of freedom work station for mechanized assembly[C]//Proc.5th World Congress on Theory of Machines and Mechanisms,Montreal,1979,611-616.
    [18]EARL C F,ROONEY J.Some kinematic structures for robot manipulator designs[J].Journal of Mechanisms,Transmissions and Automation in Design,1983,105(4):15-22.
    [19]FICHTER E F,McDowell E D.A novel design for a robot arm[C]//Proceedings of International Computer Technology Conference,Aug.12-15,New York:ASME,1980:250-256.
    [20]FICHTER E F,MCDOWELL E D.Determining the motions of joints on a parallel connection manipulators[C]//Proceedings of the Sixth World Congress on the Theory of Machines and Mechanisms,1984,New Delhi:1003-1006.
    [21]HUNT K H.Structural kinematics of in-parallel-actuated robot arms[J].Journal of Mechanisms,Transmissions and Automation in Design;1983,105(4):705-712.
    [22]POWELL I L.Kinematic analysis and simulation of the parallel topology manipulator[J].Marconi Review,1982,45(226)Third Quarter:121-138.
    [23]POTTON S L.GEC advanced device for assembly[J].Manufacturing systems,1983,13(2):130-144.
    [24]YANG D C,LEE T W.Feasibility study of a platform type of robotic manipulator from a kinematic viewpoint[J].Journal of Mechanisms,Transmissions and Automation in Design,1984,106(2):191-198.
    [25]FICHTER E F.A Stewart platform-based manipulator:general theory and practical construction[J].International Journal of Robotics Research,1986,5(2):157-182.
    [26]PALONEN T,ROKALA M,SAIRIALA H,UUSI-HEIKKIL(A|¨) J.Design and implementation of a water hydraulic 6-DOF motion platform for realtime simulators[C]//In:Johnston,D.N.& Edge,K.A.(eds.) Power Transmission and Motion Control,PTMC 2006,University of Bath,UK,September,13-15,2006.
    [27]汪琦.6-UPS型并联机床的动态特性分析及实验研究[D].清华大学硕士学位论文,2002.
    [28]高英杰.并联机器人控制策略与电液速度模糊控制系统的研究[D].燕山大学硕士学位论文,1990.
    [29]吴江宁.并联式六自由度平台及其控制研究[D].浙江大学博士学位论文,1996.
    [30]汪劲松,段广洪,杨向东.VAMT1Y虚拟轴机床制造[J].技术与机床,1998(2):42-43.
    [31]杨灏泉.飞行模拟器六自由度运动系统及其液压伺服系统的研究[D].哈尔滨工业大学博士学位论文,2002.
    [32]杨鹏,梁利华,宋吉广,史洪宇,李国斌.基于PMAC的6自由度船舶运动模拟台控制系统设计[J].制造业自动化,2006,28(11):51-53,60.
    [33]郝轶宁.并联式六自由度电液伺服摇摆台的控制研究[D].北京理工大学博士学位论文,2003.
    [34]MASARU U.Structure and characteristics of parallel manipulators[J].Advanced Robotics,1994,8(6):545-547.
    [35]MURTHY V,WALDRON K J.Position kinematics of the generalized lobster arm and its series-parallel dual[J].ASME J.of Mech.Des,1992,114:406-413.
    [36]BHASKAR D,MRUTHYUNJAYA T S.The Stewart platform manipulator:a review[J].Mechanism and Machine Theory,2000,35:15-40.
    [37]王洪瑞.液压6-DOF并联机器人操作手运动和力控制的研究[M].保定:河北大学出版社,2001.
    [38]陈学生.并联机器人位置正解工作空间及尺度综合问题的研究[D].哈尔滨工业大 学博士学位论文,2002.
    [39]陈安平.三自由度运动平台系统建模与分析[D].哈尔滨工业大学硕士学位论文,2005.
