用户名: 密码: 验证码:
Ghrelin对巨噬细胞源性泡沫细胞形成的抑制作用及其机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分Ghrelin对巨噬细胞源性泡沫细胞ATP结合盒转运子A1和G1表达的调控作用
     背景:ATP结合盒转运子A1和G1(ATP-binding cassette transporter A1/G1,ABCA1/ABCG1)是两种胞膜蛋白。在动脉壁,ABCA1是单核巨噬细胞内胆固醇流出的重要途径,其基因突变可引起胞内胆固醇流出障碍;ABCG1也是单核巨噬细胞内胆固醇流出的途径之一,有助于清除脂质,防止泡沫细胞形成,从而抑制动脉粥样硬化(atherosclerosis,AS)的形成。Ghrelin是一种促生长激素释放肽,与糖脂代谢及相关疾病有密切联系,诸多研究提示Ghrelin在AS的发展中扮演着有益的角色,但Ghrelin对巨噬细胞源性泡沫细胞形成的调控作用及机制尚未见报道。
     目的:本研究探讨了Ghrelin对单核/巨噬细胞泡沫化过程中胞内脂滴含量的影响,同时研究单核/巨噬细胞分化成为泡沫细胞过程中Ghrelin对ABCA1和ABCG1表达的调控作用,以揭示其抗AS的效应及其机制。
     方法:体外培养人源单核细胞系THP-1,由佛波酯(phorbol myristate acetate,PMA)作用使其分化为巨噬细胞,后者可在在氧化低密度脂蛋白(ox-LDL)存在条件下进一步转变为泡沫细胞,油红O染色法鉴定泡沫细胞形成。巨噬细胞加入不同浓度的Ghrelin(10~(-7)mol/L,10~(-6) mol/L,10~(-5)mol/L)预孵2小时后再加入ox-LDL共同孵育不同时间(12h,24h,48h),随后各组均加入10mg/L的apoA-I,CO_2培养箱中孵育12小时。油红O染色法观察细胞内脂滴含量,运用PT-PCR法检测ABCA1和ABCG1mRNA水平,Western-blot法检测ABCA1和ABCG1蛋白表达,采用酶法,通过荧光分光光度计检测细胞内外胆固醇含量并计算胆固醇流出率。
     结果:Ghrelin可明显减少细胞内脂滴的形成,显著增加胞内游离胆固醇流出率,随着Ghrelin浓度增高,其抑制胞内胆固醇酯含量和增加胆固醇流出率的作用增强,10~(-7)mol/L,10~(-6)mol/L和10~(-5)mol/L Ghrelin干预组胆固醇流出率分别为(29.3±1.1)%,(36.0±1.4)%和(41.6±2.1)%,差异具有统计学意义(P<0.05);胆固醇酯含量分别为34.5±3.0、27.8±2.3、24.3±2.3,与泡沫细胞组相比有显著差异(P<0.05)。但不同作用时间组无明显差别。Ghrelin能显著增加单核/巨噬细胞泡沫化过程中ABCA1和ABCG1 mRNA水平和蛋白表达,不同浓度干预组ABCA1/G1表达有显著差异(P<0.05),不同时间组ABCA1/G1表达无统计学差异(P>0.05)。
     结论:Ghrelin能上调ABCA1和ABCG1 mRNA与蛋白的表达,从而促进胞内胆固醇流出,抑制巨噬细胞源性泡沫细胞的形成,并可能因此而延缓动脉粥样硬化的发生;Ghrelin的上述作用呈浓度依赖性而不呈时间依赖性。
     第二部分Ghrelin通过生长激素促分泌素受体抑制巨噬细胞源性泡沫细胞形成
     背景:Ghrelin是生长激素促分泌素受体(growth hormone secretagogue receptor,GHS-R)的配体,能通过与该受体结合发挥促生长激素分泌的效应。巨噬细胞膜上也同样表达GHS-R,目前研究表明在动脉粥样硬化斑块处Ghrelin受体的密度明显上调。我们前面的研究提示Ghrelin能通过下调酰基辅酶A:胆固醇酰基转移酶1(acyl-CoA:cholesterol acyltransferases,ACAT1)的表达、上调ABCA1和ABCG1的表达而促进胆固醇外流,从而抑制胆固醇酯聚集于巨噬细胞使之泡沫化。据此,我们推测上述表象是Ghrelin通过与GHS-R发生受体-配体相互作用而发挥效应。
     目的:以人单核细胞系THP-1源性泡沫细胞为研究对象,探讨不同程度拮抗GHS-R受体后,Ghrelin对单核巨噬细胞源性泡沫细胞形成过程中人ACAT-1和ABCA1/G1基因和蛋白表达的调控作用。检测不同程度拮抗GHS-R受体后,Ghrelin对单核巨噬细胞源性泡沫细胞形成的影响,其胞内胆固醇酯含量及胆固醇流出率变化。
     方法:体外培养THP-1,由佛波酯(PMA)诱导分化为巨噬细胞,继而在氧化低密度脂蛋白(ox-LDL)存在条件下进一步转变为泡沫细胞,油红O染色法鉴定泡沫细胞形成。单核细胞分化为巨噬细胞后,与不同浓度(10~(-5)mol/L,5×10~(-5)mol/L,10~(-4)mol/L)GHS-R特异性拮抗剂[D-Lys3]-GHRP-6预孵2h后,再与Ghrelin(浓度为10~(-5)mol/L)共育,2h后加入ox-LDL作用24h。随后各组均加入10mg/L的apoA-I,CO_2培养箱中孵育12小时。运用PT-PCR法和Western-blot法分别检测Ghrelin干预后及拮抗生长激素促分泌素受体后ACAT-1、ABCA1和ABCG1 mRNA水平与ACAT-1蛋白表达,采用酶法,通过荧光分光光度计检测细胞内外胆固醇含量和游离胆固醇含量,并计算胆固醇酯含量和胆固醇流出率。
     结果:油红O染色结果显示GHS-R拮抗剂[D-Lys3]-GHRP-6阻断Ghrelin对巨噬细胞泡沫化的抑制作用。Ghrelin能显著降低单核/巨噬细胞泡沫化过程中ACAT-1mRNA水平和蛋白表达(P<0.01),不同浓度(10~(-5)mol/L,5×10~(-5)mol/L和10~(-4)mol/L)[D-Lys3]-GHRP-6干预后,ACAT-1 mRNA水平逐渐增高,分别为1.14±0.04,1.58±0.03和2.4±0.16,ACAT-1蛋白表达也逐渐增高,分别为1.25±0.09,1.77±0.11和2.3±0.09,与Ghrelin组(mRNA:0.89±0.05,蛋白:0.86±0.08)相比,差异具有统计学意义(P<0.05)。同时,Ghrelin能显著增加单核/巨噬细胞泡沫化过程中ABCA1/G1 mRNA水平和蛋白表达(P<0.01)。拮抗GHS-R后,Ghrelin抑制泡沫细胞形成的效应被阻断,且GHS-R特异性拮抗剂浓度越高,该阻断作用越明显(P<0.05)。胆固醇含量检测结果表明,不同浓度[D-Lys3]-GHRP-6干预组较Ghrelin组胞内胆固醇酯含量分别升高了(16.7±1.2)%,(54.5±4.5)%和(73.4±7.9)%,阻断了Ghrelin抑制胆固醇酯形成的作用作用(P<0.05)。胆固醇流出率结果则表明,[D-Lys3]-GHRP-6也阻断了Ghrelin对胆固醇流出的促进作用(P<0.05)。
