用户名: 密码: 验证码:
修饰电极上亚甲基蓝和对硝基苯酚光电催化机理分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
环境污染与防治已成为全球性普遍关注的重要课题,有机污染物的光电催化及电催化研究是环境化学领域的前沿热点方向之一,深入研究和了解有机污染物的降解机理及催化行为对于研发新型的污染治理方法具有重要的意义。本文利用电化学方法研究了亚甲基蓝(Methylene blue, MB)和对硝基苯酚(p-Nitrophenol,pNP)在修饰电极上的光电催化降解机理及电催化行为,主要包括以下内容:
     1.利用循环伏安法(Cyclic voltammetry, CV)和表面红外光谱法(IR spectra,IR)为主要研究手段,将有机污染物亚甲基蓝和光催化剂二氧化钛,通过Nafion修饰在铂电极(MB/Nf/TiO_2)上,对亚甲基蓝现场光电催化降解机理进行了研究。结果表明,在紫外光照条件下,亚甲基蓝分子对Nafion-TiO_2 (Nf/TiO_2)表面上的光电子清除具有一定的促进作用,而且降解过程中残余亚甲基蓝分子的循环伏安峰电流与光降解反应时间之间呈线性衰减关系。在光电催化降解过程中,红外光谱证明亚甲基蓝分子受到具有强氧化性羟基自由基的进攻而经历了去甲基化和C=N键的断裂。该研究为有机污染物的现场光电催化降解机理分析提供了一个简单有效的方法。
     2.利用聚苯胺-TiO_2-Nafion (PANI/TiO_2/Nf)复合膜修饰的铂电极为研究对象,通过扫描电子显微镜(Scanning electron microscopy, SEM)和电化学阻抗谱(Electrochemical impedance spectroscopy, EIS)技术对其形态和界面性质进行了表征,并利用循环伏安法、动力学伏安法对亚甲基蓝在PANI/TiO_2/Nf复合膜上的电化学行为进行了研究。结果表明,多孔性PANI/TiO_2/Nf复合膜具有较大的有效面积,该修饰电极对亚甲基蓝有较好的电催化活性,亚甲基蓝分子在PANI/TiO_2/Nf复合膜修饰电极上不发生二聚反应,而且亚甲基蓝分子在该修饰膜内表观扩散系数较大。该类复合膜用于传感膜材料以及光电反应中催化剂载体具有一定的可行性。
     3.在nano-TiO_2修饰的旋转环-盘铂电极(Rotating ring-disk electrode, RRDE)上,将旋转铂环电极作为检测工作电极,而将旋转铂盘电极用纳米TiO_2修饰后作为光电反应工作电极,利用动力学示差脉冲伏安法(Hydrodynamic differential pulsevoltammetry, HDPV),研究了对硝基苯酚的光电催化降解过程。在旋转铂环电极上实时记录了动力学状态下对硝基苯酚光电催化降解中间产物的伏安响应信号。实验表明,在0.55 V附近的阳极峰是对硝基苯酚光电催化降解过程中形成电活性主要中间产物对苯二酚(Hydroquinone, HQ)的电氧化峰,实验证明它来自于具有强氧化能力的光生羟基自由基(·OH)与对硝基苯酚直接相互作用的结果。另外,阳极偏压的增大能够提高对硝基苯酚光电催化降解的效率,光电协同催化是这种修饰膜上对硝基苯酚催化降解的主要途径。这种将修饰旋转环-盘电极与动力学示差脉冲技术相结合的研究方法,对现场研究硝基酚类有毒污染物的光电催化降解反应机理是一种非常有效的技术手段。
     4.采用循环扫描电聚合法(Electropolymerization)和脉冲电沉积法(Pulsedelectrodeposition)制备了一种新型的聚多巴胺/纳米银(PDA/Ag)修饰玻碳电极。实验结果发现,聚多巴胺修饰层对纳米银的成核和生长具有影响作用,与裸电极相比,在修饰聚多巴胺基底上通过脉冲电沉积得到的纳米银颗粒更小、更均匀,单位面积上的沉积量也更多。另外,利用循环伏安法研究表明对硝基苯酚在该修饰电极上的电催化还原特性,聚多巴胺/纳米银修饰的玻碳电极对对硝基苯酚有很好的电催化活性,能使对硝基苯酚的还原电位明显降低;利用示差脉冲法研究发现对硝基苯酚还原电流的变化与浓度的变化呈线性关系,这为建立用聚多巴胺/纳米银修饰的玻碳电极对硝基酚类有毒污染物的检测方法提供了实验依据。
The control of environmental pollution has become a global important issue ofcommon concern.Photoelectrocatalytic and electrocatalytic study of organicpollutants is one of the forefront of hot spots in the environmental chemistry field.The in-depth study and understanding of the degradation mechanism and catalyticbehavior of organic pollutants is of great significance for the development of newmethods of pollution control.In this paper,the degradation mechanism and catalyticbehavior of methylene blue (MB) and p-nitrophenol (pNP) at modified electrode havebeen investigated.The detailed contents can be summarized as follows:
     1.The investigation of in situ photoelectrocatalytic degradation of the MB moleculesmerged into a nano-TiO_2 modified film by electrochemical techniques is proposed.The MB-Nafion-TiO_2 (MB/Nf/TiO_2) modified platinum electrode shows reversibleand faster electron-transfer efficiency in photoelectrocatalytic degradation reactions ofsurrounding compounds adsorbed on photocatalyst.Open-circuit potential (E_(oc)) of theMB/Nf/TiO_2 electrode shows that the MB molecules have an assured effect withtransferred photogenerated electrons on the Nf/TiO_2 interface under UV illumination.A linear regression equation is obtained by the cyclic voltammetry peak current of theresidual MB and the reaction time in the degradation process,in which MB undergoesdemethylation and C=N bond breaking.It is a promising approach for investigating insitu the photoelectrocatalytic degradation of pollution.
     2.A porous Nafion-TiO_2-polyaniline (Nf/TiO_2/PANI) composite film with a largeelectrode effective surface area was prepared on a platinum electrode by a simplemethod.The morphology and the interfacial properties of the composite film wereevaluated by scanning electron microscopy (SEM) and electrochemical impedancespectroscopy (EIS).The investigation of cyclic voltammetry (CV) confirmed that theNf/TiO_2/PANI film showed an excellent electrocatalytical response to the redox ofMB and was mechanically stable under hydrodynamic conditions.The resultsobtained reveal that the dimerization of MB in Nf/TiO_2/PANI film does not occurred and the introduction of the conducting polymer to electrocatalysts helps in increasingthe interfacial properties between the electrode and electrolyte.The composite filmwould be used as a promising support material in electrochemical orphotoelectrochemical applications.
     3.The photoelectrocatalytic degradation behavior of pNP was investigated by usinghydrodynamic differential pulse voltammetry (HDPV) technique.The method wasapplied on a nano-TiO_2 modified platinum rotating ring-disk electrode (RRDE) asversatile working electrode.The voltammetric response of the intermediate productwas recorded instantly at the rotating platinum-ring electrode under hydrodynamicconditions via compulsive transport during the photoelectrocatalytic degradationprocess of pNP.A distinct anodic peak at about 0.55 V is mainly attributed to theresult of the formation of electroactive intermediate product,namely hydroquinone(HQ),through the direct reaction between photo-generated powerful oxidant(hydroxyl radicals,·OH) andpNP.The present work has demonstrated that HDPV canbe effectively used to in situ monitor the formation of intermediate product atnano-TiO_2 modified RRDE,providing a promising approach to investigate in situ thephotoelectrocatalytic degradation mechanism of organic pollutants like toxicnitrophenols.
     4.A glassy carbon electrode modified with silver particles under polydopamine filmwas prepared successfully by means of electropolymerization and pulsedelectrodeposition.A detailed analysis of the scanning electron microscope imagesreveals that silver deposit,obtained under pulsed electrodeposition conditions,appears as homogeneously compact and the crystallites are well dispersed on thepolydopamine substrate than that observed on the unmodified glassy carbon surfaces.The resulting silver nanoparticle/polydopamine modified glassy carbon electrode(Ag/PDA/GC) was electrochemically characterized through the reduction ofpNP.Thepotential needed for the reduction of the compound on the Ag/PDA/GC electrode issignificantly less negative than that observed on the unmodified glassy carbonelectrode substrates.A linear equation is obtained between the cyclic voltammetrypeak current and the concentration of pNP.The Ag/PDA/GC would be used in the practical application for detecting toxic nitrophenols.
引文
[1]中国环境保护总局,2001年中国环境状况公报,环境保护,2002a,6:3-15.
    [2]中国环境保护总局等,国家环境保护“十五”计划,中国环境科学出版社,2002b.
    [3]M A Oturan,J Pascalchartrin,A Acher,Complete Destruction of p-Nitrophenol in Aqueous Medium by Electro-Fenton Method,Environ.Sci.Technol.2000,34:3474-3479.
    [4]M Nagakawa,J Crosby,Photodecomposition of nitrogen,J.Agr.Food Chem.1974,22:849-853.
    [5]List of Worldwide Hazardous Chemical and Pollutants,The Forum for Scientific Excellence,J.B.Lippincot Co.Ed.New York,1990.
    [6]U.S.Environmental Protection Agency,4-nitrophenol,Health and Environmental Effects Profile No.135,Washington DC,1980.
    [7]U.S.Environmental Protection Agency,“Emission factor documentation for AP-42 Appendix C.1:procedures for sampling/bulk dust loading.” 1995.
    [8]G Rippen,E Zietz,R Franck,T Knacker,W Kl(o|¨)pffer.Do airbome nitrophenols contribute to forest decline,Environ.Sci.Technol 1987,8:475-482.
    [9]M I O Ishag,P G N Moseley,Effects of UV light on dilute aqueous solutions of m- and p-nitrophenol,Tetrahedron 1977,33:3141-3144.
    [10]O A O'Connor,L Y Young,Toxicity and anaerobic biodegradibility of substituted phenols under methanogenic conditions,Environ.Toxic.Chem.1989,8:853-862.
    [11]金相灿,有机化合物污染化学—有毒有机物污染化学,北京,清华大学出版社,1990.
    [12]B H Hong,J Y Lee,T Beetz,An Investigation into the Initial Degradation Steps of Four Major Dye Chromophores:Study of Their One-Electron Oxidation and Reduction by EPR,ENDOR,Cyclic Voltammetry,and Theoretical Calculations,J.Phys.Chem.A 2005,109:11103-11109.
    [13]K Hunger,Industrial Dyes:Chemistry,Properties and Applications,Wiley-VCH:Heidelberg,2003.
    [14]S E Laursen,J Hansen,T A Andersen,H H Knudsen,Danish EPA Working Report no.10,2002.
    [15]M A Brown,S C Devito,Predicting aso dye toxicity,Crit Rev.Environ.Sci.Technol 1993,23:249-324.
    [16]S N Batchelor,D Carr,C E Coleman,L Fairclough,A Jarvis,The photofading mechanism of commercial reactive dyes on cotton,Dyes Pigm.2003,59:269-275.
    [17]P L Yue,J Y Feng,X Hu,Photo-Fenton reaction using a nanocomposite,Water Sci.Technol.2004,49:85-90.
    [18]Y Mu,H Q Yu,J C Zheng,S J Zhang,TiO_2-mediated photocatalytic degradation of Orange Ⅱ with the presence of Mn~(2+) in solution,J.Photoch.Photobio.A 2004,163:311-316.
    [19]M Halmann,Photodegradation of Water Pollutants;CRC Press:Boca Raton,1996.
    [20]W W Eckenfelder,Industrial Pollution Control,Mc Graw Hill:Boston,2000.
    [21]V Vinodgopal,P V Kamat,Enhanced rates of photocatalytic degradation of an azo dye using SnO_2/TiO_2 coupled semiconductor thin film,Environ.Sci.Technol 1995,29:841-845.
    [22]I M Butterfield,P A Christensen,A Hamnett,K E Shaw,G M Walker,S A Walker,C R Howarth,Applied studies on immobilized titanium dioxide films as catalysts for the photoelectrochemical detoxification of water,J.Appl.Electrochem.1997,27:385-395.
    [23]J A Byrne,B R Eggins,Photoelectrochemistry of oxalate on particulate TiO_2 electrode,J.Electroanal.Chem.1998,457:61-72.