    [40]李世保,刘常波,彭达胜.潜艇六自由度运动仿真器[J].计算机仿真,1996,13(1):21-30.
    [41]马婷婷,魏晨曦.空间交会对接概述[J].中国航天,2004,7:33-34.
    [42]张崇峰.空间对接六自由度半物理仿真的研究[J].航天控制,1999,(1):70-74.
    [43]郭坤相.对接试验台运动模拟器控制系统设计与分析[D].哈尔滨工业大学硕士学位论文,2006.
    [44]HAN J W,HUANG Q T,CHANG T L.Research on space docking hil simulation system based on stewart 6-dof motion system[C]//Proceedings of the 7~(th) JFPS International Symposium on Fluid Power,Sep.15-18,2008,Toyama,Japan,JFPS 2008:213-218.
    [45]ELMAS A,HUSEYIN A,SAIT N.The Stewart platform mechanism-a review[J].Transactions on Engineering,Computing and Technology,2004,2(12):106-109.
    [46]Robotics[EB/OL].http://www.roble.info/robotics/robotics/,Published on Aug.13,2005.
    [47]高峰.并联机器人设计理论及其关键应用技术研究[J].河北工业大学学报,2004,33(2):83-89.
    [48]汪劲松,黄田.并联机床-机床行业面临的机遇与挑战[J].中国机械工程,1999,10(10):1103-1107.
    [49]MERLET J P.Parallel robots(Second Edition)[M].Dordrecht,the Netherlands:Springer,2006.
    [50]KONG X W,GOSSELIN C M.Type synthesis of parallel mechanism[M].Berlin Heidelberg,Germany:Springer,2007.
    [51]黄真,孔令富,方跃法.并联机器人机构学与控制[M].北京:机械工业出版社,1997.
    [52]GOSSELIN C M.Two degree-of-freedom spherical orienting device:US,5,966,991[P/OL].1999-10-19.
    [53]CARRICATO M,PARENTI-CASTELLI V.A novel fully decoupled two-degrees-of-freedom parallel wrist[J].The International Journal of Robotics Research,2004,23(6):661-667.
    [54]CARRICATO M,PARENTI-CASTELLI V.Singularity-free fully isotropic translational parallel mechanisms[J].International Journal of Robotics Research,2002,21(2):161-174.
    [55]Kim H S,Tsai L W.Design optimization of a Cartesian parallel manipulator[J].ASME Journal of Mechanical Design,2003,125:43-51.
    [56]KONG X W,GOSSELIN C M.Type Synthesis of Linear Translational Parallel Manipulators[M].Advances in Robot Kinematics-Theory and Applications.Kluwer Academic Publishers,2002.
    [57]KONG X W,GOSSELIN C M.Type synthesis of 3-DOF translational parallel manipulators based on screw theory[J].ASME Journal of Mechanical Design,2004,126(1):83-92.
    [58]GRIGORE G.Structural synthesis of fully-isotropic translational parallel robots via theory of linear transformations[J].European Journal of Mechanics A/Solids 2004,23:1021-1039.
    [59]GAO F,ZHANG Y,LI W M.Type synthesis of 3-DOF reducible translational mechanisms[J].Robotica,2005,23:239-245.
    [60]张勇.可约并联机构设计理论与方法研究[D].燕山大学博士论文,2006.
    [61]MERLET J P.Micro parallel robot mips for medical applications[C]//IEEE Int.Conf.on Emerging Technologies and Factory Automation,October,15-18,Antibes,France,2001,(2):611-619.
    [62]PARENTI-CASTELLI V,DI GREGORIO R.Influence of manufacturing errors on the kinematic performance of the 3-UPU parallel mechanism[C]//2nd Chemnitzer Parallelkinematik-Seminar:Working Accuracy of Parallel Kinematics,Verlag Wissenschaftliche Scripten,April,12-13,Chemnitz,Germany,2000:85-100.