     结论:Ghrelin可能通过GHS-R途径下调ACAT-1转录翻译水平,及上调ABCA1/G1转录翻译水平,从而抑制胆固醇聚集于巨噬细胞,并同时促进胞内胆固醇的流出,避免游离胆固醇滞留于细胞。若拮抗Ghrelin的受体GHS-R,则Ghrelin的这种有益的效应被阻断,而不能发挥抑制巨噬细胞泡沫化的作用。
     第三部分过氧化物酶体增生物激活受体γ信号通路参与Ghrelin抑制巨噬细胞泡沫化过程
     背景:过氧化物酶体增生物激活受体γ(peroxisome proliferator-activated receptorγ,PPARγ)是PPAR超家族的亚型之一,属于核受体转录蛋白。PPARγ表达于巨噬细胞核内,并被证实能调节细胞和动脉壁脂质稳态,提示其在抗动脉粥样硬化中发挥着重要作用。我们早期研究显示PPARγ的活化能使ACAT1的表达受抑制。而我们前面的研究证实Ghrelin能下调ACAT1表达,因此,我们推测PPARγ信号通路参与了Ghrelin对ACAT1的调控过程。我们进一步推测PPARγ也同时参与了Ghrelin对ABCA1和ABCG1的调控作用。
     目的:以人单核/巨噬细胞源性泡沫细胞为研究对象,探讨Ghrelin对人单核细胞系(THP-1)源性泡沫细胞PPARγ表达的调控作用;探讨不同程度地抑制PPARγ后,胞内胆固醇酯含量及胆固醇流出率的变化;探讨不同程度抑制PPARγ对Ghrelin调控ACAT-1、ABCA1和ABCG1 mRNA与蛋白表达的影响,从而确定PPARγ信号通路是否为Ghrelin抑制巨噬细胞泡沫化的机制之一。
     方法:体外培养THP-1,在佛波酯(phorbol myristate acetate,PMA)的诱导下分化为巨噬细胞,与不同浓度(10~(-7)mol/L,10~(-6)mol/L,10~(-5)mol/L)ghrelin预孵后加入氧化低密度脂蛋白(ox-LDL)共育24h。运用PT-PCR法和Western-blot法分别检测不同浓度Ghrelin(10~(-7)mol/L,10~(-6)mol/L,10~(-5)mol/L)作用后PPARγmRNA与蛋白的表达。巨噬细胞与不同剂量(10μmol/L,20μmol/L,50μmol/L)PPARγ特异性抑制剂GW9662预孵2h后,加入Ghrelin(10~(-5)mol/L)作用2h,再与终浓度为100mg/Lox-LDL共育24h,随后各组均加入10mg/L的apoA-I,CO_2培养箱中孵育12小时。油红O染色法观察细胞内脂滴含量;PT-PCR法和Western-blot法分别检测Ghrelin干预后PPARγmRNA与蛋白的表达,以及不同程度抑制PPARγ后ACAT-1、ABCA1和ABCG1mRNA水平与ACAT-1蛋白表达,采用酶-荧光分光光度计法检测细胞内外胆固醇含量和游离胆固醇含量,并计算胆固醇流出率。
     结果:与泡沫细胞组相比,不同浓度组(10~(-7)mol/L,10~(-6)mol/L,10~(-5)mol/L)Ghrelin能显著增加单核/巨噬细胞泡沫化过程中PPARγmRNA与蛋白表达,且干预的Ghrelin浓度越高,PPARγ表达越高,其mRNA表达分别为0.87±0.06,1.44±0.15,1.57±0.11,其蛋白表达分别为0.82±0.06,1.46±0.11,1.73±0.14,与泡沫细胞组相比,差异均具有统计学意义(P<0.05)。抑制PPARγ后,Ghrelin抑制泡沫细胞形成的效应被阻断,且PPARγ抑制剂浓度越高,该阻断作用越明显。PPARγ的抑制剂GW9662还拮抗了Ghrelin对巨噬细胞泡沫化过程中ACAT-1和ABCA1/G1 mRNA水平和蛋白表达的调控作用,随着PPARγ抑制剂剂量的增高,其阻断Ghrelin下调ACAT-1和上调ABCA1/G1的效应越显著(P<0.05)。胆固醇流出率结果显示,GW9662对照组和泡沫细胞组胞内胆固醇酯含量及胆固醇流出率无显著差别;不同剂量GW9662干预后,胞内胆固醇含量较Ghrelin组升高了(18.3±4.3)%,(30.6±11.4)%,(52.6±8.4)%;而胆固醇流出率则分别下降了(14.3±3.2)%,(27.3±4.1)%,(47.7±4.6)%,差异均有统计学意义。(P<0.05)。
     结论:Ghrelin能浓度依赖性上调单核/巨噬细胞泡沫化过程中PPARγmRNA与蛋白表达,并进而调控PPARγ下游途径ACAT-1、ABCA1和ABCG1的转录和翻译水平,从而抑制巨噬细胞源性泡沫细胞的形成,并可能通过该信号转导通路发挥抗动脉粥样硬化的作用。
PartⅠRegulation of Ghrelin on the Expression of ATP-bindingCassette Transporters A1/G1 in Macrophage-Derived Foam Cells
     Background:ATP-binding cassette transporter A1(ABCA1)and ATP-bindingcassette transporter G1(ABCG1)are involved in cholesterol removal from the macrophagefoam cells,and form the critical part of a process termed as reverse cholesterol transport,and therefore play critical roles in foam cell formation.Ghrelin,an endocrine peptide newlyidentified mainly in stomach epithelium,stimulates food intake in humans.Recently,manyresults imply a beneficial role of this hormone in the development of atherosclerosis.Theaim of this study is to investigate the regulation of ghrelin on the expression ofATP-binding Cassette transporters A1 and G1(ABCA1/ABCG1)during foam cellsformation.
