用户名: 密码: 验证码:
硝唑尼特在山羊体内的药物代谢动力学及毒理学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
硝唑尼特(nitazoxanide, NTZ)是一种硝基噻唑苯胺类化合物,具有广谱抗微生物活性,对寄生虫,细菌以及病毒有效。体内活性与其脱乙酰基衍生物替唑尼特(tizoxanide, T)有关,具体包括细胞内外的原虫,蠕虫,需氧与厌氧菌,以及病毒。因此,进行硝唑尼特的药理学与毒理学研究将对其进一步开发及应用会产生重要的作用。
     我们首先建立了一种用于山羊粪便中硝唑尼特代谢物鉴定的敏感、特异的液相色谱电喷雾串联质谱(liquid chromatography–electrospray ionization tandem mass spectrometry, LC–ESI–MS–MS)方法,并且采用了ESI阴离子模式。样品经前处理后注入XTerra MS C8柱,试验过程中使用的流动相为乙腈(acetonitrile)与10 mM乙酸铵(ammonium acetate),以0.2 ml/min的流速进行线性梯度洗脱(linear gradient elution),随后进行MS–MS检测。代谢物鉴定以及结构解析通过比较原药或其它可用标准的保留时间(retention times, Rt),全扫描,子离子扫描,母离子扫描与中性丢失扫描的MS–MS质谱图来完成。山羊按200 mg/kg的剂量经口给予硝唑尼特后,在其粪便中发现原药(nitazoxanide)及其脱乙酰基代谢物(替唑尼特,Tizoxanide)。给药96 h后,在山羊粪便中仍能检测到替唑尼特。
     在上述方法的基础上,建立了一种用于山羊血浆及尿液中硝唑尼特代谢物鉴定的快速,敏感与特异的液相色谱–串联质谱方法。纯化的样品使用XTerra MS C8柱进行分离,流动相为乙腈与10 mM乙酸铵(pH 2.5),采用梯度洗脱的方式,样品检测使用MS–MS。代谢物鉴定以及结构解析通过比较原药或其它可用标准的保留时间(retention times, Rt),全扫描,子离子扫描,母离子扫描与中性丢失扫描的MS–MS质谱图来完成。山羊按200 mg/kg的剂量经口给予硝唑尼特后,在其血浆及尿液中发现并鉴定了四种代谢[替唑尼特(tizoxanide),替唑尼特葡萄糖醛酸化物(tizoxanide glucuronide),替唑尼特硫酸酯化物(tizoxanide sulfate)以及羟基替唑尼特硫酸酯化物(hydroxylated tizoxanide sulfate)]。此外,我们首次提出了硝唑尼特在山羊体内可能的代谢途径。研究结果提示,建立的该方法简单,可靠及敏感,证明适合于硝唑尼特活性代谢物的检测及其结构鉴定,从而有助于更好地理解硝唑尼特的体内代谢。
     建立山羊血浆中测定硝唑尼活性代谢物替唑尼特的简单且特异的HPLC–UV方法。血浆样品用乙腈去蛋白提取,选用Diamonsil C18 (250 mm×4.6 mm, 5μm)为反相色谱柱,乙腈–0.02 mol/l KH2PO4(65:35, v/v)为流动相,流速1.0 ml/min,检测波长360 nm。替唑尼特线性范围为0.2–10μg/ml,检测限为0.02μg/ml (S/N>3),定量限为0.04μg/ml (S/N>6)。样品平均回收率在94.5%以上,日内、日间精密度的RSD均小于10%,准确率的相对误差在1.42到9.05%之间。其它物质干扰替唑尼特的检测。确证方法成功应用于山羊经口给予硝唑尼特后,其血浆中替唑尼特的药物动力学研究。
     研究了硝唑尼特活性代谢物替唑尼特在山羊体内的药物代谢物动力学及其在山羊血浆、白蛋白(albumin)与α-1-酸-糖蛋白(α-1-acid-glycoprotein)溶液中的结合能力。使用HPLC–UV方法分析血浆及蛋白质结合样品,检测波长为360 nm,,采用3P97药物动力学程序软件处理药-时数据。山羊血浆中替唑尼特的浓度可以检测到24 h。按200 mg/kg的剂量经口给予山羊硝唑尼特胶囊后,其血浆中替唑尼特浓度–时间数据符合符合一室开放模型(one-compartment open model),并且存在一级吸收(first order absorption)。主要药动学参数分别为:t1/2Ka 2.51±0.41 h, t1/2Ke 3.47±0.32 h, Tmax 4.90±0.13 h, Cmax 2.56±0.25μg/ ml, AUC 27.40±1.54 (μg/ml)×h, V/F(c) 30.17±2.17 l/kg和CL(s) 7.34±1.21 l/(kg×h)。血浆样品β-葡萄糖苷酸酶(β-glucuronidase)酶解后,t1/2ke, Cmax, Tmax, AUC增加,而V/F(c)与CL(s)却减小。体外蛋白质结合能力研究结果表明,4μg/ml的替唑尼特在山羊血浆与白蛋白(albumin)溶液中的结合率可达95%以上,而在α-1-酸-糖蛋白溶液中的结合率仅为49%。这一结果表明,替唑尼特以其酸性特征,同α-1-酸-糖蛋白相比,可能与白蛋白具有较强的结合能力。
     最后,进行了硝唑尼特体内外毒理学以及潜在作用机制的研究。按照200 mg/kg的剂量给口给予山羊硝唑尼特。通过11项尿常规分析与心脏,肝脏,脾脏,肺脏,肾脏,膀胱及胆囊的组织学检查评价了硝唑尼特的系统毒性。结果证实,硝唑尼特无毒,尿常规分析的11项指标正常,而且无器官组织病变出现。MTT试验证实,低于10μg/ml的硝唑尼特对Chang氏肝细胞与Vero细胞的生长无影响,而对两种细胞的敏感性不同。然而,当浓度为10~100μg/ml时,对两种细胞的生长均有量效相关的抑制作用,且对Chang氏肝细胞与Vero细胞的IC50分别为37μg/ml与41μg/ml。同空白细胞对照相比,药物处理特别是较高剂量的硝唑尼特作用可以使293T细胞数量减少,皱缩明显,凋亡增多。用Western blot进一步分析,结果发现,硝唑尼特可以促进p53表达,且作用剂量为10μg/ml时不影响细胞周期。总之,硝唑尼特具有良好的耐受性,而且能促进p53表达,从而导致细胞凋亡。
Nitazoxanide is a nitrothiazole benzamide compound that has a wide range of antimicrobial activity against parasites, bacterial, viral pathogens. The broad spectrum of in vivo activity is related to its desacetyl derivative, tizoxanide, and includes intracellular and extracellular protozoa, helminthes, aerobic and anaerobic bacteria, and virus. Therefore, the investigations on pharmacology and toxicology of nitazoxanide play an important role in its further development and application.