    [24]X Z li,H L Liu,P T Yue,Photoelectrochatalytic oxidation of rose Bengal in aqueous solution using a Ti/TiO_2 mesh electrode,Environ.Sci.Technol.2000,34:4401-4406.
    [25]S Horikoshi,Y Satou,H Hidaka,N Serpone,Enhanced photocurrent generation and photooxidation of benzene sulfonate in a continuous flow reactor using hybrid TiO_2 thin films immobilized on OTE electrodes.J.Photochem.Photobio.A:Chem.2001,146:109-119.
    [26]M E Calvo,R J Candal,S A Bilmes,Enhancement of salicylate photodegradation under bias in binary mixtures,Catal.Today 2002,76:133-139.
    [27]J J Sene,W A Zeltner,M A Anderson,Fundamental photoelectrocatalytic and electrophoretic mobility studies of TiO_2 and V-doped TiO_2 thin-film electrode materials,J.Phys.Chem.B 2003,107:1597-1603.
    [28]W H Leng,Z Zhang,J Q Zhang,Photoelectrocatalytic degradation of aniline over rutile TiO_2/Ti electrode thermally formed at 600 degrees,J.Mol.Catal.A-Chem.2003,206:239-252.
    [29]S G Yang,X Quan,X Y Li,Y Z Liu,S Chen,G H Chen,Preparation,characterization and photoelectrocatalytic properties of nanocrystalline FeO_3/TiO_2,ZnO/TiO_2,and Fe_2O_3/ZnO/TiO_2 composite film electrodes towards pentachlorophenol degradation.Phys.Chem.Chem.Phys.2004,6:659-664.
    [30]M V B Zanoni,J J Sene,H Selcuk,M A Anderson,Photoelectrocatalytic production of active chlorine on nanocrystalline titanium dioxide thin-film electrodes.Environ.Sci.Technol.2004,38:3203-3208.
    [31]C He,X Z Li,Y Xiong,X H Zhu,S R Liu,The enhanced PC and PEC oxidation of formic acid in aqueous solution using a Cu-TiO_2/ITO film.Chemosphere 2005,58:381-389.
    [32]T C An,G Y Li,X H hu,J M Fu,G Y Sheng,Z Zhu,Photoelectrocatalytic degradation of oxalic acid in aqueous phase with a novel three-dimensional electrode-hollow quartz tube photoelectrocatalytic reactor,Appl.Catal A:Gen.2005,279:247-256.
    [33]A Fujishima,K Honda,Electrochemical photolysis of water at a semiconductor electrode,Nature 1972,238:37-38.
    [34]J H Carey,J Lawrence,H W Tosine,Photodechlorination of PCB's in the presence of titanium dioxide in aqueous suspension,Bull.Environ.Contain.Toxic.1976,16:697-701.
    [35]M Gr(a|¨)tzel,Photoelectrochemical cell,Nature 2001,414,338-344.
    [36]M Gr(a|¨)tzel,Dye-sensitized solar cells,J.Photochem.Photobio.C:Photochem.Rev.2003,4:145-153.
    [37]A Hagfeldt,M J Gr(a|¨)tzel,Light-Induced redox reactions in nanocrystalline systems,Chem.Rev.1995,95:49-68.
    [38]A Fujishima,K Hashimoto,H Watanabe,TiO_2 Photocatalysis:Fundamentals and Applications,BKC,Inc.Tokyo,Japan,1997.
    [39]R Wang,K Hashimoto,A Fujishima,M Chikuni,E Kojima,A Kitamura,M Shimohigoshi,T Watanabe,Light-induced amphiphilic surfaces,Nature 1997,388:431-432.
    [40]R Wang,K Hashimoto,A Fujishima,M Chikuni,E Kojima,A Kitamura,M Shimohigoshi,T Watanabe,Photogeneration of Highly Amphiphilic TiO_2 Surfaces,Adv.Mater.1999,10:135-138.
    [41]K Sunada,Y Kikuchi,K Hashimoto,A Fujishima,Bactericidal and Detoxification Effects of TiO_2 Thin Film Photocatalysts,Environ.Sci.Technol.1998,32(5):726-728.
    [42]U Diebold,The surface science of titanium dioxide,Surf Sci.Rep.2003,48,53-229.
    [43]R R Hasiguti,The Structure of Defects in Solids,Annu.Rev.Mater.Sci.1972,2:69-92.
    [44]V E Henrich,P A Cox,The Surface Science of Metal Oxides,Cambridge Press:Cambridge,U.K.,1994.
    [45]S Tracy,L Thompson,J T Yates,Jr.Surface Science Studies of the Photoactivation of TiO_2-New Photochemical Processes,Chem.Rev.2006,106:4428-4453.
    [46]A Sclafani,L Palmisano,M Schiavello,Influence of the preparation methods of titanium dioxide on the photocatalytic degradation of phenol in aqueous dispersion,J.Phys.Chem.1990,94:829-832.
    [47]A Mills,S Le Hunte,An overview of semiconductor photocatalysis.J.Photoch.Photobio.A:Chem.1997,108:1-35.
    [48]M Graetzel,A J Frank,Interfacial electron-transfer reactions in colloidal semiconductor dispersions,Kinetic analysis,J.Phys.Chem.1982,86:2964-2967.
    [49]M Gratzel,Heterogeneous photochemical electron transfer,CRC Press,Inc.,Boca Raton,Florida,1989.
    [50]R Nakamura,A Imanishi,K Murakoshi,Y Nakato,In situ FTIR studies of primary intermediates of photocatalytic reactions on nanocrystalline TiO_2 films in contact with aqueous solutions,J.Am.Chem.Soc.2003,125:7443-7450.
    [51]R Nakamura,Y Nakato,Primary intermediates of oxygen photoevolution reaction on TiO_2 (Rutile) particles,revealed by in situ FTIR absorption and photoluminescence measurements,J.Am.Chem.Soc.2004,126:1290-1298.
    [52]O Carp,C L Huisman,A Reller,Photoinduced reactivity of titanium dioxide,Progr.Solid State Chem.2004,32:33-177.
    [53]B H J Bielski,D E Cabelli,R L Arudi,A B Ross,Reactivity of HO_2·/O_2·~- radicals in aqueous solution,J.Phys.Chem.Ref Data 1985,14:1041-1100.
    [54]K Tanaka,S Murata,K Harada,Oxygen evolution by the photooxidation of water, Sol.Energy 1987,34:303-308.
    [55]Y Nosaka,Y Yamashita,H Fukuyama,Application of chemiluminescent probe to monitoring superoxide radicals and hydrogen peroxide in TiO_2 photocatalysis,J.Phys.Chem.B 1997,101:5822-5827.
    [56]D Hufschmidt,L Liu,V Seizer,D W Bahnemann,Photocatalytic water treatment:fundamental knowledge required for its practical application.Water Sci.Technol 2004,49:135-140.
    [57]C S Turchi,D F Ollis,Photocatalytic degradation of organic water contaminants:Mechanisms involving hydroxyl radical attack,J.Catal 1990,122:178-192.
    [58]C S Turchi,D F Ollis,Mixed reactant:Intermediates and mutual rate inhibition,J.Catal.1989,119:483-496.
    [59]R Terzian,N Serpon,R B Draper,M A Fox,Pulse radiolytic studies of the reaction of pentahalophenols with .OH radicals:Formation of pentahalophenoxyl,dihydroxypentahalocyclohexadienyl,and semiquinone radicals,Langmuir 1991,7:3081-3089.
    [60]S H Szczpankiewicz,A J Colussi,M R Hoffmann,Infrared spectra of photoinduced species on hydroxylated titania surfaces,J.Phys.Chem.B 2000,104:9842-9850.
    [61]C D Jaeger,A Bard,Spin trapping and electron spin resonance detection radical inter mediates in the photocomposition of water at titanium dioxide particulate system,.J.Phys.Chem.1979,83:3146-3152.
    [62]Y Nosaka,S Komori,K Yawata,T Hirakawa,A Y Nosaka,Photocatalytic ·OH radical formation in TiO_2 aqueous suspension studied by several detection methods,Phys.Chem.Chem.Phys.2003,5:4731-4735.
    [63]M Anpo,T Shima,S Kodama,Y Kubokawa,Photocatalytic hydrogenation of propyne with wateron small-particle titania:size quantization effects and reaction intermediates,J.Phys.Chem.1987,91:4305-4310.
    [64]J Cunningham,S Srijaranai,Isotope-effect evidence for hydroxyl radical involvement in alcohol photo-oxidation sensitized by TiO_2 in aqueous suspension.J.Photoch.Photobio.A:Chem.1988,43:329-335.
    [65]J K Yang,A P Davis,Photocatalytic oxidation of Cu(Ⅱ)-EDTA with illuminated TiO_2:Kinetics,Environ.Sci.Technol.2000,34:3789-3795.
    [66]S Parra,J Olivero,C Pulgarin,Relationships between physicochemical properties and photoreactivity of four biorecalcitrant phenylurea herbicides in aqueous TiO_2 suspension,Appl Catal B:Environ.2002,36:75-85.
    [67]J C Yang,Y C Kim,Y G Shul,C H Shin,T K Lee,Characterization of photoreduction Pt/TiO_2 and decomposition of dichloroacetic acid over photoreduced Pt/TiO_2 catalysts.Appl Surf Sci.1997,121-122:525-529.
    [68]C M Wang,A Heller,H Gerischer,Palladium catalysis of O_2 reduction by electron accumulated on TiO_2 particles during photoassisted oxidation of organic compounds.J Am.Chem.Soc.1992,114:5230-5234.
    [69]I M Arabatzis,T Stergiopoulos,D Andreeva,S Kitova,S G Neophytides,P Falaras,Characterization and photocatalytic activity of Au/TiO_2 thin films for azo-dye degradation.J Catal 2003,220:127-135.
    [70]H Einaga,I Takash,Improvement of catalyst durability by deposition of Rh on TiO_2 in photoxidation of aromatic compounds.Environ.Sci.Technol 2004,38:285-289.
    [71]W Choi,A Termin,M R Hoffmann,The role of mental dopants in quantum-sized TiO_2:correlation between photoreactivity and charge carrier recombination dynamics,J Phys.Chem.1994,98:13669-13679.
    [72]S Sato,Photoelectrochemical of Pt/TiO_2 Cataysis,J Catal.1985,92:11-16.
    [73]D Hufschmidt,D Bahnemarn,J J Testa,C A Emilio,M I Litter,Enhancement of the photocatalytic activity of various TiO_2 materials by platinisation.J Photoch.Photobio.A:Chem.2002,148:223-231.
    [74]V Subramanian,E Wolf,P V Kamat,Semiconductor-metal composite nanostructures.To what extent do metal nanoparticles improve the photocatalytic activity of TiO_2 films.J Phys.Chem.B,2001,105:11439-11446.
    [75]I M Arabatzis,T Stergiopoulos,M C Bernard,D Labou,S G Neophytudes,P Falaras,Silver-modified titanium dioxide thin films for efficient photodegradation of methyl orange,Appl.Catal B:Environ.2003,42:187-201.
    [76]V Vamathevan,R Amal,D Beydoun,G Low,S Mcevoy,Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles,J Photoch.Photobio.A:Chem.2002,148:233-245.
    [77]A Dawson,V K Prashant,Semiconductor-Metal Nanocomposites.Photoinduced Fusion and Photocatalysis of Gold-Capped TiO_2(TiO_2/Gold) Nanoparticles.J Phys.Chem.B 2001,105:960-966.
    [78]M Schiaveuo,Some Working Principles of Heterogeous Photocatalysis by Semiconductors,Electrochem.Acta 1993,38:1056-1062.
    [79]李越湘,吕功煊,李树本,俞飞,污染物甲醛为电子给体Pt/TiO_2光催化制氢,分子催化,2002,16:241-246.
    [80]S Tawkaew,Y Fujishiro,S Yin,T Sato,Synthesis of cadmium sulfide pillared layered compounds and photocatalytic reduction of nitrate under visible light irradiation,Colloid Surface A 2001,179:139-144.
    [81]K R Gopidas,M Bohorquez,P V Kamat,Photocatalytical and photochemical aspects of coupled semiconductor charge-trapper procession colloidal CdS-TiO_2 and CdS-AgI system,Phys.Chem.1990,94:6435-6440.