     Methods:The human monocytic leukemia cell line(THP-1)was chosen in our study.The differentiation of THP-1 cells into macrophages was induced by using phorbolmyristate acetate(PMA).Macrophages were then incubated with oxidized LDL(ox-LDL)to generate foam cells.Ghrelin of different concentrations were treated at different timepoints during foam cells formation.The ABCA1/ABCG1 protein and mRNA expressionwere detected by Western blotting and RT-PCR.The effect of variance of cholesterolcontent was measured by zymochemistry via-fiuorospectrophotometer.
     Results:Ghrelin reduced the content of lipid droplet in foam cells,and increased theefflux of intracellular cholesterol significantly.Ghrelin increased ABCA1 protein mass andmRNA level in a dose-dependent manner.Compared with untreated cells,treatment ofTHP-1 derived foam cells with 10~(-7)mol/L ghrelin resulted in a significant 1.6-fold increasein ABCA1 protein expression.And 2- and 2.8-fold increase at 10~(-6)and 10~(-5)mol/L ghrelin.The changements of ABCA1 mRNA level were the same as ABCA1.Ghrelin also increasedABCG1 protein mass and mRNA level in a dose-dependent manner.
     Conclusion:Ghrelin might inhibit foam cells formation by up-regulating theexpression of ABCA1 and ABCG1.
     PartⅡGhrelin inhibit foam cell formation via a GrowthHormone Secretagogue Receptor-Dependent Pathway
     Background:Ghrelin,a endogenous ligand of the growth hormone secretagoguereceptor(GHS-R),revealed cardioprotective effects in both experimental models andhuman.There is far less imformation information on mechanisms that produceantiatherogenic effects.Acyl-coenzyme A:cholesterol acyltransferase 1(ACAT-1)andABCA1 have been implicated in regulating cellular cholesterol homeostasis and thereforeplay critical roles in foam cell formation.We demonstrated that ghrelin coulddown-regulated the expression of ACAT-1 and up-regulated ABCA1/G1 simultaneously,and hypothesize that ghrelin can inhibit foam cell formation by regulating the expression ofACAT-1 and ABCA1 via the signaling pathway of GHS-R.The aim of this part of study isto investigate the expression of ACAT-1 and ABCA1/G1 with ghrelin and variousconcentration of GHS-R antagonist in macrophage derived foam cells.
     Methods:The human monocytic leukemia cell line(THP-1)was chosen in our study.The differentiation of THP-1 cells into macrophages was induced by phorbol 12-myristate13-acetate(PMA).Macrophages were then incubated with oxidized LDL(ox-LDL)togenerate foam cells.Ghrelin and [D-Lys3]-GHRP-6,the special antagonist of growth hormone secretagogue receptor(GHS-R),were treated during foam cells formation.TheACAT-1 and ABCA1/G1 protein and mRNA levels were detected by Western blotting andRT-PCR.The effect of variance of cholesterol content was measured by zymochemistryvia-fluorospectrophotometer.
     Results:Ghrelin reduced the content of cholesteryl ester in foam cells obviously.ACAT-1 protein and mRNA levels were also decreased.The antagonist of GHS-R inhibitedthe effects of ghrelin on ACAT-1 expression in a dose-dependent manner.Ghrelin increasedthe cholesterol efflux obviously.ABCA1/G1 protein and mRNA levels were also increased.The antagonist of GHS-R inhibited the effects of ghrelin on ABCA1 and ABCG1expression in a dose-dependent manner.
     Conclusions:Ghrelin might interfere foam cells formation by simultaneouslydown-regulating the expression of ACAT-1 and up-regulating the expression of ABCA1/G1via a GHS-R pathway.
     PartⅢStudy of the Peroxisome Proliferator-activated Receptor ysignaling pathway in the Inhibition of Foam Cell Formation by Ghrelin
     Background:To investigate the effects of ghrelin on the expression of peroxisomeproliferator-activated receptorγin foam cells formation.And to investigate the effects ofghrelin on the expression of ACAT-1 and ABCA1/G1 in THP-1 derived foam cells.