     A sensitive and specific method for the identification of nitazoxanide metabolites in goat feces by liquid chromatography–electrospray ionization tandem mass spectrometry (LC–ESI–MS–MS) with negative ion mode was firstly developed. After extraction procedure the pretreated samples were injected on an XTerra MS C8 column with mobile phase (0.2 ml/min) of acetonitrile and 10 mM ammonium acetate (adjusted to pH 2.5 with formic acid) followed a linear gradient elution, and detected by MS–MS. Identification and structural elucidation of the metabolites were performed by comparing their retention times (Rt), full scan, product ion scan, precursor ion scan and neutral loss scan MS–MS spectra with those of the parent drug or other available standard. The parent drug (nitazoxanide) and its deacetyl metabolite (tizoxanide) were found in goat feces after the administration of a single oral dose of 200 mg/kg of nitazoxanide. Tizoxanide was detected in goat feces for up 96 h after ingestion of nitazoxanide.
     According to the method described above, a rapid, sensitive and specific liquid chromatography–electrospray ionization (ESI) tandem mass spectrometry (LC–MS–MS) method has been developed for the identification of nitazoxanide metabolites in goat plasma and urine. The purified samples was separated using an XTerra MS C8 column with the mobile phase consisted of acetonitirle and 10 mM ammonium acetate buffer (pH 2.5) followed a linear gradient elution, and detected by MS–MS. Identification and structural elucidation of the metabolites were performed by comparing their retention-times, full scan, product ion scan, precursor ion scan and neutral loss scan MS–MS spectra with those of the parent drug or other available standard. Four metabolites (tizoxanide, tizoxanide glucuronide, tizoxanide sulfate and hydroxylated tizoxanide sulfate) were found and identified in goat after single oral administration of 200 mg/kg dose of nitazoxanide. In addition, the possible metabolic pathway was proposed for the first time. The results proved that the established method was simple, reliable and sensitive, revealing that it could be used to rapid screen and identify the structures of active metabolites responsible for pharmacological effects of nitazoxanide and to better understand its in vivo metabolism.
     A simple and specific high-performance liquid chromatographic (HPLC) method with ultraviolet (UV) absorbance detection has been developed for the determination of tizoxanide, the active metabolite of nitazoxanide, in goat plasma. The plasma samples were deproteinized with acetonitrile. The analysis was performed on a Diamonsil C18 reversed-phase column (250 mm×4.6 mm, 5μm) with acetonitrile– 0.02 mol/l KH2PO4 (65:35, v/v) as mobile phase at a flow rate of 1.0 ml/min over 10 min. Detection wavelength was set at 360 nm. The linear range was 0.2–10μg/ml, the limit of detection (LOD) and the limit of quantification was 0.02 and 0.04μg/ml, respectively. The intra- and inter-day coefficient of variation (CV%) were less than 10%, respectively, and accuracy as relative error (RE%) between 1.42 and 9.05%. Mean extraction recovery was above 94.5%. There was no interference of sources on the determination of tizoxanide. The validated method was successfully applied to the pharmacokinetic study of tizoxanide in goat plasma after oral administration of nitazoxanide capsules at a dose of 100 mg/kg.
     The pharmacokinetics of nitazoxanide, in form of its active metabolite, tizoxanide, and its to its protein binding ability in goat plasma and in the solutions of albumin andα-1-acid-glycoprotein were investigated. The plasma and protein binding samples were analyzed using a high-performance liquid chromatography (HPLC) assay with UV detection at 360 nm. The plasma concentration of tizoxanide were detectable in goats up to 24 h. Plasma concentrations versus time data of tizoxanide after 200 mg/kg oral administration of nitazoxanide in goats were adequately described by one-compartment open model with first order absorption. The values of t1/2Ka, t1/2Ke, Tmax, Cmax, AUC, V/F(c) and CL(s) were 2.51±0.41 h, 3.47±0.32 h, 4.90±0.13 h, 2.56±0.25μg/ml, 27.40±1.54 (μg/ml)×h, 30.17±2.17 l/kg and 7.34±1.21 l/(kg×h), respectively. Afterβ-glucuronidase hydrolysis, t1/2ke, Cmax, Tmax, AUC increased, while the V/F(c) and CL(s) decreased. Study of the protein binding ability showed that tizoxanide with 4μg/ml concentration in goat plasma and in the albumin solution achieved a protein binding rate of more than 95%, while in the solution ofα-1-acid-glycoprotein the rate was only about 49%. This result suggested that tizoxanide might have much more potent binding ability with albumin than withα-1-acid-glycoprotein, since its acidic property.
     Finally, the toxicological effects of nitazoxanide in vivo and in vitro, as well as its potential mechanism were were investigated. Single oral gavage doses of 200 mg per kg body weight were administered to goats. Systemic toxicity was evaluated with urine routine analysis including 11 indexes and Histology examination including heart, liver, spleen, lung, kidney, urinary bladder and gall bladder evaluation. Nitazoxanide has been shown to be nontoxic, with no abnormalities in urine routine analysis as well as gross and histopathological examination of animals. The cytotoxicity results from MTT assay demonstrated nitazoxanide at concentrations of under 10μg/ml with no obvious effects on the growth of cells, show different sensitivity to Chang liver cells and Vero cells. However, nitazoxanide at concentrations of 10~100μg/ml can inhibit the cell growth in a dose-dependent manner, and IC50 for Chang liver cells and Vero cells were 37μg/ml and 41μg/ml, respectively. Compared with control group, the 293T cells treated with nitazoxanide especially more than 10μg/ml show quantitatively reduced, abnormal or wizened morphology, and the number of apoptosis cells was increased. Futher analysis with Western blot was carried out, and results showed that nitazoxanide could enhance the expression of p53, although not significantly, and did not affect cell cycle (10μg/ml). This study demonstrated that nitazoxanide appears to be well tolerated, and could enhance p53 expression to a certain extent, and thus induce apoptosis.
引文
1.常建华,董绮功.波谱原理及解析[M].北京:科学出版社, 2001.
    2.常雁,再帕尔·阿不力孜.串联质谱新技术及其在药物代谢研究中的应用进展[J].药学学报, 2000, 35(1):73~78.
    3.陈阜新,韩洪刚.硝唑尼特——一种新的抗原虫药[J].中国药师, 2004, 7(5): 394~39.
    4.仇缀百.药物设计学[M].北京:高等教育出版社, 1999.
    5.邓颖,陈杰,毕惠嫦,黄民.原代肝细胞培养及其在药物代谢和毒理学研究中的应用进展.中国药理学通报[J]. 2006, 22(8): 900~903.
    6.郭涛.药物动力学的新进展[J].中国药师, 2004, 7(4):251~254.
    7.国家药品监督管理局药品审评中心.临床前药代动力学指导原则[M].第二稿, 2003
    8.韩贻仁.分子细胞生物学[M].北京:科学出版社, 2001, 648~692.
    9.何美玉.现代有机与生物质谱[M].北京:北京大学出版社, 2002.
    10.江明性.药理学[M].北京:人民卫生出版社, 1995.
    11.李爱华.氯霉素在草鱼和复和四倍体异育银鲫体内的比较药代动力学[J].中国兽医学报, 1998, 18(4):372~374.
    12.李端.药理学[M].北京:人民卫生出版社, 1999, 18~32
    13.李剑勇,赵荣材.我国兽医药物代谢动力学研究进展[J].中国兽药杂志, 1999, 33(4):
    44~47.
    14.李俊锁.兽药残留分析研究进展[M].中国农业科学, 1997, 30(5): 81~87.
    15.梁文权.生物药剂学与药物动力学[M].北京:人民卫生出版社, 2000.