    [82]M G Kang,H E Han,K J Kim,Enhanced photodecomposition of 4-chlorophend in aqueous solution by deposition of CdS on TiO_2,J.Photoch.Photobio.A 1999,125:119-125.
    [83]X Z Li,F B Li,C L Yang,W K Ge,Photocatalytic activity of WOx TiO_2 under visible light irradiation,Photoch.Photobio.A:Chem.2001,141:209-217.
    [84]D Shchukin,S Poznyak,A Kulak,P Pichat,TiO_2-In_2O_3 photocatalysts:preparation,characterizations and activity for 2-chlorophenol degradation in water,J.Photoch.Photobio.A:Chem.2004,162:423-430.
    [85]T V Nguyen,S SKim,O B Yang,Water decomposition on TiO_2-SiO_2 and RuS/TiO_2-SiO_2 photocatalysts:the effect of electronic characteristics,Catal.Commun.2004,5:59-62.
    [86]J Liu,J C Crittenden,D W Hand,D L Perram,Regeneration of Adsorbents Using Heterogeneous Photocatalytic Oxidation.J.Environ.Eng.Sci 1996,122:707-713.
    [87]T Tanaka,T I S Takenaka,T Funabiki,S Yoshida,Photocatalytic Oxidation of Alkane at a Steady Rate over Alkali - Ion - Modified Vanadium Oxide Supported on Silica.Catal.Today 2000,61:109-115.
    [88]J J Testa,M A Greala,M I Litter,Experimental Evidence in Favor of an Initial One-Electron-Transfer Process in the Heterogeneous Photocatalytic Reduction of Chromium (VI) Over TiO2,Langmuir 2001,17(12):3515-3517.
    [89]J Lin,J C Yu,An investigation on photocatalytic activities of mixedTiO_2-rare earth oxides for the oxidation of acetone in air,J.Photochem.Photobio.A:Chem.1998,116:63-67.
    [90]R Vogel,H Weller,H Weller,Sensitization of highly porous,polycrystalline TiO_2 electrodes by quantum sizes CdS.Chem.Phys.Lett.1990,174:241-246.
    [91]D W Bahnemann,Current Challenges in Photocatalysis:Improved Photocatalysts and Appropriate Photoreactor Engineering,Res.Chem.Intermediat.2000,26:207-220.
    [92]M R Dhananjeyan,V Kandavelu,R Renganathan,An Investigation of the Effects of Cu~(2+) and Heat Treatment on TiO_2 Photooxidation of Certain Pyrimidines,J.Mol.Catal.A:Chem.2000,158:577-582.
    [93]A V Vorontsov,E N Savinov,Z Jin,Influence of the Form of Photodeposited Platinum on Titania upon Its Photocatalytic Activity in CO and Acetone Oxidation,J.Photoch.Photobio.A,1999,125:113-117.
    [94]K Takeuchi,I Nakamura,O Matsumoto,S Sugihara,M Ando,T Ihara,Preparation of Visible-Light-Responsive Titanium Oxide Photocatalysts by Plasma Treatment.Chem.Lett.2000,29:1354-1355.
    [95]A Assabane,H Tahiti,C Guillard,J M Herrmann,Y A Ichou,Photocatalytic Degradation of Polycarboxylic Benzoic Acids in UV-Irradiated Aqueous Suspensions of Titania.Identification of Intermediates and Reaction Pathway of the Photomineralization of Trimellitic Acid (1,2,4-Benzene Tricarboxylic Acid).Appl.Catal B 2000,24:71-87.
    [96]T Tatsuma,S I Tachibana,T Miwa,D A Tryk,A Fujishima,Remote Bleaching of Methylene Blue by UV-Irradiated TiO_2 in the Gas Phase.J.Phys.Chem.B 1999,103:8033-8035.
    [97]Y Cho,W Choi,C H Lee,T Hyeon,H I Lee,Y Cho,Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO_2.Environ.Sci.Technol.2001,35(5):966-970.
    [98]D Dvoranova,V Brezova,M Mazura,M A Malati,Investigations of metal-doped titanium dioxide photocatalysts,Appl.Catal B:Environ.2002,37:91-105.
    [99]王艳芹,张莉,程虎民,马季铭,掺杂过渡金属离子的TiO_2复合纳米粒子光催化剂罗丹明B的光催化降解,高等学校化学学报,2000,21:6958-6960.
    [100]R Asahi,T Morikawa,T Ohwaki,K Aoki,Y Taga,Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides,Science 2001,293:269-271.
    [101]H Irie,Y Watanabe,K Hashimoto,Carbon-doped Anatase TiO2 Powders as a Visible-Light Sensitive,Photocatalyst.Chem.Lett.2003,32,772-773.
    [102]S Sakthivel,H Kisch,Daylight photocatalysis by carbon-modified titanium dioxide,Angew.Chem.Int.Ed.2003,42:4908-4911.
    [103]R.Nakamura,T.Tanaka,Y.Nakato,Mechanism for visible light responses in anodic photocurrents at N-doped TiO_2 film electrodes,J.Phys.Chem.B 2004,108(30):10617-10620.
    [104]Q Zhang,L Gao,J Guo,Effects of calcinations on the photocatalytic properties of nanosized TiO_2 powders prepared by TiCl_4 hydrolysis,Appl Catal B:Environ.2000,26:207-215.
    [105]T Umebayashi,T Yamaki,S Tanaka,K Asai,Visible light-induced degradation of methylene blue on S-doped TiO_2,Chem.Lett.2003,32:330-331.
    [106]T Umebayashi,T Yamaki,H Itoh,K Asai,Band gap narrowing of titanium dioxide by sulfur doping,Appl.Phys.Lett.2002,81:454-456.
    [107]T Ohno,M Akiyoshi,T Umebayashi,K Asai,T Mitsui,M Matsumura,Preparation of S-doped TiO_2 photocatalysts and their photocatalytic activities under visible light,Appl.Catal.A:General,2004,265:115-121.
    [108]P Hoyer,Formation of a Titanium Dioxide Nanotube Array,Langmuir,1996,12:1411-1413.
    [109]O Jaeho,Y Tak,J Lee,Electrodeposition of Cu_2O Nanowires Using Nanoporous Alumina Template,Electrochem.Solid ST 2004,7:C27-C30.
    [110]J C Hulteen,C R Martin,A general template-based method for the preparation of nanomaterials,J.Mater.Chem.1997,7:1075-1087.
    [111]A Michailowski,D A1-Mawlawi,G S Cheng,M Moskovits,Highly regular anatase nanotubule arrays fabricated in porous anodic templates,Chem.Phys.Lett.2001,349:1-5.
    [112]S M Liu,L M Gan,L H Liu,W D Zhang,H C Zeng,Synthesis of Single-Crystalline TiO_2 Nanotubes,Chem.Mater.2002,14:1391-1397.
    [113]S Z Chu,K Wada,S Inoue,S I Todoroki,Synthesis and Characterization of Titania Nanostructures on Glass by Al Anodization and Sol-Gel Process,Chem.Mater.2002,14:266-272.
    [114]S Kobayashi,K Hanabusa,N Hamasaki,M Kimura,H Shirai,S Shinkai,Preparation of TiO_2 Hollow-Fibers Using Supramolecular Assemblies,Chem.Mater.2000,12:1523-1525.
    [115]J H Jung,H Kobayashi,K J C Bommel,S Shinkai,T Shimizu,Creation of Novel Helical Ribbon and Double-Layered Nanotube TiO_2 Structures Using an Organogel Template,Chem.Mater.2002,14:1445-1447.
    [116]D Gong,C A Grimes,O K Varghese,W Hu,R S Singh,Z Chen,E C Dickey, Titanium oxide nanotube arrays prepared by anodic oxidation,J.Mater.Res.2001,16:3331-3334.
    [117]G K Mor,O K Varghese,M Paulose,N Mukherjee,C A Grimes,Fabrication of tapered,conical-shaped titania nanotubes,J.Mater.Res.2003,18:2588-2593.
    [118]赖跃坤,孙岚,左娟,林昌健,氧化钛纳米管阵列制备及形成机理,物理化学学报,2004,20:1063-1066.
    [119]J L Zhao,X H Wang,R Z Chen,L T Li,Synthesis of thin films of barium titanate and barium strontium titanate nanotubes on titanium substrates,Mater.Lett.2005,59:2329-2332.
    [120]T Kasuga,M Hiramatsu,A Hoson,T Sekino,K Niihara,Formation of Titanium Oxide Nanotube,Langmuir 1998,14:3160-3163.
    [121]T Kasuga,M Hiramatsu,A Hoson,T Sekino,K Niihara,Titania nanotubes prepared by chemical processing,Adv.Mater.1999,11:1307-1311.
    [122]D V Bavykin,J M Friedrich,F C Walsh,Protonated Titanates and TiO_2 Nanostructured Materials:Synthesis,Properties,and Applications,Adv.Mater.2006,18:2807-2824.
    [123]Q H Zhang,L Gao,J Sun,S Zheng,Preparation of Long TiO_2 Nanotubes from Ulvrafine Rutile Nanocrystals,Chem.Lett.2002,31:226-227.
    [124]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东,二氧化钛表面光学特性与光催化活性的关系,催化学报,1998,19:121-124.
    [125]S K Samantaray,K M Parida,Effect of anions on the textural and catalytic activity of titania,J.Mater.Sci.2003,38:1835-1848.
    [126]D Kozlov,D Bavykin,E Savinov,Effect of the Acidity of TiO_2 Surface on Its Photocatalytic Activity in Acetone Gas-Phase Oxidation,Catal.Lett.2003,86:169-172.
    [127]M L Hitchman,F Tian,Studies of TiO_2 thin films prepared by chemical vapour deposition for photocatalytic and photoelectrocatalytic degradation of 4-chlorophenol,J.Electroanal.Chem.2002,538-539:165-172.
    [128]孙奉玉,吴鸣,李文钊,李新勇,顾婉贞,王复东,二氧化钛的尺寸与光催化活性的关系,催化学报,1998,19:229-233.
    [129]C.He,D.Shu,Y.Xiong,X.Zhu,X.Li,Comparison of catalytic activity of two platinised TiO_2 films towards the oxidation of organic pollutants,Chemosphere 2006,63:183-191.
    [130]H.Choi,E.Stathatos,D D Dionysiou,Photocatalytic TiO_2 films and membranes for the development of efficient wastewater treatment and reuse systems,Desalination 2007,202:199-206.
    [131]M G Kang,H S Jung,K J Kim,Effect of chloride ions on 4-chlorophenol photodegradation in the absence and presence of titanium silicalite,J.Photoch.Photobio.A:Chem.2000,136:117-123.
    [132]W S Kuo,,Y T Lin,Photocatalytic oxidation of xenobiotics in water with immobilized TiO_2 on agitator,J.Environ.Sci.Health B 2000,35:61-75.
    [133]J Kr(?)sa,L Vodehnal,J Jirkovsky,Photocatalytic Degradation Rate of Oxalic Acid on a Semiconductive Layer of n-TiO_2 Particles in a Batch Mode Plate Photoreactor.Part II:Light Intensity Limit,J.Appl.Electrochem.1999,29:429-435.
    [134]杨克莲,叶征琦,杜宗杰,陈甫华,杨保龙,纳米TiO_2多孔微粒阳光催化降解活性艳蓝染料,城市环境与城市生态,2003,16:13-15.
    [135]H M Coleman,B R Eggins,J A Byrne,F L Palmer,E King,Photocatalytic degradation of 17-β-oestradiol on immobilised TiO_2,Appl.Catal.B:Environ.2000,24:L1-L5.
    [136]F D Munteanu,L T Kubot,L Gorton,Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate,J.Electroanal.Chem.2001,509:2-10.
    [137]R Subramanian,Y S Sohn,Y R Smith,M Misra,Electrochemically assisted photocatalytic degradation of methyl orange using anodized titanium dioxide nanotubes,Appl.Catal.B:Environ.2008,84:372-378.
    [138]B Liu,L Wen,X Zhao,Efficient degradation of aqueous methyl orange over TiO_2 and CdS electrodes using photoelectrocatalysis under UV and visible light irradiation,Prog.Org.Coat 2009,64:120-123.