     Methods:The human monocytic leukemia cell line(THP-1)was chosen in our study.The differentiation of THP-1 cells into macrophages was induced by using PMA.Macrophages were then incubated with oxidized LDL(ox-LDL)to generate foam cells.The PPARγmRNA level and protein expression were detected by RT-PCR and Westernblotting.Macrophage were incubated with ghrelin and antagonist of PPARγ,and then wereincubated with oxidized LDL(ox-LDL)to generate foam cells.The ACAT-1 and ABCA1/G1 mRNA level and protein expression were detected by RT-PCR and Westernblotting.The effect of variance of cholesterol content was measured by zymochemistry viafluorospectrophotometer.
     Results:Ghrelin increased PPARγprotein expression in a dose-dependent manner.The changements of PPARγmRNA level were the same as protein expression.Ghrelinreduced cholesteryl ester obviously.ACAT-1 protein and mRNA levels were also decreased.The antagonist of PPARγinhibited the effects of ghrelin on ACAT-1 expression in adose-dependent manner.Ghrelin increased the cholesterol efflux obviously.ABCA1/G1protein and mRNA levels were also increased.The antagonist of PPARγinhibited theeffects of ghrelin on ABCA1/G1 expression in a dose-dependent manner.
     Conclusion:Ghrelin could increase the expression of PPARγin a dose-dependentmanner during foam cell formation.The PPARγinhibitor could interfere the expression ofACAT-1 and ABCA1/G1 regulated by ghrelin.The PPARγsignaling pathway mightparticipate in the inhibition of foam cells formation by ghrelin.
引文
[1]Libby P,Aikawa M.Stabilization of atherosclerotic plaques:New mechanisms and clinical targets.Nat Med.2002,8(11):1257-1262.
    [2]ChoudhuryRP,Lee JM,Greaves DR.Mechanisms of disease:Macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis.Nat Clin Pract Cardiovasc Med.2005,2(6):309-315.
    [3]Bobryshev YV.Monocyte recruitment and foam cell formation in atherosclerosis.Micron 2006,37(3):208-222.
    [4]Li AC,Glass CK.The macrophage foam cell as a target for therapeutic intervention.Nat Med 2002; 8(11):1235-1242.
    [5]Chang C,Dong R,Miyazaki A,et al.Human acyl-CoA:cholesterol acyltransferase (ACAT) and its potential as a target for pharmaceutical intervention against atherosclerosis.Acta Biochim Biophys Sin (Shanghai).2006,38(3):151-156.
    [6]Chang CC,Huh HY,Cadigan KM,et al.Molecular cloning and functional expression of human acyl-coenzyme A:cholesterol acyltransferase cDNA in mutant Chinese hamster ovary cells.J Biol Chem.1993,268(28):20747-20755.
    [7]Cases S,Novak S,Zheng YW,et al.ACAT-2,a second mammalian acyl-CoA:cholesterol acyltransferase.Its cloning,expression,and characterization.J Biol Chem.1998,273(41):26755-26764.
    [8]Batetta B,Mulas MF,Petruzzo P,et al.Opposite pattern of MDR1 and caveolin-1 gene expression in human atherosclerosis lesions and proliferating human smooth muscle cells.Cell Mol Life Sci.2001,58(8):1113-1120.
    [9]Pertruzzo P,Cappai A,Brotzu G,et al.Lipid metabolism and molecular changes in normal and atherosclerotic vessels.Eur J Vasc Surg.2001,22(1):31-36.
    [10]何平,成蓓,彭雯,等.泡沫细胞形成过程中酰基辅酶A:胆固醇酰基转移酶活 性改变及其机制研究.中华心血管病杂志.2004,32(2):158-160.
    [11]Fazio S,Linton M.Failure of ACAT inhibition to retard atherosclerosis.N Engl J Med.2006,354(12):1307-1309.
    [12]Nissen SE,Tsunoda T,Tuzcu EM,et al.Effect of recombinant ApoA-I Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003, 290(17):2292-2300.
    [13] Oram JF, Lawn RM. ABCA1. The gatekeeper for eliminatingexcess tissue cholesterol. J Lipid Res. 2001, 42(8): 1173-1179.
    [14] Schmitz G, Langmann T. Structure, function, and regulation of the ABC1 gene product. Curr Opin Lipidol. 2001,12(2): 129-140.
    [15] Vaisman BL, Lambert G, Amar M, et al. ABCA1 overexpression leads to hyperalpha lipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J Clin Invest. 2001,108(2): 303-309.
    [16] Tiwari RL, Singh V, Barthwal MK. Macrophages:an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev. 2008, 28(4):483-544.
    [17] Davenport AP, Bonner TI, Foord SM, et al. International union of pharmacology. LVI. Ghrelin receptor nomenclature, distribution, and function. Pharmacol Rev. 2005, 57(4):541-546.
    [18] Tritos NA, Kokkotou EG The physiology and potential clinical applications of ghrelin, a novel peptide hormone. Mayo Clin Proc. 2006,81(5):653-660.
    [19] Kojima M, Hosoda H, Date Y, et al. Ghrelin is a growth-hormone-releasing acylaed peptide from stomach. Nature. 1999, 402(6762):656-660.
    [20] Gnanapavan S, Kola B, Bustin SA, et al. The tissure distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002, 87(6):2988.
    [21] Cowley MA, Smith RG, Diano S, et al. The distribution and mechanism of action of ghrelin in the CNS demonstrates a novel hypothalamic circuit regulating energy homeostasis. Neuron. 2003, 37(4):649-661.
    [22] Kleinz MJ, Maguire JJ, Skepper JN, et al. Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res. 2006, 69(l):227-235.
    [23] Baldanzi G, Filigheddu N, Cutrupi S, et al. Ghrelin and des-acyl ghrelin inhibit cell death in cardiomyocytes and endothelial cells through ERK1/2 and PI 3-kinase/AKT. J Cell Biol. 2002,159(6):1029-1037.
    [24] Chang L, Ren Y, Liu X, et al. Protective effects of ghrelin on ischemia/reperfusion injury in the isolated rat heart. J Cardiovasc Pharmacol. 2004, 43(2):165-170.