    16.凌笑梅.高等仪器分析实验与技术[M].北京:北京大学医学出版社, 2006.
    17.刘昌孝.实用药物动力学[M].北京:中国医药科技出版社, 2003.
    18.刘昌孝.我国药物代谢动力学的研究的最近进展[J].中国药学杂志, 1992, 27(12):
    707~709.
    19.刘昌孝.药物评价学[M].北京:化学工业出版社, 2006.
    20.刘密新,罗国安,张新荣,童爱军.仪器分析(第二版) [M].北京:清华大学出版社, 2002.
    21.刘艳霞,骆传环.色谱–质谱联用法在新药研究中的应用[J].生命科学仪器, 2004, 2(5): 6~8.
    22.曲斌,姜宝娜.现代质谱法在药物代谢动力学研究中的应用[J].大连医科大学学报, 2005,
    27(1): 68~72.
    23.盛玉成.群体药代动力学及其在新药研究中的应用[J].中国临床药理学与治疗学, 2004, 9(12): 1333~1337.
    24.宋振玉.药物代谢研究—意义、方法、应用[M].北京:人民卫生出版社, 1990.
    25.孙学惠,郭涛,刘涛.生物检测新技术在药代动力学中的应用[J].中国药房, 2002, 13(9):506~507.
    26.孙毓庆.现代色谱法及其在药物分析中的应用[M].北京:科学出版社, 2005.
    27.童珊珊,余江南.色谱技术在体内药物分析中的应用进展[J].国外医学药物分册, 2000, 27(6): 360~364.
    28.王和芳,黄春新.时辰药代动力学研究进展[J].中国热带医学, 2005, 5(6):1342~1344.
    29.王建,侯艳宁,于洋.液相色谱–质谱联用技术在体内药物代谢分析研究领域的应用[J].中国药业, 2007, 16(2):61~63.
    30.魏树礼,张强.生物药剂学与药物动力学[M].北京:北京大学医学出版社, 2004.
    31.吴振英,高云颂.药物代谢动力学及常用参数简介[J].人民军医, 1999, 42(1):52~54.
    32.许虹.药物动力学的房室数学模型[J].江汉大学学报(自然科学版), 2002, 19(4):13~14.
    33.杨海涛,王广基.毛细管电泳与微透析技术在药物动力学中的应用[J].西北药学杂志. 2000, 15(6):136~137.
    34.杨树民.大气压电离液质联机的应用[J].质谱学报. 1997, 19: 66~79.
    35.余自成,陈红专.微透析技术在药物代谢和药代动力学研究中的应用[J].中国临床药理学杂志, 2001, 17(1):76~80.
    36.张均田.现代药理实验方法[M].北京医科大学中国协和医科大学联合出版社, 1998.
    37.张丽芳,刘元元,薛飞群.应用质谱中性丢失扫描鉴定狗血浆中硝唑尼特Ⅱ相代谢物[J].质谱学报2008, 29: 101~104.
    38.钟大放.药物代谢.北京:中国医药科技出版社, 1996.
    39.钟大放.药物代谢与药物动力学基础研究展望[J].辽宁药物与临床, 2000, 3(4): 145~148.
    40.钟大放.液相色谱–质谱联用法在药物研究中的应用[J].世界科学技术—中医药现代化
    药物分析技术, 2003, 5(4): 44~47.
    41. (Prod Info Alinia 2002) Romark Pharmaceuticals. AliniaTM (nitazoxanide) for oral suspension. http://www.alinia.net/pdf/prescribinginfo.pdf
    42. (Prod Info NAVIGATOR 2003)IDEXX Pharmaceuticals. Freedom of information summary. NADA 141-178. NAVIGATOR (32% nitazoxanide). Antiprotozoal oral paste for the treatment of horses with equine protozoal myeloencephalitis (EPM) caused by Sarcocystis neurona. 2003
    43. (Romark Pharmaceuticals. Alinia. (Nitazoxanide) tablets. (Nitazoxanide) for oral suspension [online])。
    44. Müller J, Wastling J, Sanderson S, Müller N, Hemphill A. A novel Giardia lamblia nitroreductase, G1NR1, ineracts with Nitazoxanide and other thiazolides [J]. Antimicrobial Agents and Chemotherapy, 2007, 51:1979~1986
    45. Abaza H, El-Zayadi A R, Kabil S M, et al. Nitazoxanide in the treatment of patients with intestinal protozoan and helminthic infections: a report on 546 patients in Egypt [J]. Current Therapeutic Research, Clinical and Experimental, 1998, 59(2): 116~121.
    46. Abaza H, El-Zayali A, Kabil S M, et al. Nitazoxanide in the treatment of patients with intestinal protozoan and helminthic infections: a report on 546 patients in Egypt. Current Therapeutic Research, 1998, 59: 116~121.
    47. Abboud P, Lemee V, Gargala G, et al. Successful treatment of metronidazole-and albendazole-resistant giardiasis with nitazoxanide in a patient with acquired immunodeficiency syndrome [J]. Clinical Infectious Diseases, 2001, 32:1792~1794.
    48. Abdel-Maboud A I, Rossignol J F, el-Kady M S, et al. Cryptosporidiosis in Benha: study of some recent modalities in diagnosis and treatment [J]. Journal of the Egyptian Society of Parasitology, 2000, 30:717~725.
    49. Abdel-Rahman M S, El-Bahy M M, El-Bahy N M. Testing the parasiticidal efficacy of nitazoxanide [J]. Alex Journal of Veterinary Science, 1997, 13:447~458
    50. Adagu I S, Nolder D, Warhurst D C, et al. In vitro activity of nitazoxanide and related compounds against isolates of Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis [J]. Journal of Antimicrobial Chemotherapy, 2002, 49:103~111.
    51. Agilent. Agilent 1100 LC/MSD Trap User Guid, 2002.
    52. Agosin M. Studies on the metabolism of Echinococcus granulosus. II. Some observations on the carbohydrate metabolism of hydatid cyst scolices [J]. Experimental Parasitology, 1957, 6:586~593.
    53. Aleksandrov M L, Gall L N, Krasnov V N, et al. Ion extraction from solutions at atmospheric pressure–a method for mass-spectrometric analysis of bioorganic substances [J]. Doklady Akademii nauk SSSR, 1984, 277: 379~383.
    54. Alhamami O M O, Aljanabi N H, Shalan N M. Biopharmaceutic and pharmacokinetic studies following the oral administration of sodium salicylate in oily and aqueous vehicles to rabbit [J]. International Journal of Pharmaceutics, 2006, 311: 63~68.
    55. Alloza I, Vandenbroek K. The metallopeptide antibiotic bacitracin inhibits interleukin-12 ab and b2 secretion [J]. Journal of Pharmacy and Pharmacology, 2005, 57:213~218.
    56. Amadi B, Mwiya M, Musuku J, et al. Effect of nitazoxanide on morbidity and mortality in Zambian children with cryptosporidiosis: a randomized controlled trial [J]. Lancet, 2002, 360:1375~80.
    57. Amino H, A. Osanai H, Miyader, N, et al. Isolation and characterization of the stagespecific cytochrome b small subunit (CybS) of Ascaris suum complex II from the aerobic respiratory chain of larval mitochondria [J]. Molecular and Biochemical Parasitology, 2003, 128:175~186.