    [139]Z Ma,S H Overbury,S Dai,Au/M_xO_y/TiO_2 catalysts for CO oxidation:Promotional effect of main-group,transition,and rare-earth metal oxide additives,J.Mol.Catal.A:Chem.2007,273:186-197.
    [140]A C Lukaski,D S Muggli,Photocatalytic Oxidation of Dichloroacetic Acid and Dichloroacetyl Chloride on TiO_2:Active Sites,Effect of H_2O,and Reaction Pathways.Catal.Lett.2003,89:129-138.
    [141]J Schwitzgebel,J G Ekerdt,H Gerischer,A Heller,Role of the oxygen molecule and of the photogenerated electron in TiO_2-photocatalyzed air oxidation reactions,J.Phys.Chem.1995,99:5633-5638.
    [142]L Dan,J T McCann,M Gratt,Y Xia,Photocatalytic deposition of gold nanoparticles on electrospun nanofibers of titania,Chem.Phys.Lett.2004,394:387-391.
    [143]S Ghosh-Mukerji,H Haick,M Schvartzman,Y Paz,Selective Photocatalysis by Means of Molecular Recognition,J.Am.Chem.Soc.2001,123:10776-10777.
    [144]李来胜,祝万鹏,张彭义,张秋云,TiO_2/UV/O_3-BAC工艺去除水源水中的有机污染物,催化学报,2007,28:779-782.
    [145]郑怀礼,张峻华,熊文强,纳米TiO_2光催化降解有机污染物研究与应用新进展,光谱学与光谱分析,2004,24:1003-1008.
    [146]K Vinodgnpa,U Stafford,K A Gray,P V Kamat,Electrochemically Assisted Photocatalysis.2.The Role of Oxygen and Reaction Intermediates in the Degradation of 4-Chlorophenol on Immobilized TiO_2 Particulate Films,J.Phys.Chem.1994,98:6797-6803.
    [147]M Jakob,H Levanon,P V Kamat,Charge distribution between UV-irradiated TiO_2 and gold nanoparticles:determination of shift in the fermi level.Nano.Lett.2003,3:353-358.
    [148]Y Wang,H Cheng,Y Hao,J Ma,W Li,S Cai,Photoelectrochemical properties of metal-ion-doped TiO_2 nanocrystalline electrodes,Thin Solid Films 1999,349:120-125.
    [149]L Kavan,B O Regan,A Kay,M Gr(a|¨)tzel,Preparation of titania (anatase) films on electrodes by anodic oxidative hydrolysis of titanium trichloride.J.Electroanal Chem.1993,346:291-307.
    [150]L Kavan,T Stoto,M Gr(a|¨)tzel,D Fitzmaurice,V Shklover,Quantum size effects in nanocrystalline semiconducting titania layers prepared by anodic oxidative hydrolysis of titanium trichloride,J.Phys.Chem.1993,97:9493-9498.
    [151]罗谨,周静,祖延兵,林仲华,电沉积TiO_2纳米微粒膜的光电化学性能和表面形貌研究,高等学校化学学报,1998,19:1484-1487.
    [152]C Natarajan,G Nogami,Cathodic electrodeposition of nanocrstalline titanium dioxide thin films,J.Electrochem.Soc.1996,143:1547-1550.
    [153]潭小春,黄颂羽,电泳法制备TiO_2超微粒薄膜的研究,化学物理学报,1998,11:416-421.
    [154]R G Hayward,D A Saville,I A Aksay,Electrophoretic assembly of colloidal crystals with optically tunable micropatterns,Nature 2000,404:56-59.
    [155]邱健斌,曹亚安,马颖,管自生,姚建年,担载材料对TiO_2薄膜光催化活性的影响,物理化学学报,2000,16:1-4.
    [156]T Ma,T Kida,M Akiyama,K Inoue,S Tsunematsu,K Yao,H Noma,E Abe,Preparation and properties of nanostructured TiO_2 electrode by a polymer organic-medium screen-printing technique,Electrochem.Commun.2003,5:369-372.
    [157]李胜军,林原,杨世伟,纳米晶TiO_2多孔薄膜电极的制备及其性能研究,功能材料,2008,39:95-97.
    [158]魏培海,姚发业,王亚娟,MOCVD法制备TiO_2薄膜的光电化学性质研究,山东师大学报(自然科学版),2000,16:151-153.
    [159]傅正文,孔继烈,秦启宗,田中群,脉冲激光沉积纳米TiO_2薄膜电极的现场光电化学,中国科学,1999,29:546-552.
    [160]黄丹,黄宁平,袁春伟,TiO_2薄膜的自组装制备与表征,东南大学学报,1997,27:68-71.
    [161]J Jin,L S Li,Y Li,X Chen,L Jiang,Y Y Zhao,T J Li,Preparation of titanium dioxide and barium titanate nanothick flim by langrnuir-blodgett technique,Thin Solid Films 2000,379:218-223.
    [162]Y K Choi,S S Seo,K H Chio,Q W Choi,S M Park,Thin Ti dioxide film electrodes prepared by thermal oxidation,J.Electrochem.Soc.1992,139:1803-1807.
    [163]J Akikusa,S U M Khan,Photoresponse and AC impedance characterization of n-TiO_2 films during hydrogen and oxygen evolution reactions in an electrochemical cell,Int.J.Hydrogen Energ.1997,22:875-882.
    [164]A Fujishima,K Kohayakawa,K Honda,Hydrogen production under sunlight with electrochemical photo-cell,J.Electrochem.Soc.1975,122:1487-1489.
    [165]S U M Khan,M A1-Shahry,W B Ingler Jr,Efficient Photochemical Water Splitting by a Chemically Modified n-TiO_2.Science 2002,297(5590):2243 -2245.
    [166]A Fujishima,T N Rao,D A Tryk,Titanium dioxide photocatalysis,J.Phochem.Potobiol.C:Photochem.Rev.2000,1 :1-21.
    [167]I M Arabatzis,T Stergiopoulos,G Katsaros,M C Bemard,D Labou,S G Neofytides,P Falaras,Silver modified titanium dioxide thin films for efficient photodegradation of methyl orange,Appl.Catal.B:Environ.2003,42:187-201.
    [168]I M Arabatzis,T Stergiopoulos,D Andreeva,S Kitova,S G Neophytides,P Falaras,Characterization and Photocatalytic Activity of Au/TiO_2 Thin Films for Azo-dye Degradation,J.Catal.2003,220:127-135.
    [169]G Colon,M Maicu,M C Hidalgo,J A Navio,Cu-doped TiO_2 systems with improved photocatalytic activity,Appl.Catal.B:Environ.2006,67:41-51.
    [170]M Nasr-Esfahani,M H Habibi,Silver Doped TiO_2 Nanostructure Composite Photocatalyst Film Synthesized by Sol-Gel Spin and Dip Coating Technique on Glass,Int.J.Photoenergy 2008,Article ID 628713,doi:10.1155/2008/628713.
    [171]X Zhang,F Zhang,K Y Chan,The synthesis of Pt-modified titanium dioxide thin films by microemulsion templating,their characterization and visible-light photocatalytic properties,Mater.Chem.Phys.2006,97:384-389.
    [172]L Zhao,Q Jiang,J Lian,Visible-light photocatalytic activity of nitrogen-doped TiO_2 thin film prepared by pulsed laser deposition.Appl.Surf Sci.2008,254:4620-4625.
    [173]J Yu,H Yu,C H Ao,S C Lee,J C Yu,WHo,Preparation,characterization and photocatalytic activity of in situ Fe-doped TiO_2 thin films,Thin Solid Films 2006,496:273-280.
    [174]A Socha,E Sochock,R Podsiadly,Electrochemical and photoelectrochemical degradation of direct dyes,Color.Technol.2006,122:207-212.
    [175]姚清照,刘正宝,光电催化降解染料废水,工业水处理,1999,19:15-16.
    [176]吴永键,高甲友,光电催化降解活性蓝染料的研究,应用化工,2006,35:688-690.
    [177]J M Kesselman,N S Lewis,M R Hoffmann,Photoelectrochemical Degradation of 4-Chlorocatechol at TiO_2 Electrodes:Comparison between Sorption and Photoreactivity,Environ.Sci.Technol.1997,31 :2298-2302.
    [178]G Waldner,M Pourmodjib,R Bauer,Photoelectrocatalytic degradation of 4-clorophenol and oxalic acid on titanium dioxide electrodes,Chemosphere 2003,50:989-998.
    [179]A Taghizadeh,M F Lawrencea,L Miller,Photoelectrochemical behavior of selected organic compounds on TiO_2 electrodes.Overall relevance to heterogeneous photocatalysis.J.Photoch.Photobio.A,2000,130:145-156.
    [180]C K Xu,Y A Shaban,W B Ingler,Nanotube enhanced photoresponse of carbon modified (CM)-n-TiO_2 for efficient water splitting,Sol.Energ.Mat.Sol.C 2007,91:938-943.
    [181]R K Kam,M Misra,O N Srivastava,Semiconductorseptum photoelect rochemical cell for solar hydrogen production,Int.J Hydrogen Energ.2000,25:407-413.
    [182]H Selcuk,J J Sene,M Valnice,B Zanoni,H Z Sarikaya,Marc A Anderson,Behavior of bromide in the photoelectrocatalytic process and bromine generation using nanoporous titanium dioxide thin-film electrodes,Chemosphere 2004,:969-974.
    [183]H Selcuk,M A Anderson,Effect of pH,charge separation and oxygen concentration in photo-electrocatalytic systems:active chlorine production and chlorate formation,Desalination 2005,176:219-227.
    [184]C O Avellaneda,L O S Bulh(o|¨)es,A Pawlicka,The CeO_2-TiO_2-ZrO_2 sol-gel film:a counter-electrode for electrochromic devices,Thin Solid Films,2005,471:100-104.
    [185]K Vinodgopal,S Hotechandani,P V Kamat,Electrochemically assisted photocatalysis.TiO_2 Particulate film electrodes for photocatalytic degradation of 4-chlorophenol,.J.Phys.Chem.1993,97:9040-9044.
    [186]H K Dong,M A Anderson,Photoelectrocatalytic Degradation of Formic Acid Using a Porous TiO_2 Thin-Film Electrode.Environ.Sci.Technol.1994,28:479-483.
    [187]J M Kesselman,N S Lewis,M R Hoffmann,Photoelectrochemical Degradation of 4-Chlorocatechol at TiO_2 Electrodes:Comparison between Sorption and Photoreactivity,Environ.Sci.Technol.1997,31:2298-2302.
    [188]冷文华,张莉,成少安,张鉴清,曹楚南,负载二氧化钛光催化降解水中对氯苯胺(PCA),环境科学,2000,21:46-50.
    [189]符小荣,TiO_2/Pt/glass纳米薄膜的制备及对可溶性染料的光电催化降解,应用化学,1997,14:77-79.
    [190]P J Kulesza,K Brajter,E Dbek-Zlotorzynska,Application of chelate-forming resin and modified glassy carbon electrode for selective determination of iron(Ⅲ) by liquid chromatography with electrochemical detection, Anal. Chem. 1987,59:2776-2780.
    [191] K Tanaka, R Tamamushi, Voltammetry in low temperature liquid solutions and frozen media: hexacyanoferrate(Ⅱ/Ⅲ) redox system in aqueous LiCl solutions at temperatures between 170 K and 300 K, J. Electwanal Chem. 1995, 380: 279-282.
    [192] G Ritzoulis, N Georgolios, Effect of underpotentially deposited Pb, Ti, Cd and Cu adatoms on the oxidation of formaldehyde at Pd, Electroanal Chem. 1993, 362: 219-222.
    [194] K D Gleria, M J Green, H A O Hill, C J McNeil, Homogeneous ferrocene-mediated amperometric immunoassay, Anal. Chem. 1986, 58: 1203-1205.
    [195] J Wang, B Tian, K R Rogers, Thick-Film Electrochemical Immunosensor Based on Stripping Potentiometric Detection of a Metal Ion Label, Anal. Chem. 1998, 70, 1682-1685.
    [196] N Honda, M Inaba, T Katagiri, S Shoji, H Sato, T Homma, T Osaka, M Saito, J Mizuno, Y Wada, High efficiency electrochemical immuno sensors using 3D comb electrodes, Biosens. Bioelectron. 2005, 20, 2306-2309.