    [25] Frascarelli S, Ghelardoni S, Ronca-Testoni S, et al. Effect of ghrelin and synthetic growth hormone secretagogues in normal and ischemic rat heart. Basic Res Cardiol. 2003, 98(6):401-405.
    [26] Chang L, Zhao J, Yang J, et al. Therapeutic effects of ghrelin on endotoxic shock in rats. Eur J Pharmacol. 2003, 473(2-3): 171-176.
    [27] Wu R, Dong W, Zhou M, et al. Ghrelin improves tissue perfusion in severe sepsis via downregulation of endothelin-1. Cardiovasc Res. 2005, 68(2):318-326.
    [28] Ukkola, Poykko SM, Antero KY. Low plasma ghrelin concentration is an indicator of the metabolic syndrome. Ann Med. 2006, 38(4):274-279.
    [29] Kotanik K, Sakane N, Saiga K, et al. Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome. Arch Med Res. 2006, 37(7):903-906.
    [30] Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation. 2005,112(19):2986-2992.
    [31] Sun Y, Garcia JM, Smith RG Ghrelin and Growth Hormone Secretagogue Receptor (GHS-R) Expression in Mice during Aging. Endocrinology. 2007,148 (3):1323-1329.
    [32] Mulas MF, Demuro G, Mulas C, et al. Dietary restriction counteracts age-related changes in cholesterol metabolism in the rat. Mech Ageing Dev. 2005, 126(6-7):648-654.
    [33] Katugampola SD, Kuc RE, Maguire JJ, et al. G-protein-coupled receptors in human atherosclerosis: comparison of vasoconstrictors (endothelin and thromb-oxane) with recently de-orphanized (urotensin-Ⅱ, apelin and ghrelin) receptors. Clin Sci (Lond). 2002,103 suppl 48:171s-175s.
    [1]Oram JF,Lawn RM.ABCA1:The gatekeeper for eliminating excess tissue cholesterol.J Lipid Res.2001,42(8):1173-1179.
    [2]John F.Oram,Ashley M.Vaughan.ATP-Binding Cassette Cholesterol Transporters and Cardiovascular Disease.Circ Res.2006,99(10):1031-1043.
    [3]Bodzioch M,Orso E,Klucken J,et al.The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease.Nat Genet,1999,22(4):347-351.
    [4]Kotanik K,Sakane N,Saiga K,et al.Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome.Arch Med Res.2006,37(7):903-906.
    [5]陈志坚,王彦富,廖玉华,等.血管紧张素Ⅱ对THP-1源性泡沫细胞ATP结合 盒转运子A1的影响.中国病理生理杂志.2007,23(2):316-320.
    [6]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem.1976,72:248-254.
    [7]Nicholson AC,Hajjar DP,Zhou X,et al.Anti-adipogenic action of pitavastatin occurs through the coordinate regulation of PPARγ and Pref-1 expression.Br J Pharmacol.2007,151(6):807-815.
    [8]汪家政,范明.蛋白质技术手册.2000,科学出版社,北京.
    [9]Gamble W,Vaughan M,Kruth HS,et al.Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells.J Lipid Res.1978,19(8):1068-1070.
    [10]Wang YF,Chen ZJ,Liao YH,et al.Angiotensin Ⅱ increase the cholesterol content of foam cells via down-regulating the expression of ATP-binding cassette transporter A1.Biochem Biophy Res Comm.2007,353(3):650-654.
    [11]Kojima M,Kangawa K.Ghrelin:structure and function.Physiol.Rev.2005,85(2): 495-522.
    [12]Tritos NA,Kokkotou EG.The physiology and potential clinical applications of ghrelin,a novel peptide hormone.Mayo Clin Proc.2006,81(5):653-660.
    [13] Hosoda H, Kojima M, Matsuo H, et al. Purification and characterization of rat des-Glnl4-ghrelin, a second endogenous ligand for the growth hormone secretagogue receptor. J Biol Chem. 2000, 275(29):21995-22000.
    [14] Hosoda H, Kojima M, Mizushima T, et al. Structural divergence of human ghrelin. Identification of multiple ghrelin-derived molecules produced by post-translational processing. J Biol Chem. 2003, 278(1): 64-70.
    [15] Gnanapavan S, Kola B, Bustin SA, et al. The tissue distribution of the mRNA of ghrelin and subtypes of its receptor, GHS-R, in humans. J Clin Endocrinol Metab. 2002, 87(6):2988.
    [16] Kleinz MJ, Maguire JJ, Skepper JN, et al. Functional and immunocytochemical evidence for a role of ghrelin and des-octanoyl ghrelin in the regulation of vascular tone in man. Cardiovasc Res. 2006,69(l):227-235.
    [17] Leite-Moreira AF, Soares JB. Physiological, pathological and potential therapeutic roles of ghrelin. Drug Discov Today. 2007,12(7-8): 276-288.
    [18] Ukkola, Poykko SM, Antero KY. Low plasma ghrelin concentration is an indicator of the metabolic syndrome. Ann Med. 2006, 38(4):274-279.
    [19] Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation, 2005,112(19):2986-2992.
    [20] Vaisman BL, Lambert G, Amar M, et al. ABCA1 overexpression leads to hyperalpha lipoproteinemia and increased biliary cholesterol excretion in transgenic mice. J Clin Invest. 2001,108(2): 303-309.
    [21] Tiwari RL, Singh V, Barthwal MK. Macrophages:an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev. 2008, 28(4):483-544.
    [22] Kojima M, Hosoda H, Matsuo H, et al. Ghrelin: discovery of the natural endogenous ligand for the growth hormone secretagogue receptor. Trends Endocrinol Metab. 2001,12(3):118-122.
    [1]Cathcart MK.Regulation of superoxide anion productionby NAPDH oxidase in monocytes/macrophages:conributions to atherosclerosis.Arterioscler Thromb Vasc Biol,2004,24(1):23-28.