    58. Amino H, Wang H, Hirawake H, et al. Stage-specific isoforms of Ascaris suum complex. II. The fumarate reductase of the parasitic adult and the succinate dehydrogenase of free-living larvae share a common iron-sulfur subunit [J]. Molecular and Biochemical Parasitology, 2000, 106:63~76.
    59. Anderson V R, Curran M P. Nitazoxanide: a review of its use in the treatment of gastrointestinal infections [J]. Drugs, 2007, 67(13):1947~1967.
    60. Araujo F G, Guptill D R, Remington J S. Azithromycin, a macrolide antibiotic with potent activity against Toxoplasma gondii [J]. Antimicrobial Agents and Chemotherapy, 1988, 32:755~757.
    61. Arrizabalaga G, Boothroyd J C. Role of calcium during Toxoplasma gondii invasion and egress [J]. International Journal for Parasitology, 2004, 34:361~368.\
    62. Axelsson B O, J?rnten-Karlsson M, Michelsen P, et al. The potential of inductively coupled plasma mass spectrometry detection for high-performance liquid chromatography combined with accurate mass measurement of organic pharmaceutical compounds [J]. Rapid Communications in Mass Spectrometry, 2001, 15: 375~385.
    63. Ayrton J, Clare R A, Dear G J, et al. Ultra high flow rate capillary liquid chromatography with mass spectrometric detection for the direct analysis of pharmaceuticals in plasma at sub-nanogram per milliliter concentrations [J]. Rapid Communications in Mass Spectrometry, 1999; 13: 1657~1662.
    64. Ayrton J, Dear G J, Leavens W J, et al. The use of turbulent flow chromatography/mass spectrometry for the rapid, direct analysis of a novel pharmaceutical compound in plasma [J]. Rapid Communications in Mass Spectrometry, 1997, 11: 1953~1958.
    65. Badman E R, Cooks R G. Miniature mass analyzers [J]. Journal of Mass Spectrometry, 2000, 35: 659~671.
    66. Bailey J M, Erramouspe J. Nitazoxanide treatment for giardiasis and cryptosporidiosis in children. The Annals of Pharmacotherapy, 2004, 38(4):634~640.
    67. Baillie T A, Halpin R A, Matuszewski B K, et al. Mechanistic studies on the reversible metabolism of rofecoxib to 5-hydroxyrofecoxib in the rat: evidence for transient ring opening of a substituted 2-furanone derivative using stable isotope-labeling techniques [J]. Drug Metabolism and Disposition, 2001, 29: 1614~1628.
    68. Baillie T A, Rettenmeier A W. Recent advances in the use of stable isotopes in drug metabolism research [J]. Journal of Clinical Pharmacology, 1986, 26: 481~484.
    69. Baillie T A. Advances in the application of mass spectrometry to studies of drug metabolism, pharmacokinetics and toxicology [J]. International Journal of Mass Spectrometry and Ion Processes, 1992, 118–119: 289~314.
    70. Baishanbo A, Gargala G, Duclos C, et al. Efficacy of nitazoxanide and paromomycin in biliary tract cryptosporidiosis in an immunosuppressed gerbil model [J]. Journal of Antimicrobial Chemotherapy, 2006, 57:353~355.
    71. Bajad S, Coumar M, Khajuria R, Characterization of a new rat urinary metabolite of piperine by LC/NMR/MS studies [J]. European Journal of Pharmaceutical Sciences, 2003, 19(5):413~421
    72. Barker J, Garner R C. Biomedical applications of accelerator mass spectrometry–isotope measurements at the level of the atom [J]. Rapid Communication in Mass Spectrometry, 1999, 13: 285~293.
    73. Barnes C A S, Hilderbrand A E, Valentine S J, et al. Resolving isomeric peptide mixtures: a combined HPLC/ion mobility–TOFMS analysis of a 4000-component combinatorial library [J]. Analytical Chemistry, 2002, 74: 26~36.
    74. Beckers C J, Roos D S, Donald R G, et al. Inhibition of cytoplasmic and organellar protein synthesis in Toxoplasma gondii. Implications for the target of macrolide antibiotics [J]. The Journal of Clinical Investigation, 1995, 95:367~376.
    75. Belkind Valdovinos U, Belkind-Gerson J, Sánchez-Francia D, et al. Nitazoxanide vs albendazole against intestinal parasites in a single dose and for three days [in Spanish] [J]. Salud Publica Mex, 2004, 46(3): 333~440.
    76. Benet L Z. Biopharmaceutics as a basis for the design of drug products. In: Ariens, E.J. (Eds.), Drug Design, vol. IV. London: Academic Press, 1973, Chapter 1, pp. 26.
    77. Bergstr?m S K, Markides K E. On-line coupling of microdialysis to packed capillary column liquid chromatography–tandem mass spectrometry demonstrated by measurement of free concentrations of ropivacaine and metabolite from spiked plasma samples [J]. Journal of Chromatography B, 2002, 775: 79~87.
    78. Bernal-Redondo R, Martínez-Méndez L G, Mendoza-Chavez A, et al. Evaluation of the in vitro effect of albendazole, metronidazole and nitazoxanide on viability and structure of Giardia lamblia cysts [J]. Journal of submicroscopic cytology and pathology, 2004, 31; 36 (3-4): 241~245.
    79. Bhoir I C, Patil S T, Sundaresan M. Performance comparison for the assay of carbamazepine in human blood plasma using HPLC and packed colum supercritical fluid chromatography [J]. Indian Drugs, 1999, 36(4):231~237.
    80. Blagburn B, Drain K L, Land T M, et al. Comparative efficacy evaluation of dicationic carbazole compounds, nitazoxanide, and paromomycin against Cryptosporidium parvum infections in a neonatal mouse model [J]. Antimicrobial Agents and Chemotherapy, 1998, 42(11):2877~2882.
    81. Blum W, Aichholz R, Ramstein P, et al. In vivo metabolism of epothilone B in tumor-bearing nude mice: identification of three new epothilone B metabolites by capillary high-pressure liquid chromatography/mass spectrometry/tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2001, 15: 41~49.
    82. Bobak D A. Use of nitazoxanide for gastrointestinal tract infections: treatment of protozoan parasitic infection and beyond [J]. Current Infectious Disease Reports, 2006, 8:91~95.
    83. Boettger E C, Springer B, Prammananan T, et al. Structural basis for selectivity and toxicity of ribosomal antibiotics [J]. EMBO Report, 2001, 2:318~323.
    84. Bonfiglio R, King R C, Olah T V, et al. The effects of sample preparation methods on the variability of the electrospray ionization response for model drug compounds [J]. Rapid Communications in Mass Spectrometry, 1999, 13: 1175~1185.
    85. Boos K S, Rudolphi A. The use of restricted-access media in HPLC, part I—classification and review [J]. LC–GC Int, 1997, 15: 602~611.
    86. Bridgers G L, Dhiren R T. Application of the Caco-2 modle in the design and development of orally active drugs: elucidation of biochemical and physical barriers posed by the intestinal epithelium [J]. Advanced Drug Delivery Reviews, 1997, 23(1): 77~98.
    87. Broekhuysen J, Stockis A, Lins R L, et al. Nitazoxanide: pharmacokinetics and metabolism in man [J]. International Journal of Clinical Pharmacology and Therapeutics, 2000, 38(8):387~394.