    [197] R F Lane, A T Hubbard, Electrochemistry of chemisorbed molecules. I. Reactants connected to electrodes through olefinic substituents, J. Phys. Chem. 1973, 77: 1401-1410.
    [198] B F Watkins, J R Behling, E Kariv, Chiral electrode, J. Am. Chem. Soc. 1975, 97: 3549-3550.
    [199] P R Moses, L Wier, R W Murray, Chemically modified tin oxide electrode, Anal. Chem. 1975,47: 1882-1886.
    [200] V R Shepard, N R Armstrong, Electrochemical and photoelectrochemical studies of copper and cobalt phthalocyanine-tin oxide electrodes, J. Phys. Chem. 1979, 83: 1268-1276.
    [201] J Wang, X H Cai, G Rivas, DNA electrochemical biosensor for the detection of short DNA sequences related to human immunodeficiency virus, Anal. Chem. 1996, 68: 2629-2634.
    [202] E Palecek, M Fojta, Differential pulsed voltammetric determination of RNA at the picomole level in the presence of DNA and nucleic acid components. Anal. Chem. 1994,66: 1566-1571.
    [203]K Shigehara,N Oyama,F C Anson,Electrochemical responses of electrodes coated with redox polymers.Evidence for control of charge-transfer rates across polymeric layers by electron exchange between incorporated redox sites,J Am.Chem.Soc.1981,103:2552-2558.
    [204]S Yuan,S Hu,Characterization and electrochemical studies of Nafion/nano- TiO_2 film modified electrodes,Electrochim.Acta 2004,49:4287-4293.
    [205]A A Karyakin,A K Strakhovu,A K Yatsimirsky,Self-doped polyanilines electrochemically active in neutral and basic aqueous solutions:Electropolymerization of substituted anilines,J Electroanal Chem.1994,371:259-265.
    [206]M Skompska,A Kudelski,Electrochemical activity of poly(N-vinylcarbazole) films in acetonitrile solution and in acetonitrile water mixtures.Correlation between spectroelectrochemical and EPR results,J Electrocanal Chem.1996,403:125-132.
    [207]N Oyama,F C AMason,Polymeric ligands as anchoring groups for the attachment of metal complexes to graphite electrode surfaces,J.Am.Chem.Soc.1979,101:3450-3456.
    [208]S Dong,F Li,Research on chemically modified electrodes:Part XV.Preparation and electrochromism of the vanadium hexacyanoferrate film modified electrode,J.Electroanal Chem.1986,210:31-44.
    [209]R W Murray (Ed.),Molecular Design of Electrode Surfaces,vol.22,Wiley,New York,1992.
    [210]J Roncali,Electrogenerated functional conjugated polymers as advanced electrode materials,J Mater.Chem.1999,9:1875-1893.
    [211]A Boyer,K Kalcher,R Pietsch,Voltarnmetric behavior of perborate on prussian-blue-modified carbon paste electrodes,Electroanal 1990,2:155-161.
    [212]I L de Mattos,L Gorton,T Laurell,A Malinauskas,A A Karyakin,Development ofbiosensors based on hexacyanoferrates,Talanta 2000,52(15):791-799.
    [213]R N Adams,Electrochemistry at solid electrode,M.Dekker:New York,1969.
    [214]M K Halbert,R P Baldwin,Electrocatalytic and analytical response of cobalt phthalocyanine containing carbon paste electrodes toward sulfhydryl compounds,Anal Chem.1985,57:591-595.
    [215]X W Zhang,Z H Guo,Potentiometric determination of hydrogen peroxide at MnO_2-doped carbon paste electrode,Talanta 2000,50:1157-1162.
    [216] R Tucceri, The change of the electron scattering at the gold film-poly-(o-aminophenol) film interface after partical degradation of the polymer film: its relation with the electron transport process within the polymer film, J. Electroanal. Chem. 2004, 562: 173-186.
    [217] M H Huang, L H Bi, Y Shen, Nanocomposite multilayer film of preyssler-type polyoxometalates with fine tunable electrocatalytic activities, J. Phys. Chem. B 2004, 108: 9780-9786.
    [218] V M Martinez, F U Arbeloa, J B Prieto, Characterization of supported solid thin films of laponite clay, Intercalation of rhodamine 6G laser dye, Langmuir 2004, 20: 5709-5717.
    [219] B Mecheri, L Piras, G Caminati, Langmuir-Blodgett films incorporating redox mediators for molecular recognition of NADH, Bioelectrochemistry 2004, 63: 13-18.
    [220] Z P Liang, W H Xie, X X Zhang, Electrochemical study of the XNA on Gold (TM) microarray, Biosens. Bioelectron. 2004, 20: 211-216.
    [221] T M Reddy, S J Reddy, Differential pulse adsorptive stripping voltammetric determination of nifedipine and nimodipine in pharmaceutical formulations, urine, and serum samples by using a clay-modified carbon-paste electrode.Anal. lett. 2004, 37: 2079-2098.
    [1]S.Irmak,E.Kusvuran and O.Erbatur,Degradation of 4-chloro-2-methylphenol in aqueous solution by UV irradiation in the presence of titanium dioxide,Appl.Catal B 2004,54:85-91.
    [2]M.R.Hoffmann,S.T.Martin,W.Y.Choi and D.W.Bahnemann,Environmental Applications of Semiconductor Photocatalysis,Chem.Rev.1995,95:69-96.
    [3]M.Anpo and M.Takeuchi,The design and development of highly reactive titanium oxide photocatalysts operating under visible light irradiation,J.Catal.2003,216:505-516.
    [4]D.Chatterjee and S.Dasgupta,Visible light induced photocatalytic degradation of organic pollutants,.J.Photoch.Photobio.C 2005,6:186-205.
    [5]S.Usseglio,A.Damin and D.Scarano,(I_2)_n Encapsulation inside TiO_2:A Way To Tune Photoactivity in the Visible Region,J.Am.Chem.Soc.2007,129:2822-2828.
    [6]T.L.Villarreal,A.Rodes,J.M.Perez,and R.Gomez,A Spectroscopic and Electrochemical Approach to the Study of the Interactions and Photoinduced Electron Transfer between Catechol and Anatase Nanoparticles in Aqueous Solution,J.Am.Chem.Soc.2005,127:12601-12611.
    [7]A.R.Almeida,J.A.Moulijn,and G.Mul,In Situ ATR-FTIR Study on the Selective Photo-oxidation of Cyclohexane over Anatase TiO_2,.J.Phys.Chem.C 2008,112:1552-1561.
    [8]G.N.Ekstrolm and A.J.McQuillan,In Situ Infrared Spectroscopy of Glyoxylic Acid Adsorption and Photocatalysis on TiO_2 in Aqueous Solution,.J.Phys.Chem.B 1999,103:10562-10565.
    [9]S.J.Hwang,C.Petucci,and D.Raftery,In Situ Solid-State NMR Observations of Photocatalytic Surface Chemistry:Degradation of Trichloroethylene,J.Am.Chem.Soc.1997,119:7877-7878.
    [10]M.Tian,G.S.Wu,B.Adams,J.L.Wen,and A.C.Chen,Kinetics of Photoelectrocatalytic Degradation of Nitrophenols on Nanostructured TiO_2 Electrodes,J.Phys.Chem.C2005,112:825-831.
    [11]P.V.Kamat,Photochemistry on nonreactive and reactive (semiconductor) surfaces,Chem.Rev.1993,93:267-300.
    [12]J.Lee and W.Choi,Effect of Platinum Deposits on TiO_2 on the Anoxic Photocatalytic Degradation Pathways of Alkylamines in Water:Dealkylation and N-Alkylation,Environ.Sci.Technol 2004,38:4026-4033.
    [13]F.M.Vichi,M.I.Tejedor and M.A.Anderson,Effect of Pore-Wall Chemistry on Proton Conductivity in Mesoporous Titanium Dioxide,Chem.Mater.2000,12:1762-1770.
    [14]M.S.Vohra and K.Tanaka,Enhanced Photocatalytic Activity of Nafion-Coated TiO_2.Environ.Sci Technol.2001,35:411-415.
    [15]P.Choi,N.H.Jalani and R.Datta,Thermodynamics and Proton Transport in Nafion,J Electrochem.Soc.2005,152:123-130.
    [16]H.Park and W.Choi,Photocatalytic Reactivities of Nafion-Coated TiO_2 for the Degradation of Charged Organic Compounds under UV or Visible Light,J.Phys Chem.B 2005,109:11667-11674.
    [17]F.F.Santiago,I.M.Sero,G.G.Belmonte and J.Bisquert,Cyclic Voltammetry Studies of Nanoporous Semiconductors.Capacitive and Reactive Properties of Nanocrystalline TiO_2 Electrodes in Aqueous Electrolyte,J.Phys.Chem.B 2003,107:758-768.
    [18]S.Mozia,M.Toyoda,M.Inagaki,B.Tryba and A.W.Morawski,Application of carbon-coated TiO_2 for decomposition of methylene blue in a photocatalytic membrane reactor,J Hazard.Mater.2007,140:369-375.
    [19]P.J.Preece and A.J.Bard,Polymer films on electrodes:Part Ⅱ.Film structure and mechanism of electron transfer with electrodeposited poly(vinylferrocene),J Electroanal.Chem.1980,112:97-115.
    [20]E.Granot,F.Patolsky and I.Willner,Electrochemical Assembly of a CdS Semiconductor Nanoparticle Monolayer on Surfaces:Structural Properties and Photoelectrochemical Applications,J.Phys.Chem.B,2004,108:5875-5881.
    [21]W.Lee,K.H.Hyung,Y.H.Kim,G.Cai and S.H.Han,Polyelectrolytesorganometallic multilayers for efficient photocurrent generation:[polypropylviologen/RuL_2(NCS)_2/(PEDOT/PSS)]_n on ITO,Electrochem.Commun.2007,9:729-734.
    [22]Y.Liu,S.Yamamoto and Y.Sueishi,Photoinduced hydride transfer reaction between methylene blue and leuco crystal violet,J.Photoch.Photobio.A 2001,143:153-159.
    [23]H.Lachheb,E.Puzenat,A.Houas,M.Ksibi,E.Elaloui,C.Guillard and J.M. Herrmann,Photocatalytic degradation of various types of dyes (Alizarin S,Crocein Orange G,Methyl Red,Congo Red,Methylene Blue) in water by UV-irradiated titania,Appl.Catal.B 2002,39:75-90.
    [24]H.Park and W.Choi,Photocatalytic Reactivities of Nafion-Coated TiO_2 for the Degradation of Charged Organic Compounds under UV or Visible Light,J.Phys.Chem.B 2005,109:11667-11674.
    [25]R.H.Wopschall and I.Shain,Effects of adsorption of electroactive species in stationary electrode polarography,Anal Chem.1967,39:1514-1527.
    [26]P.Kara,K.Kerman,D.Ozkan,B.Meric,A.Erdem,Z.Ozkan and M.Ozsoz,Electrochemical genosensor for the detection of interaction between methylene blue and DNA,Electrochem.Commun.2002,4:705-709.
    [27]S.J.Abraham and R.Ramaraj,Electrochemical and Spectroelectrochemical Studies of Phenothiazine Dyes Immobilized in Nafion Film,Langmuir 1996,12:5689-5695.
    [28]S.J.Richard Prabakar,S.Sriman Narayanan,Amperometric determination of paracetomol by a surface modified cobalt hexacyanoferrate graphite wax composite electrode,Talanta 2007,72:1818-1827
    [29]M.Eikerling,A.A.Kornyshev and U.Stimming,Electrophysical Properties of Polymer Electrolyte Membranes:A Random Network Model,J.Phys.Chem.B 1997,101:10807-10820.
    [30]V.Ganesan,S.J.Abraham and R.Ramaraj,Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion(?) film,J.Electroanal.Chem.2001,502:167-173.
    [31]Y.L.Chang,W.C.Ye,C.L.Ma and C.M.Wang,The Termodynamic Model of Open-Circuit Potential for Electroless Deposition of Ni on Silicon,J.Electrochem.Soc.2006,153:677-682.