    [63]FRANKE H J,OTREMBA R,JANICKE T.Methodical development of optimized passive joints[C]//ln 1st Int.Colloquium Collaborative Research Centre 562,May,29-30,Braunschweig,Germany,2002:119-130.
    [64]Rexroth Information Quarterly[R].1997(3):2-6.
    [65]RAGHAVAN M.The Stewart platform of general geometry has 40 configurations[J].ASME J Mechanical Design,1993,115(2):277-281.
    [66]DIETMAIER P.The Stewart-Gough platform of general geometry can have 40 real postures[C]//Proceedings of ARK,29 June-4 July,Strobl,Austria,1998:7-16.
    [67]张辉,王启明,叶佩青.通用Stewart平台运动学正向数值求解方法及应用[J].机械工程学报,2002,38(增刊):108-112.
    [68]裴葆青,韩先国,陈五一.基于传感器的6-DOF并联机构运动学正解[J].北京航空航天大学学报,2005,31(4):421-424.
    [69]MERLET J P.Closed-form resolution of the direct kinematics of parallel manipulators using extra sensors data[C]//IEEE International Conference on Robotics and Automation,May,2-6,Atlanta,Georgia,USA,1993:200-204.
    [70]韩先国.并联机床设计理论及相关方法研究[D].北京航空航天大学博士学位论文,2002.
    [71]姜虹,贾嵘,董洪智.六自由度并联机器人位置正解的数值解法[J].上海交通大学学报,2000,34(3):351-353.
    [72]刘安心,杨廷力.求一般6-SPS并联机器人机构的全部位置正解[J].机械科学与技术,1996,15(4):543-546.
    [73]PARIKH P J,LAM S S Y.A Hybrid Strategy to Solve the Forward Kinematics Problem in Parallel Manipulators[J].IEEE Transactions on Robotics,2005,21(1):18-25.
    [74]PARIKH P J,LIN C H,LAM S S Y.Approximating the forward kinematics solution of a Stewart platform using two concepts in neural networks[C]//Proc.Artificial Neural Networks in Engineering Conf.,ASME,2002:847-852.
    [75]JI P,WU H T.A Closed-Form Forward Kinematics Solution for the 6-6 Stewart Platform[J].IEEE Transactions On Robotics And Automation,2001,17(4):522-526.
    [76]MERLET J P.Parallel manipulators part Ⅰ:theory design,kinematics,dynamics and control[R].INRIA Research Report No.646,1987:1-10.
    [77]黄献龙,梁斌,陈建新.EMR系统机器人工作空间与灵活性的分析[J].机械工程学报,2001,37(2):12-16.
    [78]JASON P,ABBAS F,SUNIL A.Design and workspace analysis of a 6-6cable-suspended parallel robot[C]//Proceedings of the 2003 IEEE/RSJ,Internatioal Conference on Intelligent Robots and Systems,Las Vegas,Nevada,USA,October,2003:2090-2095.
    [79]MERLET J P,DANEY D.A formal-numerical approach to determine the presence of singularity within the workspace of a parallel robot[C]//In F.C.Park C.C.Iurascu,editor,Computational Kinematics,EJCK,Seoul,May,20-22,2001:167-176.
    [80]MERLET J P.A parser for the interval evaluation of analytical functions and its applications to engineering problems[J].J.Symbolic Computation,2001,31:475-486.
    [81]BHASKAR D,MRUTHYUNJAYA T S.Closed-form dynamic equations of the general Stewart platform through the Newton-Euler approach[J].Mech.Mach.Theory,1998,33(7):993-1012.
    [82]BHASKAR D,MRUTHYUNJAYA T S.A Newton-Euler formulation for the inverse dynamics of the Stewart platform manipulator[J].Mech.Mach.Theory,1998,33(8):1135-1152.
    [83]LEBRET G,LIU K,LEWIS F L.Dynamic analysis and control of a Stewart platform Manipulator[J].J of Robotic System,1993,10(5):629-655.