    88. Brown D M, Upcroft J A, Edwards M R, et al. Anaerobic bacterial metabolism in the ancient eukaryote Giardia duodenalis [J]. International Journal for Parasitology, 1998, 28:149~164.
    89. Brown D R. Neurodegeneration and oxidative stress: prion disease results from loss of antioxidant defence [J]. Folia Neuropathologica, 2005, 43:229~243.
    90. Browne T R. Stable isotope techniques in early drug development: an economic evaluation [J]. Journal of Clinical Pharmacology, 1998, 88: 213~220.
    91. Bruins A P. Liquid chromatography-mass spectrometry with ionspray and electrospray interfaces in pharmaceutical and biomedical research [J]. Journal of Chromatography, 1991, 554: 39~46.
    92. Bryant C, and Behm C. Energy metabolism. In C. Bryant and C. Behm (ed.), Biochemical adaptation in parasites. United Kingdom, London: Chapman and Hall, 1989, p. 25~69.
    93. Buchanan B B, and Balmer Y. Redox regulation: a broadening horizon [J]. Annual Review of Plant Biology, 2005, 56:187~220.
    94. Burchell B, Brierley C H, Rance D. Specificity of human UDP glucuronosyltransferases and xenobiotic glucuronidation [J]. Life Sciences, 1995, 57: 1819~1831.
    95. Burton K I, Everett J R, Newman M J. On-line liquid chromatography coupled with high field NMR and mass spectrometry(LC–NMR–MS): A new technique for drug metabolite structure elucidation [J]. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15:1903~1912.
    96. Cabello R R, Gurrero L R, Garcia M R, et al. Nitazoxanide for the treatment of intestinal protozoan and helminthic infections in Mexico [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1997, 91:701~703.
    97. Cai J, Henion J. On-line immunoaffinity extraction-coupled column capillary liquid chromatography/tandem mass spectrometry: trace analysis of LSD analogs and metabolites in human urine [J]. Analytical Chemistry, 1996, 68: 72~78.
    98. Camps M, Arrizabalaga G, Boothroyd J. An rRNA mutation identifies the apicoplast as thetarget for clindamycin in Toxoplasma gondii [J]. Molecular Microbiology, 2002, 43:1309~1318.
    99. Cappiello M, Franchi M, Giuliani L, et al. Distribution of 2-naphthol sulphotransferase and its endogenous substrate adenosine 3′-phosphate 5′-phosphosulphate in human tissues [J]. European Journal of Clinical Pharmacology, 1989, 37:317~320.
    100. Cappiello M, Giuliani L, Pacifici G M. Distribution of UDP-glucuronosyltransferase and its endogenous substrate uridine 5′-diphosphoglucuronic acid in human tissues [J]. European Journal of Clinical Pharmacology, 1991, 41: 345~350.
    101. Cassiano N M, Cass Q B, Degani A L G, et al. Determination of the plasma levels of metyrapone and its enantiomeric metyrapone metabolites by direct plasma injection and multidimensional achiral–chiral chromatography [J]. Chirality, 2002, 14:731~735.
    102. Castro-Perez J M. Current and future trends in the application of HPLC–MS to metabolite-identification studies [J]. Drug Discovery Today, 2007, 12:249~256.
    103. Castro-Perez J, Hoyes J, Major H, et al. Advance in MS-based approaches for drug and metabolism studies [J]. Chromatographia, 2002, 55: S59~S63.
    104. Cavazza C, Contreras-Martel C, Pieulle L, et al. Flexibility of thiamine diphosphate revealed by kinetic crystallographic studies of the reaction of pyruvate-ferredoxin oxidoreductase with pyruvate [J]. Structure, 2006, 14:217~224.
    105. Cavier R, Rossignol J F. Etude de diverses associations d’anthelminthiques chez la souris [J]. Revue de Médecine Vétérinaire, 1982, 133:779~783.
    106. Cedillo-Rivera R, Chavez B, Gonzalez-Robles A, et al. In vitro effect of nitazoxanide against Entamoeba histolytica, Giardia intestinalis, and Trichomonas vaginalis trophozoites [J]. Journal of Eukaryotic Microbiology, 2002; 49:201~208.
    107. Chabriere E, Vernede X, Guigliarelli B, et al. Crystal structure of the free radical intermediate of pyruvate:ferredoxin oxidoreductase [J]. Science, 2001, 294:2559~2563.
    108. Chen H X, Wang H, Chen Y, et al. Liquid chromatography-tandem mass spectrometry analysis of anisodamine and its phase I andⅡmetabolites in rat urine. Journal of Chromatography B, 2005, 824:21~29.
    109. Cirulli C, Chiappetta G, Marino G, Identification of free phosphopeptides in different biological fluids by a mass spectrometry approach [J]. Analytical and Bioanalytical Chemistry, 2008, 392(1-2): 147~159.
    110. Clarke D, Burchell B. The uridine diphosphate glucuronosyltransferase multigene family: function and regulation. In: Kauffman, F. (Ed.), Conjugation–Deconjugation Reactions in Drug Metabolism and Toxicity. Berlin: Springer-Verlag, 1994, pp. 3~43.
    111. Clarke N J, Rindgen D, Korfmacher W A, et al. Systematic LC/MS metabolite identification in drug discovery [J]. Analytical Chemistry, 2001, 73: 430A~439A.
    112. Clough B, Strath M, Preiser P, et al. Thiostrepton binds to malarial plastid rRNA [J]. FEBS Letter, 1997, 406:123~125.
    113. Coffman B L, Rios G R, King C D, et al. Human ugt2b7 catalyzes morphine glucuronidation [J]. Drug Metabolism and Disposition, 1997, 25: 1~4.
    114. Cole M J, Janiszewski J S, Fouda H G. Electrospray mass spectrometry in contemporary drug metabolism and pharmacokinetics. In Appl. Electrospray Mass Spectrom, Pramanik B N, Ganguly A K, Gross M L (eds). New York: Marcel Dekker Inc, 2002, 211~249.
    115. Conant C G, Stephens R S. Chlamydia attachment to mammalian cells requires proteindisulfide isomerase [J]. Cell Microbiology, 2006, 9:222~232.
    116. Cone E J, Darwin W D, Buchwald W F. Assay for codeine, morphine, and ten potential urinary metabolites by gas chromatography–mass fragmentography [J]. Journal of chromatography, 1983, 275: 307~318.
    117. Corcoran O, Nicholson J K, Lenz E M, et al. Directly coupled liquid chromatography with inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the identification of drug metabolites in urine: application to diclofenac using chlorine and sulfur detection [J]. Rapid Communications in Mass Spectrometry, 2000, 14: 2377~2384.
    118. Cortes H C, Mueller N, Esposito M, et al. In vitro efficacy of nitro- and bromo-thiazolylsalicylamide compounds (thiazolides) against Bensoitia besnoiti infection in Vero cells [J]. Parasitology, 2007, 134:975~985.
    119. Court M H, Duan S X, von Moltke L L, et al. Interindividual variability in acetaminophen glucuronidation by human liver microsomes: identification of relevant acetaminophen UDP-glucuronosyltransferase isoforms [J]. The Journal of Pharmacology and Experimental Therapeutics, 2001, 299: 998~1006.