    [2]Kotani K,Sakane N,Saiga K,et al.Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome.Arch Med Res,2006,37(7): 903-906.
    [3]王淳本,宗义强,吴万生,等.两步超速离心法快速分离血浆大量极低密度脂 蛋白及低密度脂蛋白.同济医科大学学报,1995,24(3):169-171.
    [4]Bradford MM.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding.Anal Biochem.1976,72:248-254.
    [5]Wang Y,Chen Z,Liao Y,et al.Angiotensin Ⅱ increase the cholesterol content of foam cells via down-regulating the expression of ATP-binding cassette transporter A1.Biochem Biophy Res Commun.2007,353(3):650-654.
    [6]Nicholson AC,Hajjar DP,Zhou X,et al.Anti-adipogenic action of pitavastatin occurs through the coordinate regulation of PPARγ and Pref-1 expression.Br J Pharmacol.2007,151(6):807-815.
    [7]汪家政,范明.蛋白质技术手册.2000,科学出版社,北京.
    [8]Gamble W,Vaughan M,Kruth HS,et al.Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells.J Lipid Res.1978,19(8):1068-1070.
    [9]何平,成蓓,彭雯,等.泡沫细胞形成过程中酰基CoA:胆固醇酰基转移酶1活 性改变及其机制研究.中华心血管病杂志,2004,32(2):158-160.
    [10]Buhman KF,Accad M,Farese RV.Mammalian acyl-CoA:cholesterol acyltransferases.Biochim Biophys Acta,2000,1529(1-3):142-154.
    [11]Ukkola,Poykko SM,Antero KY.Low plasma ghrelin concentration is an indicator of the metabolic syndrome.Ann Med,2006,38(4):274-279.
    [12] Tesauro M, Schinzari F, Iantorno M, et al. Ghrelin improves endothelial function in patients with metabolic syndrome. Circulation, 2005,112(19):2986-2992.
    [13] Dominquez B, Avila T, Flores-Hernandez J, et al. Up-regulation of high voltage-activated Ca(2+) channels in GC somatotropes after long-term exposure to ghrelin and growth hormone releasing peptide-6. Cell Mol Neurobiol. 2008, 28(6):819-831.
    [14] Zhang M, Yuan F, Chen H, et al. Effect of exogenous ghrelin on cell differentiation antigen 40 expression in endothelial cells. Acta Biochim Biophys Sin (Shanghai). 2007, 39(12):974-981.
    [15] Tiwari RL, Singh V, Barthwal MK. Macrophages:an elusive yet emerging therapeutic target of atherosclerosis. Med Res Rev, 2008, 28(4):483-544.
    [16] Howard AD, Feithner SD, Cully DF, et al. A receptor in pituitary and hypothalamus that functions in growth hormone release. Science, 1996, 273(5277):974-977.
    [17] Katugampola SD, Kuc RE, Maguire JJ, et al. G-protein-coupled receptors in human atherosclerosis.comparison of vasoconstrictors (endothelin and thrombox-ane) with recently de-orphanized (urotensin-Ⅱ, apelin and ghrelin) receptors. Clin Sci (Lond), 2002,103 suppl 48:171S-175S.
    [18] Feng B, Yao PM, Li Y, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol. 2003, 5(9):781-792.
    [19] Fazio S, Dove DE, Linton MF. ACAT inhibition: bad for macrophages, good for smooth muscle cells? Arterioscler Thromb Vasc Biol. 2005, 25(l):7-9.
    [20] Nissen SE, Tsunoda T, Tuzcu EM, et al. Effect of recombinant ApoA-Ⅰ Milano on coronary atherosclerosis in patients with acute coronary syndromes: a randomized controlled trial. JAMA. 2003, 290(17):2292-2300.
    [1]Lehrke M,Lazar MA.The many faces of PPARgamma.Cell.2005,123(6):993-999.
    [2]Heikkinen S,Auwerx J,Argmann CA.PPARgamma in human and mouse physiology.Biochim Biophs Acta.2007,1771(8):999-1013.
    [3]Babaev VR,Yancey PG,Ryzhov SV,et al.Conditional knockout of macrophage PPARgamma increases atherosclerosis in C57BL/6 and low-density lipoprotein receptor-deficient mice.Arterioscler Thromb Vasc Biol.2005,25(8):1647-1653.
    [4]Akiyama TE,Sakai S,Lambert G,et al.Conditional disruption of the peroxisome proliferator-activated receptor gamma gene in mice results in lowered expression of ABCA1,ABCG1,and apoE in macrophages and reduced cholesterol efflux.Mol Cell Biol.2002,22(8):2607-2619.
    [5]Kotani K,Sakane N,Saiga K,et al.Serum ghrelin and carotid atherosclerosis in older Japanese people with metabolic syndrome.Arch Med Res.2006; 37(7): 903-906.
    [6]Nicholson AC,Hajjar DP,Zhou X,et al.Anti-adipogenic action of pitavastatin occurs through the coordinate regulation of PPARγ and Pref-1 expression.Br J Pharmacol.2007,151(6):807-815.
    [7]汪家政,范明.蛋白质技术手册.2000,科学出版社,北京.
    [8]Gamble W,Vaughan M,Kruth HS,et al.Procedure for determination of free and total cholesterol in micro- or nanogram amounts suitable for studies with cultured cells.J Lipid Res.1978,19(8):1068-1070.
    [9]Brown JD,Plutzky J.Peroxisome proliferator-activated receptors as transcriptional nodal points and therapeutic targets.Circulation.2007,115(4):518-533.
    [10]Glass CK,Ogawa S.Combinatorial roles of nuclear receptors in inflammation and immunity.Nat Rev Immunol.2006,6(1):44-55.
    [11]Blaschke F,Takata Y,Caglayan E,et al.Obesity,peroxisome proliferator-activated receptor,and atherosclerosis in type 2 diabetes.Arterioscler Thromb Vasc Biol.2006,26(1):28-40.