    [32]J.A.Byme,B.R.Eggins,S.L.Mailleyb and P.S.M.Dunlopa,The effect of hole acceptors on the photocurrent response of particulate TiO_2 anodes,Analyst 1998,123:2007-2012.
    [33]H.O.Finklea,Semiconductor electrode concepts and terminology,Elsevier Science Publishers B.V.,Amsterdam,1988,p21.
    [34]A.Houas,H.Lachheb,M.Ksibi and E.Elaloui,Photocatalytic degradation pathway of methylene blue in water,Appl Catal B 2001,31:145-157.
    [35]I.Mintsouli,N.Philippidis,I.Poulios and S.Sotiropoulos,Photoelectrochemical characterisation of thermal and particulate titanium dioxide electrodes,J.Appl.Electrochem.2006,36:463-474.
    [36]D.Jiang,H.Zhao,S.Zhang and R.John,Comparison of photocatalytic degradation kinetic characteristics of different organic compounds at anatase TiO_2 nanoporous film electrodes,J Photoch.Photobio.A:Chem.2006,177:253-260.
    [37]J.Georgieva,S.Armyanov,E.Valova,I.Poulios and S.Sotiropoulos,Preparation and photoelectrochemical characterisation of electrosynthesised titanium dioxide deposits on stainless steel substrates,Electrochim.Acta 2006,51:2076-2087.
    [38]Z.Q.Yu and S.S.C.Chuang,Probing Methylene Blue Photocatalytic Degradation by Adsorbed Ethanol with In Situ IR,J Phys.Chem.C 2007,111:13813-13820.
    [39]K.Vinodgopal,D.E.Wynkoop and P.V.Kamat,Environmental Photochemistry on Semiconductor Surfaces:Photosensitized Degradation of a Textile Azo Dye,Acid Orange 7,on TiO_2 Particles Using Visible Light,Environ.Sci.Technol.1996,30:1660-1666.
    [40]D.G.Tauste,X.Domenech,N.C.Pastor and J.A.Ayllon,Characterization of methylene blue/TiO_2 hybrid thin films prepared by the liquid phase deposition (LPD) method:Application for fabrication of light-activated colorimetric oxygen indicators,J.Photoch.Photobio.A 2007,187:45-52.
    [41]T.Y.Zhang,T.Oyama,A.Aoshima,Hidaka H,J.C.Zhao and N.Serpone,Photooxidative N-demethylation of methylene blue in aqueous TiO_2 dispersions under UV irradiation,J.Photoch.Photobio.A 2001,140:163-172.
    [42]H.M.Zhang,X.Quan,S.Chen,H.M.Zhao and Y.Z.Zhao,Fabrication of photocatalytic membrane and evaluation its efficiency in removal of organic pollutants from water,Sep.Purif.Technol.2006,50:147-155.
    [43]N.Sakai,A.Fujishima,T.Watanabe,and K.Hashimoto,Enhancement of the Photoinduced Hydrophilic Conversion Rate of TiO_2 Film Electrode Surfaces by Anodic Polarization,J.Phys.Chem.B 2001,105:3023-3026.
    [1]W.S.Huang,B.D.Humphrey,A.G.MacDiarmid,Polyaniline,A novel conducting polymer:morphology and chemistry of its oxidation and reduction in aqueous electrolytes,J.Chem.Soc.Faraday Trans.1986,82:2385-2400.
    [2]M.Trojanowicz,T.K.Krawczyk,M.Zmorzyriska,L.Campanella,Amperometric sensing of ammonia in aqueous solutions using a polyaniline-modified electrode in flow injection systems,Electroanal 1997,9:1062-1066.
    [3]Y.Lu,L.Wang,B.H.Zhao,G.S.Xiao,Y.Ren,X.D.Wang,C.X.Li,Fabrication of conducting polyaniline composite film using honeycomb ordered sulfonated polysulfone film as template,Thin Solid Films 2008,516:6365-6370.
    [4]G.K.R.Senadeera,T.Kitamura,Y.Wada,S.J.Yanagida,Deposition of polyaniline via molecular self-assembly on TiO_2 and its uses as a sensitiser in solid-state solar cells,Photoch.Photobio.A 2004,164:61-66.
    [5]F.Y.Chuang,S.M.Yang,Titanium Oxide and Polyaniline Core-Shell Nanocomposites,Synthetic Met.2005,152:361-367.
    [6]M.A.Bavio,T.Kessler,A.M.C.Luna,Preparation and characterization of composite polyaniline materials for catalytic purposes,J.Colloid Interface Sci.2008,325:414-418.
    [7]H.Zhang,R.L.Zong,J.C.Zhao,Y.F.Zhu,Dramatic Visible Photocatalytic Degradation Performances Due to Synergetic Effect of TiO_2 with PANI,Environ.Sci.Technol.2008,42:3803-3807.
    [8]S.Sathiyanarayanan,S.S.Azim,G.Venkatachari,Preparation of polyaniline-Fe_2O_3 composite and its anticorrosion performance,Synthetic Met 2007,157:751-757.
    [9]H.L.Tai,Y.D.Jiang,G.Z.Xie,J.S.Yu,X.Chen,Z.H.Ying,Influence of polymerization temperature on NH_3 response of PANI/TiO_2 thin film gas sensor,Sensor.Actuat.B 2008,129:319-326.
    [10]J.Zheng,G.Li,X.Ma,Y.Wang,G.Wu,Y.Cheng,Polyaniline-TiO_2 nano-composite-based trimethylamine QCM sensor and its thermal behavior studies,Sensor.Actuat.B 2008,133:374-380.
    [11]D.A.Buttry,F.C.Anson,Electrochemical control of the luminescent lifetime of Ru(bpy)_3~(2+) incorporated in Nafion films on graphite electrodes,J.Am.Chem.Soc.1982,104:4824-4829.
    [12]R.J.Mortimer,Electrochemical responses of bilayer electrodes with Prussian blue as the ‘inner’ layer and electroactive cation-incorporated Nafion(?) as the ‘outer’ layer,J.Electroanal.Chem.1995,397:79-86.
    [13]Z.G.Shao,H.Xu,M.Li,I.M.Hsing,Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell,Solid State Ionics 2006,177:779-785.
    [14]E.Chalkova,M.V.Fedkin,D.J.Wesolowski,S.N.Lvov,Effect of TiO_2 Surface Properties on Performance of Nafion-Based Composite Membranes in High Temperature and Low Relative Humidity PEM Fuel Cells,J.Electrochem.Soc.2005,152:1742-1747.
    [15]H.Park,W.Choi,Visible-Light-Sensitized Production of Hydrogen Using Perfluorosulfonate Polymer-Coated TiO_2 Nanoparticles:An Alternative Approach to Sensitizer Anchoring,Langmuir 2006,22:2906-2911.
    [16]F.Harris,L.K.Chatfield,D.A.Phoenix,Phenothiazinium based photosensitisers-photodynamic agents with a multiplicity of cellular targets and clinical applications,Curr.Drug Targets 2005,6:615-627.
    [17]X.Q.Lin,J.Chen,Z.H.Chen,Amperometric Biosensor for Hydrogen Peroxide Based on Immobilization of Horseradish Peroxidase on Methylene Blue Modified Graphite Electrode,Electroanal.2000,12:306-310.
    [18]S.B.Han,M.Zhu,Z.B.Yuan,X.Li,A methylene blue-mediated enzyme electrode for the determination of trace mercury(Ⅱ),mercury(Ⅰ),methylmercury,and mercury-glutathione complex,Biosens.Bioelectron.2001,16:9-16.
    [19]C.Ramalechume,S.Berchmans,V.Yegnaraman,A.B.Mandal,Electron transfer studies through mixed self-assembled monolayers of thiophenol and thioctic acid,J.Electroanal.Chem.2005,580:122-127.
    [20]F.D.Munteanu,L.T.Kubota,L.Gorton,Effect of pH on the catalytic electrooxidation of NADH using different two-electron mediators immobilised on zirconium phosphate,J.Electroanal.Chem.2001,509:2-10.
    [21]D.G.Tauste,X.Domenech,N.C.Pastor,J.A.Ayllon,Characterization of methylene blue/TiO_2 hybrid thin films prepared by the liquid phase deposition (LPD) method:Application for fabrication of light-activated colorimetric oxygen indicators,J.Photoch.Photobio.A 2007,187:45-52.
    [22]Y.Zhang,N.F.Hu,Cyclic voltammetric detection of chemical DNA damage induced by styrene oxide in natural dsDNA layer-by-layer films using methylene blue as electroactive probe,Electrochem.Commun.2007,9:35-41.
    [23]M.J.Honeychurch,The effect of the interfacial potential distribution on the reduction of adsorbed methylene blue at a mercury electrode,J.Electroanal.Chem.1998,445:63-69.
    [24]V.Svetlicic,V.Zutic,J.Clavilier,J.Chevalet,Supramolecular phenomena in organic redox films at electrodes:Part Ⅰ.The methylene blue/leucomethylene blue redox couple at the platinum electrode,J.Electroanal.Chem.1985,195:307-319.
    [25]V.Zutic,V.Svetlicic,J.Clavilier,J.Chevalet,Supramolecular phenomena in organic redox films at electrodes:Part Ⅱ.The methylene blue/leucomethylene blue redox couple at the gold electrode,J.Electroanal.Chem.1987,219:183-195.
    [26]S.H.D.Nicolai,P.R.P.Rodrigues,S.M.L.Agostinho,J.C.Rubim,Electrochemical and spectroelectrochemical (SERS) studies of the reduction of methylene blue on a silver electrode,J.Electroanal Chem.2002,527:103-111.
    [27]J.Zhao,F.Q.Zhao,Z.Y.Chen,B.Z.Zeng,Influence of Cationic Surfactants on the Voltammetric Behavior of Methylene Blue at a Silver Electrode,Electroanal 2005,17:1071-1077.
    [28]J.Kiwi,N.Denisov,V.Nadtochenko,Interfacial Electron Transfer Induced by Light in Methylene Blue Incorporated in Nation Membranes.Laser Kinetic Spectroscopy,.J.Phys.Chem.B 1999,103:9141-9148.
    [29]V.Luca,M.Osborne,D.Sizgek,C.Griffith,P.Z.Araujo,Photodegradation of Methylene Blue Using Crystalline Titanosilicate Quantum-Confined Semiconductor,Chem.Mater.2006,18,6132-6138.
    [30]S.Mozia,M.Toyoda,M.Inagaki,B.Tryba,A.W.Morawski,Application of carbon-coated TiO_2 for decomposition of methylene blue in a photocatalytic membrane reactor,J.Hazardous Mater.2007,140:369-375.
    [31]P.R.Solanki,S.Singh,N.Prabhakar,M.K.Pandey,B.D.Malhotra,Application of conducting poly(aniline-co-pyrrole) film to cholesterol biosensor,J.Appl.Polym.Sci.2007,105:3211-3219.
    [32]N.Prabhakar,K.Arora,H.Singh,B.D.Malhotra,Polyaniline Based Nucleic Acid Sensor,J.Phys,Chem.B 2008,112:4808-4816.
    [33]J.H.O.Owino,O.A.Arotiba,P.G.L.Baker,A.G.Elie,E.I.Iwuoha,Synthesis and characterization of poly(2-hydroxyethyl methacrylate)-polyaniline based hydrogel composites,React Funct.Polym.2008,68:1239-1244.
    [34]K.Ghanbari,M.F.Mousavi,M.Shamsipur,H.Karami,Synthesis of polyaniline/graphite composite as a cathode of Zn-polyaniline rechargeable battery,J.Power Sources 2007,170:513-519.
    [35]P.Kara,K.Kerman,D.Ozkan,B.Meric,A.Erdem,Z.Ozkan,M.Ozsoz,Electrochemical genosensor for the detection of interaction between methylene blue and DNA,Electrochem.Commun.2002,4:705-709.
    [36]S.Kuwabata,J.Nakamura,H.J.Yoneyama,Dimerization kinetics of methylene blue incorporated in a nafion film,J.Electroanal.Chem.1989,261:363-373.
    [37]S.J.Abraham,R.Ramaraj,Electrochemical and Spectroelectrochemical Studies of Phenothiazine Dyes Immobilized in Nafion Film,Langmuir 1996,12:5689-5695.