    120. Covey T R, Lee E D, Henion J D. High-speed liquid chromatography/tandem mass spectrometry for the determination of drugs in biological samples [J]. Analytical Chemistry, 1986, 58: 2453~2460.
    121. Cox K A, Clarke N J, Rindgen D, et al. Systematic LC/MS metabolite identification in drug discovery [J]. Analytical Chemistry, 2001, 73(15):430A~439A.
    122. Crayford J V, Hutson D H. Comperative metabolism of phenobarbital in the rat (cfe) and mouse (cf1) [J]. Food and Cosmetics Toxicology, 1980, 18:503~509.
    123. Cremades N, Bueno M, Toja M, et al. Towards a new therapeutic target: Helicobacter pylori flavodoxin [J]. Biophysical Chemistry, 2005, 115:267~276.
    124. Dai W J, Waldvogel A, Siles-Lucas M, et al. Echinococcus multilocularis proliferation in mice and respective parasite 14-3-3 gene expression is mainly controlled by an alphabeta CD4 T-cell mediated immune response [J]. Immunology, 2004, 112:481~488.
    125. Davila-Gutierrez C E, Vasquez C, Trujillo-Hernandez B, et al. Nitazoxanide compared with quinfamide and mebendazole in the treatment of helminthic infections and intestinal protozoa in children [J]. American Journal of Tropical Medicine and Hygiene, 2002; 66:251~254.
    126. de Mello A J. Chip-MS: coupling the large with the small, Lab on A Chip, 2001, 1: 7N~12N, ISSN: 1473~0197.
    127. Dear G J, Ayrton J, Plumb R, et al. The rapid identification of drug metabolites using capillary liquid chromatography coupled to an ion trap mass spectrometer [J]. Rapid Communications in Mass Spectrometry, 1999, 13: 456~463.
    128. Dear G J, Plumb R S, Sweatman B C, et al. Mass directed peak selection, an efficient method of drug metabolite identification using coupled liquid chromatography–mass spectrometry–nuclear magnetic resonance spectroscopy [J]. Journal of Chromatography B, 2000, 748: 281~293.
    129. Dear G, Plumb R, Mallett D. Use of monolithic silica columns to increase analytical throughput for metabolite identification by liquid chromatography/tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2001, 15: 152~158.
    130. Delgado OM, Fernandez G, Silva S, Ramirez O, Romero J, Rodriguez-Morales AJ.Preliminary evidence of nitazoxanide activity on Toxocara canis in a mouse model [J]. International Journal of Antimicrobial Agents, 2008, 31:175~187.
    131. Derouin F. Anti-toxoplasmosis drugs [J]. Current opinion in investigational drugs, 2001, 2:1368~1374.
    132. Diaz E, Mondragon J, Ramirez E, Bernal R. Epidemiology and control of intestinal parasites with nitazoxanide in children in Mexico [J]. American Journal of Tropical Medicine and Hygiene, 2003, 68:384~385.
    133. Didier E S, Maddry J A, Kwong C D, et al. Screening of compounds for antimicrosporidial activity in vitro [J]. Folia parasitological, 1998, 45:129~139
    134. Dierks E A, Stams K R, Lim H K, et al. A method for the simultaneous evaluation of the activities of sevenmajorhumandrug-metabolizing cytochrome P450s using an in vitro cocktail of probe substrates and fast gradient liquid chromatography tandem mass spectrometry [J]. Drug Metabolism and Disposition, 2001, 29: 23~29.
    135. Doerge D R, Chang H C, Churchwell M I, et al. Analysis of soy isoflavone conjugation in vitro and in human blood using liquid chromatography-mass spectrometry [J]. Drug Metabolism and Disposition, 2000, 28: 298~307.
    136. Dole M, Mack L L, Hines R L, et al. Molecular beams of macroions [J]. The Journal of Chemical Physics, 1968, 49: 2240~2249.
    137. Drug input and disposition. In: Mark H, Beers RB, editors. The Merck manual of diagnosis and therapy. 17th ed. Medical Services, USMEDSA, USHH, 2004.
    138. Duan X, Young R, Straubinger R, et al. A straightforward and highly efficient precipitation/on-pellet digestion procedure coupled to long gradient nano-LC separation and Oribtrap mass spectrometry for the label-free expression profiling of swine heart mitochondria proteome [J]. Journal of Proteome Research, 2009, doi: 10.1021/pr900001t.
    139. Dubey J P. Recent advances in Neospora and neosporosis [J]. Veterinary Parasitology, 1999, 84:349~367.
    140. Dubreuil L, Houcke I, Mouton Y, et al. In vitro evaluation of activities of nitazoxanide and tizoxanide against anaerobes and aerobic organisms [J]. Antimicrobial Agents and Chemotherapy, 1996, 40:2266~2270.
    141. Duckett C J, Bailey N J, Walker H, et al. Quantitation in gradient high performance liquid chromatography/inductively coupled mass spectrometry using diclofenac and chlorpromazine [J]. Rapid Communications in Mass Spectrometry, 2002, 16: 245~247.
    142. Dulik D M, Schaefer W H, Bordas-Nagy J, et al. Applications of tandem liquid chromatography/mass spectrometry in drug biotransformation and quantification studies. In Mass Spectrometry in the Biological Sciences, Burlingame AL, Carr SA (eds). NJ, Totowa: Humana Press, 1996; 425~449.
    143. Dutton G J. Glucuronidation of Drugs and other Compounds. Boca Raton: CRC Press, 1980.
    144. Egnash L A, Ramanathan R. Comparison of heterogeneous and homogeneous radioactivity flow detectors for simultaneous profiling and LC–MS/MS characterization of metabolites [J]. Journal of Pharmaceutical and Biomedical Analysis, 2002, 27: 271~284.
    145. Ekins S, Ring B J, Grace J, et al. Present and future in vitro approaches for drug metabolism [J]. Journal of Pharmacological and Toxicological Methods, 2000, 44: 313~324.
    146. Esposito M, Moores S, Naguleswaran A, et al. Induction of tachyzoite egress from cells infected with the protozoan Neospora caninum by nitro- and bromo-thiazolides, a class ofbroad-spectrum anti-parasitic drugs [J]. International Journal for Parasitology, 2007a, 37:1143~1152.
    147. Esposito M, Müller N, Hemphill A. Structure–activity relationships from in vitro efficacies of the thiazolide series against the intracellular apicomplexan protozoan Neospora caninum [J]. International Journal for Parasitology, 2007, 37:183~190.
    148. Esposito M, Stettler R, Moores S L, et al. In vitro efficacies of nitazoxanide and other thiazolides against Neospora caninum tachyzoites reveal antiparasitic activity independent of the nitro group [J]. Antimicrobial Agents and Chemotherapy, 2005, 49: 3715~3723.
    149. Essex D W, Li M. Redox modification of platelet glycoproteins [J]. Current Drug Targets, 2006, 7: 1233~1241.
    150. Ethell B T, Anderson G D, Burchell B. The effect of valproic acid on drug and steroid glucuronidation by expressed human UDP-glucuronosyltransferases [J]. Biochemical Pharmacology, 2003, 65: 1441~1449.