    [12]Ricote M,Li AC,Willson TM,et al.The peroxisome proliferator-activated receptor-gamma is a negative regulator of macrophage activation.Nature.1998,391(6662):79-81.
    [13]Knouff C,Auwerx J.Peroxisome proliferator-activated receptor-gamma calls for activation in moderation:lessons from genetics and pharmacology.Endocr Rev.2004,25(6):899-918.
    [14]Ukkola,Poykko SM,Antero KY.Low plasma ghrelin concentration is an indicator of the metabolic syndrome.Ann Med.2006,38(4):274-279.
    [15]Ahmed W,Ziouzenkova O,Brown J,et al.PPARs and their metabolic modulation:new mechanisms for transcriptional regulation? J Intern Med.2007,262(2):184-198.
    [16]白智峰,成蓓,李长运,等.PPAR-γ对单核/巨噬细胞酰基辅酶A:胆固醇酰基 转移酶-1表达效应的研究.中国老年学杂志.2004,24(8):717-720.
    [17]Shulman AI,Mangelsdorf DJ.Retinoid X recrptor heterodimers in the metabolic syndrome.N Engl J Med.2005,353(6):604-615.
    [18]Chawla A,Boisvert WA,Lee CH,et al.PPAR gamma-LXR-ABCA1 pathway in macrophages is involved in cholesterol efflux and atherogenesis.Mol Cell.2001,7(1):161-171.
    [19]Lee C-H,Evans RM.Peroxisome proliferator-activated receptor-γ in macrophages lipid homeostasis.Trends Endocrinol Metab.2002,13(8):331-335.
    [1] Kannel WB. Overview of atherosclerosis. Clin Ther 1998, 20 (Suppl B):B2-B17.
    [2] Glass CK, Witztum JL. Atherosclerosis, the road ahead. Cell. 2001, 104(4):503-516.
    [3] Papaioannou TG, Karatzis EN, Vavuranakis M, Lekakis JP, Stefanadis C.Assessment of vascular wall shear stress and implications for atherosclerotic disease.Int J Cardiol 2006,113(1):12-18.
    [4] Pantos J, Efstathopoulos E, Katritsis DG. Vascular wall shear stress in clinical practice. Curr Vasc Pharmacol. 2007, 5(2):113-119.
    [5] Perlstein TS, Lee RT. Smoking, metalloproteinases, and vascular disease.Arterioscler Thromb Vasc Biol. 2006, 26(2):250-256.
    [6] Bobryshev YV. Monocyte recruitment and foam cell formation in atherosclerosis.Micron 2006, 37(3): 208-222.
    [7] ChoudhuryRP, Lee JM, Greaves DR. Mechanisms of disease:Macrophage-derived foam cells emerging as therapeutic targets in atherosclerosis. Nat Clin Pract Cardiovasc Med. 2005, 2(6):309-315.
    [8] Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med 2002; 8(11):1235-1242.
    [9] Greaves DR, Gordon S. Thematic review series: The immune system and atherogenesis. Recent insights into the biology of macrophage scavenger receptors. J Lipid Res. 2005, 46(1):11-20.
    [10] Wuttge DM, Zhou X, Sheikine Y, et al. CXCL16/SR-PSOX is an interferon-gamma-regulated chemokine and scavenger receptor expressed in atherosclerotic lesions. Arterioscler Thromb Vasc Biol. 2004, 24(4):750-755.
    [11] Shashkin P, Dragulev B, Ley K. Macrophage differentiation to foam cells. Curr Pharm Des. 2005, ll(23):3061-3072.
    [12] Moore KJ, Kunjathoor VV, Koehn SL, et al. Loss of receptor-mediated lipid uptake via scavenger receptor A or CD36 pathways does not ameliorate atherosclerosis in hyperlipidemic mice. J Clin Invest. 2005,115(8):2192-2201.
    [13] Febbraio M, Hajjar DP, Silverstein RL. CD36: A class B scavenger receptor involved in angiogenesis, atherosclerosis, inflammation, and lipid metabolism. J Clin Invest. 2001,108(6):785-791.
    [14] Isenberg JS, Jia Y, Fukuyama J, et al. Thrombospondin-1 inhibits nitric oxide signaling via CD36 by inhibiting myristic acid uptake. J Biol Chem. 2007, 282(21):15404-15415.
    [15] Zannis VI, Chroni A, Krieger M. Role of apoA-I, ABCA1, LCAT, and SR-BI in the biogenesis of HDL. J Mol Med. 2006, 84(4):276-294.
    [16] van der Velde AE, Groen AK. Shifting gears: Liver SR-BI drives reverse cholesterol transport in macrophages. J Clin Invest. 2005,115(10):2699-2701.
    [17] Fabriek BO, Dijkstra CD, van den Berg TK. The macrophage scavenger receptor CD163. Immunobiology. 2005, 210(2-4):153-160.
    [18] Kruth HS, Jones NL, Huang W, et al. Macropinocytosis is the endocytic pathway that mediates macrophage foam cell formationwith native low density lipoprotein. J Biol Chem. 2005, 280(3):2352-2360.
    [19] Ma HT, LinWW, Zhao B, et al. Protein kinase C beta and delta isoenzymes mediate cholesterol accumulation in PMA-activated macrophages. Biochem Biophys Res Commun. 2006, 349(l):214-220.
    [20] Ross R. Atherosclerosis: an inflammatory disease. N Engl J Med. 1999, 340(2):115-126.
    [21] Li AC, Glass CK. The macrophage foam cell as a target for therapeutic intervention. Nat Med. 2002, 8(11):1235-1242.
    [22] Weissberg PL. Atherogenesis: current understading of the causes of atheroma. Heart. 2000, 83(2):247-252.
    [23] Shanahan CM, Weissberg PL. Smooth muscle cell heterogeneity. Patterns of gene expression in vascular smooth muscle cells in vitro and in vivo. Arterioscler Thromb Vasc Biol. 1998, 18(3):333-338.