    [38]V.Ganesan,S.A.John,R.Ramaraj,Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion(?) film,J.Electroanal.Chem.2001,502:167-173.
    [39]K.J.McKenzie,F.Marken,Accumulation and Reactivity of the Redox Protein Cytochrome c in Mesoporous Films of TiO_2 Phytate,Langmuir 2003,19: 4327-4331.
    [40] A. J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Application, John Wiley and Sons, New York, 1980, 92-292.
    79
    [1]B.Kraeutler,A.J.Bard,Heterogeneous photocatalytic decomposition of saturated carboxylic acids on titanium dioxide powder.Decarboxylative route to alkanes,J.Am.Chem.Soc 1987,100:5985-5992.
    [2]A.Mills,S.Morris,R.Davies,Photomineralisation of 4-chlorophenol sensitised by titanium dioxide:a study of the intermediates,J.Photoch.Photobio.A 1993,70:183-191.
    [3]Z.Y.Liu,X.T.Zhang,S.Nishimoto,M.Jin,D.A.Tryk,T.Murakami,A.Fujishima,Highly Ordered TiO_2 Nanotube Arrays with Controllable Length for Photoelectrocatalytic Degradation of Phenol,J.Phys Chem.C 2008,112:253-259.
    [4]U.S.Environmental Protection Agency,Nitrophenols,Ambient Water Quality Criteria,Washington,DC,1980.
    [5]M.Sivakumar,P.A.Tatake,A.B.Pandit,Kinetics of p-nitrophenol degradation:effect of reaction conditions and cavitational parameters for a multiple frequency system,Chem.Eng.J.2002,85:327-338.
    [6]Q.Dai,L.Lei,X.Zhang,Enhanced degradation of organic wastewater containing p-nitrophenol by a novel wet electrocatalytic oxidation process:Parameter optimization and degradation mechanism,Separa.Puri.Technol 2007,61:123-129.
    [7]C.Borras,C.Berzoy,J.Mostany,J.C.Henrera,B.R.Scharifker,A comparison of the electrooxidation kinetics of p-methoxyphenol and p-nitrophenol on Sb-doped SnO_2 surfaces:Concentration and temperature effects,Appl Catal.B:Environ.2007,72:98-104.
    [8]M.Tian,L.Bakovic,A.Chen,Kinetics of the electrochemical oxidation of 2-nitrophenol and 4-nitrophenol studied by in situ UV spectroscopy and chemometrics,Electrochim.Acta 2007,52:6517-6524.
    [9]A.D.Paola,V.Augugliaro,L.Palmisano,G.Pantaleo,E.Savinov, Heterogeneous photocatalytic degradation of nitrophenols,J.Photoch.Photobio.A:Chem.2003,155:207-214.
    [10]Y.Lei,G.Zhao,M.Liu,X.Xiao,Y.Tang,D.Li,Simple and Feasible Simultaneous Determination of Three Phenolic Pollutants on Boron-Doped Diamond Film Electrode,Electroanal 2007,19:1933-1938.
    [11]A.Preechaworapun,Z.Dai,Y.Xiang,O.Chailapakul,J.Wang,Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing,Talanta 2008,76:424-431.
    [12]S.M.A.Jorge,J.J.Sene,A.O.Florentino,Photoelectrocatalytic treatment of p-nitrophenol using Ti/TiO2 thin-film electrode,J.Photoch.Photobio.A 2005,174:71-75.
    [13]M.Tian,G.S.Wu,B.Adams,J.L.Wen,A.C.Chen,Kinetics of Photoelectrocatalytic Degradation of Nitrophenols on Nanostructured TiO_2 Electrodes,J.Phys.Chem.C2008,112:825-831.
    [14]V.G.Levich,Physicochemical Hydrodynamics,Prentice-Hall,Englewood Cliffs,N J,1962.
    [15]J.S.Chen,L.F.Wang,B.J.Fang,S.Y.Lee,R.Z.Guo,Rotating ring-disk electrode measurements on Mn dissolution and capacity losses of spinel electrodes in various organic electrolytes,J.Power Sources 2006,157:515-521.
    [16]J.F.Silva,S.Griveau,C.Richard,J.H.Zagal,F.Bedioui,Glassy carbon electrodes modified with single walled carbon nanotubes and cobalt phthalocyanine and nickel tetrasulfonated phthalocyanine:Highly stable new hybrids with enhanced electrocatalytic performances,Electrochem.Commun.2007,9:1629-1634.
    [17]C.J.Clarke,G.J.Browning,S.W.Donne,An RDE and RRDE study into the electrodeposition of manganese dioxide,Electrochim.Acta 2006,51:5773-5784.
    [18]D.Sopchak,B.Miller,Y.Avyigal,R.Kalish,Rotating ring-disk electrode studies of the oxidation ofp-methoxyphenol and hydroquinone at boron-doped diamond electrodes,J.Electroanal.Chem.2002,538-539:39-45.
    [19]M.I.Awad,C.Harnoode,K.Tokuda,T.Ohsaka,Simultaneous Electroanalysis of Peroxyacetic Acid and Hydrogen Peroxide,Anal.Chem.2001,73:1839-1843.
    [20]A.I.Bhatt,R.A.W.Dryfe,Hydrodynamic voltammetry at membrane-covered electrodes,J.Electroanal.Chem.2005,584:131-140.
    [21]J.L.Melville,R.G.Compton,Pulse voltammetry at the rotating disc electrode,J.Electroanal.Chem.2001,501:114-127.
    [22]E.Howard,J.F.Cassidy,J.Gorman,Electroanalysis Using Differential Pulse Methods at a Rotating Disk Electrode,Electroanal.1999,11:577-581.
    [23]F.F.Santiago,I.M.Sero,G.G.Belmonte,J.Bisquert,Cyclic Voltammetry Studies of Nanoporous Semiconductors.Capacitive and Reactive Properties of Nanocrystalline TiO_2 Electrodes in Aqueous Electrolyte,J.Phys.Chem.B,2003,107:758-768.
    [24]Y.H.Ao,J.J.Xu,D..G.Fu,C.W.Yuan,Photoelectrochemical application of hollow titania film,Electrochem.Commun.2008,10:1812-1814.
    [25]B.Q.Su,Y.J.Ma,Y.L.Du,C.Yang,C.M.Wang,In Situ Photoelectrocatalytic Degradation Behavior of Methylene Blue on Nano-TiO_2 Modified Electrode,J.Electrochem.Soc 2008,155:213-217.
    [26]M.H.Zhou,L.C.Lei,An improved UV/Fe~(3+) process by combination with electrocatalysis for p-nitrophenol degradation,Chemosphere 2006,63:1032-1040.
    [27]M.A.Ghanem,Electrocatalytic activity and simultaneous determination of catechol and hydroquinone at mesoporous platinum electrode,Electrochem.Commun.2007,9:2501-2506.
    [28]E.Büttner and R.Holze,Hydroquinone oxidation electrocatalysis at polyaniline films,J.Electroanal.Chem.2001,508:150-155.
    [29]N.Baram,D.Starosvetsky,J.Starosvetsky,M.Epshtein,R.Armon,Y.Ein-Eli,Enhanced inactivation of E.coli bacteria using immobilized porous TiO_2 photoelectrocatalysis,Electrochim.Acta 2009,54:3381-3386.
    [30]Y.Hou,X.Li,X.Zou,X.Quan,G.Chen,Photoeletrocatalytic Activity of a Cu_2O-Loaded Self-Organized Highly Oriented TiO_2 Nanotube Array Electrode for 4-Chlorophenol Degradation,Environ.Sci.Technol.2009,43:858-863.
    [31]H.Zhao,D.Jiang,S.Zhang,W.Wen,Photoelectrocatalytic oxidation of organic compounds at nanoporous TiO_2 electrodes in a thin-layer photoelectrochemical cell,J.Caral.2007,250:102-109.
    [32]E.Valatka,(?).Kulesius,TiO_2-mediated photoelectrochemical decoloration of methylene blue in the presence of peroxodisulfate,J.Appl.Electrochem.2007,37:415-420.
    [33]K.Vinodgopal,S.Hotchandani,P.V.Kama,Electrochemically Assisted Photocatalysis.TiO_2 Particulate Film Electrodes for Photocatalytic Degradation of 4-Chlorophenol,J.Phys Chem.1993,97:9040-9044.
    [34]M.Graetzel,A.J.Frank,Interfacial electron-transfer reactions colloidal in semiconductor dispersions.Kinetic analysis,J.Phys Chem.1982,86:2964-2967.
    [35]Y.Murakami,E.Kenji,A.Y.Nosaka,Y.Nosaka,Direct Detection of OH Radicals Diffused to the Gas Phase from the UV-Irradiated Photocatalytic TiO_2 Surfaces by Means of Laser-Induced Fluorescence Spectroscopy,J.Phys Chem.B 2006,110:16808-16811.
    [36]K.Vinodgnpal,U.Stafford,K.A.Gray,P.V.Kamat,Electrochemically Assisted Photocatalysis.2.The Role of Oxygen and Reaction Intermediates in the Degradation of 4-Chlorophenol on Immobilized Ti02 Particulate Films,J.Phys Chem.1994,98:6797-6803.
    [37]M.S.Dieckmann,K.A.Gray,A Comparison of the degradation of 4-nitrophenol via direct and sensitized photocatalysis in TiO_2 silurries,Wat Res.1996,30:1169-1183.
    [38]V.Kavitha,K.Palanivelu,Degradation of nitrophenols by Fenton and photo-Fenton processes,J.Photoch.Photobio.A 2005,170:83-95.
    [39]Y.Liu,H.L.Liu,Y.Li,Comparative study of the electrocatalytic oxidation and mechanism of nitrophenols at Bi-doped lead dioxide anodes,Appl.Cataly.B 2008,84:297-302.
    [1]S.Hwang,J.Lee,and J.Kwak,Nitrate reduction catalyzed by nanocomposite layer of Ag and Pb on Au(111 ),J.Electroanal.Chem.2005,579:143-152.
    [2]F.H.B.Lima,C.D.Sanches,and E.A.Ticianelli,Physical Characterization and Electrochemical Activity of Bimetallic Platinum-Silver Particles for Oxygen Reduction in Alkaline Electrolyte,J.Electrochem.Soc.2005,152:A1466-A1473.
    [3]A.A.Isse,M.G.Ferlin,and A.Gennaro,Electrocatalytic reduction of arylethyl chlorides at silver cathodes in the presence of carbon dioxide:Synthesis of 2-arylpropanoic acids,J.Electroanal Chem.2005,581:38-45.
    [4]S.Jana,S.K.Ghosh,S.Nath,S.Pande,S.Praharaj,S.Panigrahi,S.Basu,T.Endo,and T.Pal,Synthesis of silver nanoshell-coated cationic polystyrene beads:A solid phase catalyst for the reduction of 4-nitrophenol,Appl Caral A 2006,313:41-48.
    [5]S.L.Chen,B.L.Wu,and C.S.Cha,Application of time-resolved EQCM to the study of the mechanism of silver(I) oxide formation on a polycrystalline silver electrode in alkaline solution,J.Electroanal Chem.1996,416:53-59.
    [6]H.T.Liu,X.Xia,and Z.P.Guo,A novel silver oxide electrode and its charge-discharge performance,J.Appi.Electrochem.2002,32:275-279.
    [7]M.Mostafavi,N.Keghouche,and M.O.Delcourt,Complexation of silver clusters of a few atoms by a polyanion in aqueous solution:pH effect correlated to structural changes,Chem.Phys.Lett.2009,169:81-84.
    [8]K.P.Velikov,G.E.Zegers and A.van Blaaderen,Synthesis and Characterization of Large Colloidal Silver Particles,Langmuir 2003,19:1384-1389.
    [9]B.M.Luce and G.Foulke,in Modem Electroplating,3rd ed.,F.A.Lowenheim,Editor,Wiley,New York,1974.
    [10]H.Natter and R.Hempelmann,Nanocrystalline Copper by Pulsed Electrodeposition:The Effects of Organic Additives,Bath Temperature,and pH,J.Phys.Chem.1996,100:19525-19532.
    [11] I. G Casella and M. Contursi, The Electrochemical Reduction of Nitrophenols on Silver Globular Particles Electrodeposited under Pulsed Potential Conditions, J. Electrochem. Soc. 2007, 154: 697-702.