    151. Euzeby J, Prom Tep S, Rossignol J F. Experimentation des proprietes anthelminthiques de la nitazoxanide chez le chien, le chat et les ovins [J]. Revue de Médecine Vétérinaire, 1980, 131:687~696.
    152. Evans M C, Buchanan B B, Arnon D I. A new ferredoxin dependent carbon reduction cycle in a photosynthetic bacterium [J]. Proceedings of the National Academy of Sciences USA, 1966, 55: 928~934.
    153. Falany C N, Comer K A, Dooley T P, et al. Human dehydroepiandrosterone sulfotransferase. Purification, molecular cloning, and characterization [J]. Annals of the New York Academy of Sciences, 1995, 774: 59~72.
    154. Falany C N, Xie X, Wang J, et al. Molecular cloning and expression of novel sulphotransferase-like cDNAs from human and rat brain [J]. Biochemical Journal, 2000, 346 (Pt3), 857~864.
    155. Favennec L, Ortiz J J, Gargala G, et al. Double-blind, randomized, placebo-controlled study of nitazoxanide in the treatment of facioliasis in adults and children from northern Peru [J]. Alimentary Pharmacology & Therapeutics, 2003, 17:265~270.
    156. Fernandez-Mezler C L, Owens K G, Baillie T A, et al. Rapid liquid chromatography with tandem mass spectrometry-based screening procedures for studies on the biotransformation of drug candidates [J]. Drug Metabolism and Disposition, 1999, 27: 32~40.
    157. Fichera M E, and Roos D S. A plastid organelle as a drug target in apicomplexan parasites [J]. Nature, 1997, 390:407~409.
    158. Flarakos J, Liberman R G, Tannenbaum S R, et al. Integration of continuous-flow accelerator mass spectrometry with chromatography and mass-selective detection [J]. Analytical Chemistry, 2008, 80(13):5079~5085.
    159. Fouda H G, Avery M J, Navetta K. Simultaneous HPLC radioactivity and mass spectrometry monitoring. A drug metabolism application. 41st Annual ASMS Conference On Mass Spectrometry and Allied Topics, San Francisco, CA, 1993; 49a.
    160. Fox L M, Saravolatz L D. Nitazoxanide: a new thiazolide an tiparasitic agent [J]. Clinical Infectious Diseases, 2005, 40(8): 1173~1180.
    161. Freedman R B, Klappa P, Ruddock L. Protein disulfide isomerases exploit synergy between catalytic and specific binding domains [J]. EMBO Reports, 2002, 31:136~140.
    162. Frickel E M, Frei P, Bouvier M, et al. ERp57 is a multifunctional thioldisulfideoxidoreductase [J]. Journal of Biological Chemistry, 2004, 279:18277–18287.
    163. Furdui C, and Ragsdale S W. The roles of coenzyme A in the pyruvate:ferredoxin oxidoreductase reaction mechanism: rate enhancement of electron transfer from a radical intermediate to an iron-sulfur cluster [J]. Biochemistry, 2002, 41:9921~9937.
    164. Gangl E T, Annan M, Spooner N, et al. Reduction of signal suppression effects in ESI-MS using a nanosplitting device [J]. Analytical Chemistry, 2001, 73: 5635~5644.
    165. Gangl E, Utkin I, Gerber N, et al. Structural elucidation of metabolites of ritonavir and indinavir by liquid chromatography–mass spectrometry [J]. Journal of Chromatography A, 2002, 974: 91~101.
    166. Gargala G, Delaunay A, Brasseur P, et al. Efficacy of nitazoxanide, tizoxanide and tizoxanide glucuronide against Cryptosporidium parvum development in sporozoite-infected HCT-8 enterocytic cells [J]. Journal of Antimicrobial Chemotherapy, 2000, 46(1): 57~60.
    167. Gargala G, Le Goff L, Ballet J J, et al. In vitro efficacy of nitro- and halogeno-thiazolide/thiazolide derivatives against Sarcocystis neurona [J]. Veterinary Parasitology, doi: 10.1016/j.vetpar.2009.03.022.
    168. Garner R C, Goris I, Laenen AAE, et al. Evaluation of accelerator mass spectrometry in a human mass balance and pharmacokinetic study-experience with 14C labeled (R)-6-[amino(4-chlorophenyl)(1-methyl-1H-imidazol-5-yl)methyl]-4-(3-chlorophenyl)-1-methyl-2(1H)-quinolinone (R115777), a farnesyl transferase inhibitor [J]. Drug Metabolism and Disposition, 2002, 30: 823~830.
    169. Garrison K E, Pasas S A, Cooper J D, et al. A review of membrane sampling from biological tissues with applications in pharmacokinetics, metabolism and pharmacodynamics [J]. European Journal of Pharmaceutical Sciences, 2002, 17: 1~12.
    170. Giabaldi M, Perrier D. Pharmacokinetics. 2nd edn. New York: Marcel and Dekker, 1982, pp. 445~449.
    171. Giacometti A, Cironi O, Barchiesi F, et al. Activity of nitazoxanide alone and in combination with azithromycin and rifabutin against Cryptosporidium parvum in cell culture [J]. Journal of Antimicrobial Chemotherapy, 2000, 45:453~456.
    172. Gibson G G, Skett P. Pathways of Drug Metabolism. In Introduction to Drug Metabolism, Gibson G G, Skett P (eds). London: Blackie Academic and Professional, 1994, 1~34.
    173. Gilbert J D, Olah T V, McLoughlin D A. High performance liquid chromatography with atmospheric pressure ionization tandem mass spectrometry as a tool in quantitative bioanalytical chemistry. In Biochemical and Biotechnological Applications of Electrospray Ionization Mass Spectrometry. ACS Symposium Series, vol. 619, Snyder AP (ed). Washington, DC: American Chemical Society, 1995.
    174. Gilles H M, and Hoffman P S. Treatment of intestinal parasitic infections: a review of nitazoxanide [J]. Trends in Parasitology, 2002, 18:95~97.
    175. Gilman A G, Goodman L S, Gilman A. The Pharmacological Basis of Therapeutics, 6th edn. New York: Macmillan Publishing Co, 1980.
    176. Ginsburg H, Divo A A, Geary T G, et al. Effects of mitochondrial inhibitors on intraerythrocytic Plasmodium falciparum in in vitro cultures [J]. The Journal of protozoology, 1986, 33:121~125.
    177. Gokhbulut C, Karademir U, Boyacioglu M, et al. The effect of diet type on the plasma disposition of triclabendazole in goats [J]. Research in Veterinary Science, 2007, 82:388~391.
    178. Goodwin A, Kersulyte D, Sisson G, et al. Metronidazole resistance in Helicobacter pylori is due to null mutations in a gene (rdxA) that encodes an oxygen-insensitive NADPH nitroreductase [J]. Mololecular Microbiology, 1998, 28:383~394.
    179. Gorlach A, Klappa P Kietzmann T. The endoplasmic reticulum: folding, calcium homeostasis, signaling, and redox control [J]. Antioxidants and Redox Signaling, 2006, 8, 1391~1418.
    180. Gottstein B, Haag K, Walker M, et al. Molecular survival strategies of Echinococcus multilocularis in the murine host [J]. Parasitology International, 2006, 55:S45~S49.