    [84]CHEN C T.A Lagrangian formulation in terms of quasi-coordinates for the inverse dynamics of the general 6-6 Stewart platform[J].JSME International Journal Series C,2003,46(3):1084-1090.
    [85]LIU M J,LI C X,LI C N.Dynamics Analysis of the Gough-Stewart Platform Manipulator[J].IEEE Transactions on Robotics and Automation,2000,16(1):94-98.
    [86]WANG J G,GOSSELIN C M.A New Approach for the Dynamic Analysis of Parallel Manipulators[J].Multi-body System Dynamics,1998,(2):317-334.
    [87]GALLARDO J,RICO J,FRISOLI A.Dynamics of parallel manipulators by means of screw theory[J].Mech Mach Theory,2003,(38):1113-1131.
    [88]罗磊,莫锦秋,王石刚.并联机构动力学建模和控制方法分析[J].上海交通大学学报,2005,39(1):75-78.
    [89]王立平,汪劲松.并联机床动态特性研究的理论与实际意义[J].工具技术,2002,36(11):3-7.
    [90]荣辉,曹红波.并联机床动力学研究进展[J].机床与液压,2005,(1):9-11.
    [91]金灵,吴建勇,计时鸣.并联机构动力学建模及控制策略的研究[J].机电工程,2006,23(9):30-34.
    [92]吴博,吴盛林,赵克定.并联机器人控制策略的现状和发展趋势[J].机床与液压,2005(10):5-8.
    [93]吴健珍.6-DOF并联机器人非线性鲁棒自适应控制[D].燕山大学硕士学位论文,2001.
    [94]陈卫东.6-DOF并联机器人动力学建模、非线性变结构控制[D].燕山大学硕士学位论文,2001.
    [95]杨香兰.6-DOF并联机器人动力学建模、模糊变结构控制[D].燕山大学硕士学位论文,2001.
    [96]RT-LAB使用手册[M].Opal Inc,2007.
    [97]MERLET J P.The need for a systematic methodology for the evaluation and optimal design of parallel manipulators[C]//In 3rd Chemnitzer Parallelkinematik Seminar,Chemnitz,April,23-25,2002:49-62.
    [98]MERLET J P.Still a long way to go on the road for parallel mechanisms[C]//In ASME 27th Biennial Mechanisms and Robotics Conf,29 Septembre-2 Octobre,Montr(?)al,Canada,2002.
    [99]LIU X J,WANG J,GAO F,WANG L P.Mechanism design of a simplified 6-DOF 6-RUS parallel manipulator[J].Robotica,2002,20(1):81-91.
    [100]KUMAR V.Characterization of workspaces of parallel manipulators[J].J.Mech.Des.,1992,114(3):368-375.
    [101]MASORY O,WANG J.Workspace evaluation of Stewart platform[J].Advanced Robotics,1995,9(4):443-461.
    [102]BOUDREAU R,GOSSELIN C M.The systhesis of planar parallel manipulators with a genetic algorithm.J.Mech.Design.,1999,121(4),533-537.
    [103]LIU X J,WANG J S,GAO F.On the optimum design of planar 3-dof parallel manipulators with respect to the workspace[C]//In Proceedings of IEEE International Conference on Robotics Automation,San Francisco,2000:4122-4127.
    [104]LARIBI M A,ROMDHANE L,ZEGHLOUL S.Analysis and dimensional synthesis of the DELTA robot for a prescribed workspace[J].Mech.Mach.Theory,2007,42(7):859-870.
    [105]BHATTACHARYA S,HATWAL H,GHOSH A.On the optimum design of Stewart platform type parallel manipulators[J].Robotica,1995,13(2):133-140.
    [106]LIU X J,JIN Z L,GAO F.Optimum design of 3-DOF spherical parallel manipulators with respect to the conditioning and stiffness indices[J],Mech.Mach.Theory,2000,35(6):1257-1267.