    [24] Shanahan CM, Weissberg PL. Smooth muscle cell phenotypes in atherosclerotic lesions. Curr Opin Lipidol. 1999,10(6):507-513.
    [25] Schwartz SM, Murry CE. Proliferation and the monoclonal origins of atherosclerotic lesions. Ann Rev Med. 1998,49:437-460.
    [26] Li S, Fan Y, Chow LH, et al. Innate diversity of adult human arterial smooth muscle cells. Circ Res. 2001, 89(6):517-525.
    [27] Hao H, Ropraz P, Verin V, et al. Heterogeneity of smooth muscle cell populations cultured from pig coronary artery. Arterioscler Thromb Vasc Biol. 2002, 22(7):1093-1099.
    [28] Argmann CA, Sawyez CG, Li S, et al. Human smooth muscle cell subpopulations differentially accumulate cholesteryl ester when exposed to native and oxidized lipoproteins. Arterioscler Thromb Vasc Biol. 2004, 24(7):1290-6.
    [29] Kunjathoor W, Febbraio M, Podrez EA, et al. Scavenger receptors class A-Ⅰ/Ⅱ and CD36 are the principal receptors responsible for the uptake of modified low density lipoprotein leading to lipid loading in macrophages. J Biol Chem. 2002, 277(51):49982-49988.
    [30] Proudfoot D, Davies JD, Skepper JN, et al. Acetylated low-density lipoprotein stimulates human vascular smooth muscle cell calcification by promoting osteoblastic differentiation and inhibiting phagocytosis. Circulation. 2002,106(24):3044-3050.
    [31] Argmann CA, Sawyez CG, Li S, et al. Human smooth muscle cell subpopulations differentially accumulate cholesteryl ester when exposed to native and oxidized lipoproteins. Arterioscler Thromb Vasc Biol. 2004, 24(7):1290-1296.
    [32] Llorente-Cort(?)s V, Mart(?)nez-Gonzalez J, Badimon L. LDL receptor-related protein mediates uptake of aggregated LDL in human vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2000, 20(6): 1572-1579.
    [33] Ishii I, Satoh H, Kawachi H, et al. Intimal smooth muscle cells up-regulate beta-very low density lipoprotein-mediated cholesterol accumulation by enhancing beta-very low density lipoprotein uptake and decreasing cholesterol efflux. Biochim Biophys Acta. 2002,1585 (l):30-38.
    [34] Miyazaki A, Sakashita N, Lee O, et al. Expression of ACAT-1 protein in human atherosclerotic lesions and cultured human monocytes-macrophages. Arterioscler Thromb Vase Biol. 1998,18(10): 1568-1574.
    [35] Libby P, Aikawa M. Stabilization of atherosclerotic plaques: New mechanisms and clinical targets. Nat Med. 2002, 8(11): 1257-1262.
    [36] Zhang Y, Yu C, Liu J, et al. Cholesterol is superior to 7-ketocholesterol or 7-alpha-hydroxycholesterol as an allosteric activator for acyl-coenzyme A:cholesterol acyltransferase 1. J Biol Chem. 2003, 278(13): 11642-11647.
    [37] Westover EJ, Covey DF. The enantiomer of cholesterol. J Membrane Biol. 2004, 202(2): 61-72.
    [38] Liu J, Chang CC, Westover EJ, et al. Investigating the allosterism of acyl-CoA: cholesterol acyltransferase (ACAT) by using various sterols: In vitro and intact cell studies. Biochem J. 2005, 391(Pt 2): 389-397.
    [39] Guo ZY, Lin S, Heinen JA, et al. The active site His460 of human acyl-coenzyme A: cholesterol acyltransferase 1 resides in a hitherto undisclosed transmembrane domain. J Biol Chem. 2005, 280(45): 37814-37826. :
    [40] Rodriguez A, Bachorik PS, Wee SB. Novel effects of the acyl-coenzyme A:cholesterol acyltransferase inhibitor 58-035 on foam cell development in primary human monocyte-derived macrophages. Arterioscler Thromb Vasc Biol. 1999,19(9): 2199-2206.
    [41] Accad M, Smith S3, Newland DL et al. Massive xanthomatosis and altered composition of atherosclerotic lesions in hyperlipidemic mice lacking acyl CoA:cholesterol acyltransferase 1. J Clin Invest. 2000,105(6): 711-719.
    [42] Yagyu H, Kitamine T, Osuga J, et al. Absence of ACAT-1 attenuates atherosclerosis but causes dry eye and cutaneous xanthomatosis in mice with congenital hyperlipidemia. J Biol Chem. 2000, 275(28): 21324-21330.
    [43] Fazio S, Major AS, Swift LL, et al. Increased atherosclerosis in LDL receptor-null mice lacking ACAT1 in macrophages. J Clin Invest. 2001; 107(2): 163-171.
    [44] Kusunoki J, Hansoty DK, Aragane K et al. Acyl-CoA:cholesterol acyltransferase inhibition reduces atherosclerosis in apolipoprotein E-deficient mice. Circulation.2001,103(21): 2604-2609.
    [45] Junquero D, Oms P, Carilla-Durand E, et al. Pharmacological profile of F 12511, (S)-2',3',5'-trimethy-4'-hydroxy-alpha-dodecylthioacetanilide, a powerful and systemic acyl-coenzyme A: cholesterol acyltransferase inhibitor. Biochem Pharm- acol.2001, 61(1): 97-108.
    [46] Feng B, Yao PM, Li Y, et al. The endoplasmic reticulum is the site of cholesterol-induced cytotoxicity in macrophages. Nat Cell Biol. 2003, 5(9):781-792.
    [47] Fazio S, Dove DE, Linton MF. ACAT inhibition: bad for macrophages, good for smooth muscle cells? Arterioscler Thromb Vasc Biol. 2005, 25(l):7-9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700