    [12] P. E. Anderson, R. N. Badlani, J. Mayer, and P. A. Mabrouk, Electrochemical Synthesis and Characterization of Conducting Polymers in Supercritical Carbon Dioxide, J. Am. Chem. Soc. 2002,124: 10284-10285.
    [13] C. N. Sayre and D. M. Collard, Electrooxidative Deposition of Polypyrrole and Polyaniline on Self-Assembled Monolayer Modified Electrodes, Langmuir 1997, 13: 714-722.
    [14] Y. C. Liu, P. I. Lin, Y. T. Chen, M. D. Ger, K. L. Lan, and C. L. Lin, Effect of TiO_2 Nanoparticles on the Improved Surface-Enhanced Raman Scattering of Polypyrrole Deposited on Roughened Gold Substrates, J. Phys. Chem. B 2004, 108: 14897-14900.
    [15] A. M. Yu, H. L. Zhang and H. Y. Chen, Fabrication of a Polyglycine Chemically Modified Electrode and Its Electrocatalytic Oxidation to Ascorbic Acid, Electroanal. 1997,9: 788-790.
    [16] Y. Lu, L. Wang, B. H. Zhao, G. S. Xiao, Y. Ren, X. D. Wang and C. X. Li, Fabrication of conducting polyaniline composite film using honeycomb ordered sulfonated polysulfone film as template, Thin Solid Films 2008, 516: 6365-6370.
    [17] M. Trojanowicz, T. K. Krawczyk, M. Zmorzyriska and L. Campanella, Amperometric sensing of ammonia in aqueous solutions using a polyaniline-modified electrode in flow injection systems, Electroanal. 1997, 9: 1062-1066.
    [18] W. S. Huang, B. D. Humphrey and A. G. MacDiarmid, Polyaniline, a novel conducting polymer: morphology and chemistry of its oxidation and reduction in aqueous electrolytes, J. Chem. Soc. Faraday Trans. 1986, 82: 2385-2400.
    [19] S. Lupu, C. Lete, M. Marin, N. Totir and P. C. Balaure, Electrochemical sensors based on platinum electrodes modified with hybrid inorganic-organic coatings for determination of 4-nitrophenol and dopamine, Electrochim. Acta 2009, 54: 1932-1938.
    [20]D.Sopchak and B.Miller,Determination of the Second-Order Rate Constant for the Reduction ofDopamine Quinone with Ascorbic Acid,J.Phys Chem.A 2000,104:7545-7548.
    [21]C.Liu,J.Hu,J.Hu and H.Tang,Electrocatalytic Oxidation of Dopamine at a Nanocuprous Oxide-Methylene Blue Composite Glassy Carbon Electrode,Electroanal2006,18:478-484.
    [22]P.Shakkthivel,S.M.Chen,Simultaneous determination of ascorbic acid and dopamine in the presence of uric acid on ruthenium oxide modified electrode,Biosens Bioelectron 2007,22:1680-1687.
    [23]H.Y.Chen,A.M.Yu and H.L.Zhang,Electrocatalytic oxidation ofdopamine at the polyglycine chemically modified carbon fiber bundle electrode and its voltammetric resolution with uric acid,Fresenius J.Anal Chem.1997,358:863 -864.
    [24]A.Salimi,K.Abdi and G.R.Khayatian,Amperometric Detection of Dopamine in the Presence of Ascorbic Acid Using a Nafion Coated Glassy Carbon Electrode Modified with Catechin Hydrate as a Natural Antioxidant,Microchim.Acta 2004,144:161-169.
    [25]T.Yin,W.Wei,J.Zeng,Selective detection of dopamine in the presence of ascorbic acid by use of glassy-carbon electrodes modified with both polyaniline film and multi-walled carbon nanotubes with incorporated β-cyclodextrin,Anal.Bioanal Chem.2006,386:2087-2094.
    [26]J.Matiyarasu,S.Senthilkumar,K.L.N.Phani and V.Yegnaraman,Selective detection of dopamine using a functionalised polyaniline composite electrode,J.Appl.Electrochem.2005,35:513-519.
    [27]J.L.Dalsin,B.H.Hu,B.P.Lee and P.B.Messersmith,Mussel Adhesive Protein Mimetic Polymers for the Preparation of Nonfouling Surfaces,J.Am.Chem.Soc.2003,125:4253-4258.
    [28]C.Xu,K.Xu,H.Gu,R.Zheng,H.Liu,X.Zhang,Z.Guo and B.Xu,Dopamine as A Robust Anchor to Immobilize Functional Molecules on the Iron Oxide Shell of Magnetic Nanoparticles,J.Am.Chem.Soc.2004,126:9938-9939.
    [29]A.R.Statz,R.J.Meagher,A.E.Barron and P.B.Messersmith,New Peptidomimetic Polymers for Antifouling Surfaces,J.Am.Chem.Soc.2005,127:7972-7973.
    [30]H.Lee,N.F.Scherer,W.M.Miller and P.B.Messersmith,Proc.Natl.Acad.Sci.U.S.A.2006,103:12999.
    [31]H.Lee,S.M.Dellatore,W.M.Miller and P.B.Messersmith,Mussel-Inspired Surface Chemistry for Multifunctional Coatings,Science 2007,318:426-430.
    [32]T.Luczak,Preparation and characterization of the dopamine film electrochemically deposited on a gold template and its applications for dopamine sensing in aqueous solution,Electrochim.Acta 2008,53:5725-5731.
    [33]K.Liu,W.Z.Wei,J.X.Zeng,X.Y.Liu and Y.P.Gao,Application of a novel electrosynthesized polydopamine-imprinted film to the capacitive sensing of nicotine,Anal.Bioanal.Chem.2006,385:724-729.
    [34]X.B.Yin and D.Y.Liu,Polydopamine-based permanent coating capillary electrochromatography for auxin determination,J.Chromatogr.A 2008,1212:130-136.
    [35]B.Fei,B.Qian,Z.Yang,R.Wang,W.C.Liu,C.L.Mak and J.H.Xin,Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine,Carbon 2008,46:1792-1828.
    [36]H.Lee,J.Rho,and P.B.Messersmith,Facile Conjugation of Biomolecules onto Surfaces via Mussel Adhesive Protein Inspired Coatings,Adv.Mater.2009,21:431-434.
    [37]C.Borras,C.Berzoy,J.Mostany,J.C.Herrera and B.R.Scharifker,A comparison of the electrooxidation kinetics of p-methoxyphenol and p-nitrophenol on Sb-doped SnO_2 surfaces:Concentration and temperature effects,Appl.Catal.B:Environ.2007,72:98-104.
    [38]M.Sivakumar,P.A.Tatake and A.B.Pandit,Kinetics of p-nitrophenol degradation:effect of reaction conditions and cavitational parameters for a multiple frequency system,Chem.Eng.J.2002,85:327-338.
    [39]Q.Dai,L.Lei and X.Zhang,Enhanced degradation of organic wastewater containing p-nitrophenol by a novel wet electrocatalytic oxidation process:Parameter optimization and degradation mechanism,Sep.Purif.Technol.2008,61:123-129.
    [40]A.Di Paola,V.Augugliaro,L.Palmisano,G.Pantaleo and E.Savinov,Heterogeneous photocatalytic degradation of nitrophenols,J.Photoch.Photobio.A:Chem.2003,155:207-214.
    [41]J.Hajslov(?),V.Kocourek,I.Zemanov(?),F.Pudil and J.Dav(?)dek,Gas chromatographic determination of chlorinated phenols in the form of various derivatives,J.Chromatogr.A 1988,439:307-316.
    [42]K.C.Honeychurch and J.P.Hart,Voltammetric Behavior of p-Nitrophenol and Its Trace Determination in Human Urine by Liquid Chromatography with a Dual Reductive Mode Electrochemical Detection System,Electroanal.2007,19:2176-2184.
    [43]P.A.Realini,Determination of priority pollution phenols in water by HPLC,J.Chromatogr.Sci.1981,19,124-129.
    [44]T.A.Berger and J.F.Deye,Effect of basic additives on peak shapes of strong bases separated by packed-column supercritical fluid chromatography,J.Chromatogr.Sci.1991,29:54-59.
    [45]S.Terabe,H.Ozaki and K.Otsuka,Electrokinetic chromatography with 2-o-carboxymethyl-β-cyclodextrin as a moving “stationary” phase,J.Chromatogr.Sci.1985,332:211-217.
    [46]D.Martinez,E.Pocurull and R.Marce,Separation of eleven priority phenols by capillary zone electrophoresis with ultraviolet detection,J.Chromatogr.Sci.1996,734:367-373.
    [47]D.Kaniansky,E.Krcmova and V.Madajova,Determination of nitrophenols by capillary zone electrophoresis in a hydrodynamically closed separation compartment,J.Chromatogr.Sci.1997,772:327-337.
    [48]S.Hu,C.Xu,G.Wang and D.Cui,Voltammetric determination of 4-nitrophenol at a sodium montmorillonite-anthraquinone chemically modified glassy carbon electrode,Talanta 2001,54:115-123
    [49]Y.Lei,G.Zhao,M.Liu,X.Xiao,Y.Tang and D.Li,Simple and Feasible Simultaneous Determination of Three Phenolic Pollutants on Boron-Doped Diamond Film Electrode,Electroanal.2007,19:1933-1938.
    [50]G.Li,C.Ma,J.Tang and J.Sheng,Preparation and electrocatalytic property of WC/carbon nanotube composite,Electrochim.Acta 2007,52:2018-2023.
    [51]M.Kullapere,L.Matisen,A.Saar,V.Sammelselg and K.Tammeveski,Electrochemical behaviour of nickel electrodes modified with nitrophenyl groups,Electrochem.Commun.2007,9:2412-2417.
    [52]C.Yang,Electrochemical Determination of 4-Nitrophenol Using a Single-Wall Carbon Nanotube Film-Coated Glassy Carbon Electrode,Microchim.Acta 2004,148:87-92.
    [53]M.del Mar Cordero-Rando,M.Barea-Zamora,J.M.Barbera(?)-Salvador,I.Naranjo-Rodr(?)guez,J.A.Mun(A|¨)oz-Leyva,J.L and Hidalgo-Hidalgo de Cisneros,Electrochemical Study of 4-Nitrophenol at a Modified(?) Carbon Paste Electrode,Mikrochim.Acta 1999,132:7-11.
    [54]A.Preechaworapun,Z.Dai,Y.Xiang,O.Chailapakul and J.Wang,Investigation of the enzyme hydrolysis products of the substrates of alkaline phosphatase in electrochemical immunosensing,Talanta 2008,76:424-431
    [55]K.Pihel,Q.D.Walker and R.M.Wightman,Overoxidized Polypyrrole-Coated Carbon Fiber Microelectrodes for Dopamine Measurements with Fast-Scan Cyclic Voltammetry,Anal.Chem.1996,68:2084-2089.
    [56]J.B.Raoof,R.Ojani and S.Rashid-Nadimi,Voltammetric determination of ascorbic acid and dopamine in the same sample at the surface of a carbon paste electrode modified with polypyrrole/ferrocyanide films,Electrochim.Acta 2005,50:4694-4698.
    [57]F.Beck,P.Braun and F.Schloten,Anodic release of anions from polypyrrole,J.Electroanal.Chem.1989,267:141-148.
    [58]H.Y.Chang,D.Kim and Y.C.Park,Electrochemically Degraded Dopamine Film for the Determination of Dopamine,Electroanal.2006,18:1578-1583.
    [59]A.Baeza,J.L.Ortiz,and I.Gonzalez,Control of the electrochemical reduction of o-nitrophenol by pH imposition in acetonitrile,J.Electroanal.Chem.1997,429:121-127.
    [60]E.A.Hutton,B.Ogorevc and M.R.Smyth,Cathodic Electrochemical Detection of Nitrophenols at a Bismuth Film Electrode for Use in Flow Analysis,Electroanal.2004,16:1616-1621.
    [61]L.J.N(?)ez-Vergara,P.Santander,P.A.Navarrete-Encina,and J.A.Squella,Electrochemical reduction of C-4 nitrosophenyl 1,4-dihydropyridines and their parent C-4 nitrophenyl derivatives in protic media,J.Electroanal.Chem.2005,580:135-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700