    [107]HONG K S,KIM J G.Manipulability analysis of a parallel machine tool:application to optimal link length design[J].J.Robotic Syst.,2000,17(8):403-415.
    [108]MILLER K.Optimal design and modeling of spatial parallel manipulators[J].Int.J.Robot.Res.,2004,23(2):127-140.
    [109]PITTENS K H,PODHORODESKI R P.A family of Stewart platforms with optimal dexterity[J].J.Robotic Syst.,1993,10(4):463-479.
    [110]GAO F,GUY F,GRUVER W A.Criteria based analysis and design of three-degree-of-freedom planar robotic manipulators[C]//In Proceedings of IEEE International Conference on Robotics and Automation,New Mexico,April 1997:468-473.
    [111]GOSSELIN C M,ANGELES J.A global performance index for the kinematic optimization of robotic manipulators [J].J.Mech.Des.,1991,113(3):220-226.
    [112]RYU J,CHA J.Optimal architecture design of parallel manipulators for best accuracy[C]//In Proceedings of IEEE International Conference on Robotics and Systems,Hawaii,2001:1281-1286.
    [113]LOU Y,ZHANG D,LI Z.Optimal design of a parallel machine based on multiple criteria[C]//Proceedings of IEEE International Conference on Robotics and Automation,Barcelona,April,2005:3219-3224.
    [114]ARSENAULT M,BOUDREAU R.Synthesis of planar parallel mechanisms while considering workspace,dexterity,stiffness and singularity avoidance[J].J.Mech.Des.,2006,128(1):69-78.
    [115]SHILLER Z,SUNDAR S.Design of robotic manipulators for optimal dynamic performance[C]//Proceedings of IEEE International Conference on Robotics and Automation,Sacramento,April,1991:334-339.
    [116]KHATIB O,BOWLING A.Optimization of the inertial and acceleration characteristics of manipulators[C]//Proceedings of IEEE International Conference on Robotics and Automation,Minnesota,April,1996:2883-2889.
    [117]HUANG T,LI Z X,LI M,CHETWYND D G,GOSSELIN C M.Conceptual design and dimensional synthesis of a novel 2-DOF translational parallel robot for pick-and-place operations[J].J.Mech.Des.,2004,126(3):449-455.
    [118]HILLER M,FANG S Q,MIELCZAREK S,VERHOEVEN R,FRANITZA D.Design,analysis and realization of tendon-based parallel manipulators[J].Mech.Mach.Theory,2005,40(4):429-445.
    [119]STOUGHTON R,ARAI T.A modified Stewart platform manipulator with improved dexterity[J].IEEE Trans.Robotics Automat.,1993,9(2):166-173.
    [120]HAO F,MERLET J P.Multi-criteria optimal design of parallel manipulators based on interval analysis[J].Mech.Mach.Theory,2005:40(2):157-171.
    [121]POTT A,BO YE T,HILLER M.Parameter synthesis for parallel kinematic machines from given process requirements[C]//Proceedings of IEEE/ASME International Conference on Advanced Intelligent Mechatronics,California,July,2005:24-28.
    [122]ZHANG D,GOSSELIN C M.Parallel kinematic machine design with kinetostatic model[J].Robotica,2002,20(4):429-438.
    [123]LOU Y J,LIU G F,LI Z X.Optimal design of parallel manipulators via LMI approach[C]//Proceedings of IEEE International Conference on Robotics and Automation,Taipei,September,2003:1869-1874.
    [124]SMAILI A A,DIAB N A,ATALLAH N A.Optimum synthesis of mechanisms using tabu-gradient search algorithm[J].J.Mech.Des.,2005,127(5):917-923.
    [125]BONEY I.The true origins of parallel robots[EB/OL].http://www.parallemic.org/,Published on Jan.24,2003.
    [126]YIU Y K,CHENG H,XIONG Z H,LIU G F,LI Z X.On the Dynamics of Parallel Manipulators[C]//Proceedings of the 2001 International Conference on Robotics &Automation,Seoul,Korea,May 21-26,2001:3766-3771.
    [127]DO W Q D,YANG D C H.Inverse dynamic analysis and simulation of a platform type of robot[J].J.of Robotic Systems,1988,5(3):209-227.
    [128]REBOULET C,BERTHOMIEU T.Dynamic model of a six degree of freedom parallel manipulator[C]//In ICAR,Pise,1991:1153-1157.
    [129]LIU K,FRANK L,GUY L.The singularities and Dynamics of a Stewart platform manipulator[J].J of Intelligent and Robotic System,1993(8):287-308.
    [130]JI Z M.Study of the effect of Leg Inertia in Stewart platform[C]//IEEE International Conference on Robotics and Automation,Atlanta,1993(1):121-126.
    [131]JI Z M.Dynamic decomposition for Stewart platforms[J].ASME J.of Mechanical Design,1994,116(1):67-69.
    [132]CODOUREY A.Dynamic modeling of parallel robots for computed-torque control implementation[J].International Journal of Robotics Research,1998,17(12):1325-1336.
    [133]XI F F,ROSARIO S,HAN W Z.Effect of leg inertia on dynamics of sliding-leg Hexapods[J].Journal of Dynamic Systems,Measurement and Control,2001,123(6):265-271.
    [134]PANG H,SHAHINPOOR M.Inverse dynamics of a parallel manipulator[J].Journal of Robotic Systems,1994,11(8):693-702.
    [135]徐博侯,吴淇泰,应祖光.工程力学基础教程[M].杭州:浙江大学出版社,2001.
    [136]NICOSIA S,TOMEI P.Robot control by using only joint position measurements[J].IEEE Transactions on Automation Control,1990,35(9):1058-1061.
    [137]魏立新.6-DOF并联机器人动力学建模及其控制策略研究[D].燕山大学硕士学位论文,2002.
    [138]邹豪,王启义,余晓流等.并联Stewart机构位姿误差分析[J].东北大学学报,2000,21(3):301-304.
    [139]WANG J,MASORY O.On the accuracy of a Stewart platform-Part Ⅰ the effect of manufacturing tolerance[C]//Proc,of IEEE Int.Conf.on Robotics and Automation,Atlanda,1993:114-120.
    [140]洪林.并联机器人精度分析与综合研究[D].天津大学博士学位论文.2004.
    [141]金瑶兰,龚国芳,王静.油液抽真空除气装置的设计及仿真分析[J].机床与液压, 2007,35(7):77-79.
    [142]郑建荣.ADAMS-虚拟样机技术入门与提高[M].北京:机械工业出版社,2001.
    [143]陈立平,张云清,任卫群,覃刚等.机械系统动力学分析及ADAMS应用教程[M].清华大学出版社,2005.
    [144]游世明,陈思忠.基于ADAMS的并联机器人运动学和动力学仿真[J].计算机仿真,2005,22(8):181-185.
    [145]冯培锋,陈扼西.基于Pro/E的6-HTS并联机床虚拟样机参数化实体建模[J].工程图学学报,2004,25(3):130-133.
    [146]曲中英,翁正新.基于Simulink的Stewart平台仿真研究[J].计算机仿真,2005,22(4):264-268.
    [147]田冠男,黄田.基于I-DEAS的Diamond并联机器人虚拟样机及运动仿真[J].机械设计,2005,22(7):13-15.
    [148]马欣艺,余晓流等.基于UG的串并联机构坐标测量机虚拟样机设计与仿真[J].机械设计与制造,2006,12:69-71.
    [149]熊光楞,郭斌,陈晓波,蹇佳.协同式仿真与虚拟样机技术[M].北京:清华大学出版社,2004.
    [150]骆涵秀,李世伦,朱捷,陈大军.机电控制[M].杭州:浙江大学出版社,1994.
    [151]IMAGINE公司.Technique report[R],2005.
    [152]IMAGINE公司.Application manuals[M],2007.
    [153]IMAGINE公司.Library manuals[M],2007.
    [154]ZHANG L X,WANG J S,WANG L P.Analysis and Simplification of the rigid body dynamic model for a 6-UPS parallel kinematic machine under the uniform motion condition[C]//Proceedings of the 2003 IEEE International Conference on Robotics.ChangSha,China,IEEE,2003:980-985.
    [155]SIROUSPOUR M R,SALCUDEAN S E.Nonlinear control of a hydraulic parallel manipulator[C]//Proceedings of the 2001 IEEE International Conference on Robotics &Automation,Seoul,Korea,IEEE,2001:3760-3765.
    [156]史长虹,张建民,张同庄.变轴数控机床重复定位精度评定策略探讨[J].北京理工大学学报,2001,21(4):450-453.
    [157]徐瑞娟.六自由度独立控制飞机飞行品质研究[J].西北工业大学学报,1994,12(4):659-663.
    [158]刘文涛,唐德威,王知行.Stewart平台机构标定的鸡尾酒法[J].机械工程学报,2004,40(12):48-52.
    [159]王启明,张辉,汪劲松,等.FAST馈源精调试验平台运动精度分析[J].机械工程学报,2002,38(增刊):53-55.
    [160]RYU J,CHA J.Optimal architecture design of parallel manipulators for best accuracy[C]//Proceedings of the 2001 IEEE International Conference on Intelligent Robotics and Systems.Hawaii,USA,IEEE,2001:1281-1286.
    [161]何景峰,叶正茂,姜洪州,丛大成,韩俊伟.基于关节空间模型的并联机器人耦合性分析[J].机械工程学报,2006,42(6):161-165.
    [162]MIYAMOTO Y,KUSAKABE M,ABE K,TSUCHIYA K,SUZUKI K,SATO S.Dynamic Characteristics of Parallel Link Mechanism with Six Degrees of Freedom using Electro-hydraulic Servo Cylinders[C]//Proceedings of the 7~(th) JFPS International Symposium on Fluid Power,Toyama,Japan,2008:597-602.
    [163]姚郁,傅绍文,韩蕾.Stewart平台关节空间惯性矩阵块对角占优分析与判别[J].机械工程学报,2008,44(6):101-106.
    [164]CODOUREY A.Dynamic modelling and mass matrix evaluation of the DELTA parallelrobot for axes deeoupling control[C]//IEEE International Conference on Intelligent Robots and Systems,Osaka,Japan,Nov 4-8,1996(3):1211-1218.
    [165]Baron L,Angeles J.The kinematic decoupling of parallel manipulators using joint-sensor data[J].IEEE Transactions on Robotics and Automation,2000,16(6):644-651.
    [166]LEE S H,SONF J B,CHOI W C,HONG D.Position control of a Stewart platform using inverse dynamics control with approximate dynamics[J].Mechatronics,2003,13(6):605-619.
    [167]杨灏泉,赵克定,吴盛林.飞行模拟器六自由度运动系统负载交联耦合的研究[J].机械科学与技术,2004,23(12):1470-1477.
    [168]CHEN Y X,MCINROY J E.Decoupled control of flexure-Jointed hexapods using estimated joint-space mass-inertia matrix[J].IEEE Transactions on Control Systems Technology,2004,12(3):413-421.
    [169]何景峰,谢文建,韩俊伟.六自由度并联机器人输出解耦控制[J].哈尔滨工业大学学报,2006,38(3):395-398.
    [170]党田峰.液压六自由度并联机构虚拟样机研究[D].浙江大学硕士学位论文.2008.
    [171]吴乐彬,王宣银,李强.对接模拟并联六自由度平台的模糊免疫PID控制[J].浙江大学学报(工学版),2008,42(3):387-391.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700