    181. Gram T E, Gillette J R. Biotransformation of drugs. In: Bacq, Z.M. (Ed.), Fundamentals of Biochemical Pharmacology. New York: Pergamon Press Ltd, 1971, pp. 571~609.
    182. Gregus Z, Kim H J, Madhu C, et al. Sulfation of acetaminophen and acetaminophen-induced alterations in sulfate and 3′-phosphoadenosine 5′-phosphosulfate homeostasis in rats with deficient dietary intake of sulfur [J]. Drug Metabolism and Disposition, 1994a, 22:725~730.
    183. Gregus Z, Oguro T, Klaassen C D. Nutritionally and chemically induced impairment of sulfate activation and sulfation of xenobiotics in vivo [J]. Chemico-Biological Interactions, 1994b, 92:169~177.
    184. Gu J, Zhong D, Chen X. Analysis of O-glucuronide conjugates in urine by electrospray ion trap mass spectrometry [J]. Fresenius' Journal of Analytical Chemistry, 1999, 365: 553~558.
    185. Gumbleton M S, Sneader W. Pharmacokinetic considerations in rational drug design [J]. Clinical Pharmacokinetics, 1994, 26:161~168.
    186. Guttner Y, Windsor H M, Viiala C H, et al. Nitazoxanide in treatment of Helicobacter pylori: a clinical and in vitro study [J]. Antimicrobial Agents and Chemotherapy, 2003, 47:3780~3783.
    187. Hager J W. Recent trends in mass spectrometer development [J]. Analytical and Bioanalytical Chemistry, 2004, 378: 845~850.
    188. Hecht DW, Galang MA, Sambol SP, Osmolski JR, Johnson S, Gerding DN. In vitro activities of 15 antimicrobial agents against 110 toxigenic Clostridium difficile clinical Isolates collected from 1983 to 2004 [J]. Antimicrobial Agents and Chemotherapy 2007, 51:2716–2719
    189. Hehl A B, and Marti M.. Secretory protein trafficking in Giardia intestinalis [J]. Molecular Microbiology, 2004, 53:19~28.
    190. Hemphill A, Mueller J, Esposito M. Nitazoxanide, a broad-spectrum thiazolide anti-infective agent for the treatment of gastrointestinal infections [J]. Expert Opinion on Pharmacotherapy, 2006, 7: 953~964.
    191. Hendee W R. Radioactive Isotopes in Biological Research. New York: Wiley–Interscience, 1973.
    192. Heussler V T, Kuenzi P, Rottenberg S. Inhibition of apoptosis by intracellular protozoan parasites [J]. International Journal for Parasitology, 2000, 31:1166~1176.
    193. Hidlgo L J, Raub T J, Borchardt R T. Characterization of the human colon carcinoma cell line (Caco-2) as a model system for intestinal epithelial permeability [J]. Gastroenterology, 1989, 96: 736~749.
    194. Higuchi T, Watanabe Y, Waga I. Protein disulfide isomerase suppresses the transcriptional activity of NF-κB [J]. Biochemical and Biophysical Research Communications, 2004, 318:46~52.
    195. Hillgren K M, Kato A, Borchardt R T. In vitro systems for studying intestinal drug absorption[J]. Medicinal Research Reviews, 1995, 15(1): 83~109.
    196. Hjelle J J, Hazelton G A, Klaassen C D. Acetaminophen decreases adenosine 3′-phosphate 5′-phosphosulfate and uridine diphosphoglucuronic acid in rat liver [J]. Drug Metabolism and Disposition, 1985, 13:35~41.
    197. Hoffman P S, and Goodman T G. Respiratory physiology and energy conservation efficiency of Campylobacter jejuni [J]. The Journal of Bacteriology, 1982, 150: 319~326.
    198. Hoffman P S, Goodwin A, Johnsen J, et al.. Metabolic activities of metronidazole-sensitive and–resistant strains of Helicobacter pylori: repression of pyruvate oxidoreductase and expression of isocitrate lyase activity correlate with resistance [J]. Journal of Bacteriology, 1996178:4822~4829.
    199. Hoffman P S, Sisson G, Croxen M A, et al. Antiparasitic drug nitazoxanide inhibits the pyruvate oxidoreductases of Helicobacter pylori, selected anaerobic bacteria and parasites, and Campylobacter jejuni[J]. Antimicrobial Agents and Chemotherapy, 2007, 51: 868~876.
    200. Hogan B l, Lute S M. On-line coupling of in vivo microdialysis sampling with capillaryelectrophoresis [J]. Analytical chemistry, 1994, 66: 596~603.
    201. Hogenboom A C, Niessen W M, Brinkman U A. On-line solid-phase extraction–short-column liquid chromatography combined with various tandem mass spectrometric scanning strategies for the rapid study of transformation of pesticides in surface water [J]. Journal of Chromatography A, 1999, 841: 33~44.
    202. Hoke S H II, Tomlinson J A, Bolden R D, et al. Increasing bioanalytical throughput using pcSFC–MS/MS: 10 minutes per 96-well plate [J]. Analytical Chemistry, 2001, 73: 3083~3088.
    203. Hop C E, Tiller P R, Romanyshyn L. In vitro metabolite identification using fast gradient high performance liquid chromatography combined with tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2002, 16: 212~219.
    204. Horner D S, Hirt R P, Embley T M. A single eubacterial origin of eukaryotic pyruvate:ferredoxin oxidoreductase genes: implications for the evolution of anaerobic eukaryotes [J]. Molecular Biology and Evolution, 1999, 16:1280~1291.
    205. Horning E C, Carroll D I, Dzidic I, et al. Atmospheric pressure ionization (API) mass spectrometry. Solvent-mediated ionization of samples introduced in solution and in a liquid chromatograph effluent stream [J]. Journal of Chromatographic Science, 1974, 12: 725~729.
    206. Horning E C, Carroll D I, Dzidic I, et al. Development and use of analytical systems based on mass spectrometry [J]. Clinical Chemistry, 1977, 23(1): 13~21.
    207. Horning S, Malek R, Wieghaus A, Senko MW, Marto JA, Syka JEP. A hybrid two-dimensional quadrupole ion trap/Fourier transform ion cyclotron resonance mass spectrometer. Presented at PITTCON 2003, Orlando, FL.
    208. Hsieh Y, Wang G, Wang Y, et al. Simultaneous determination of a drug candidate and its metabolite in rat plasma samples using ultrafast monolithic column high-performance liquid chromatography/tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2002; 16: 944~950.
    209. Hughes N J, Chalk P A, Clayton C L, et al. Identification of carboxylation enzymes and characterization of a novel four-subunit pyruvate: flavodoxin oxidoreductase from Helicobacter pylori [J]. Journal of Bacteriology, 1995, 177: 3953~3959.
    210. Humphrey M J, Smith D A. Role of metabolism and pharmacokinetics studies in thediscovery of new drugs-present and future perspectives [J]. Xenobiotica, 1992, 22: 743~755.
    211. Iyer K R, Sinz M W, Podoll T. Mass spectrometry-assisted applications of stable-labeled compounds in pharmacokinetic and drug metabolism studies, In Mass Spectrometry in Drug Discovery, Rossi D T, Sinz M W(eds). NewYork: Marcel Dekker, 2002, 337~356.
    212. Jackson P J, Brownsill R D, Taylor A R, et al. Use of electrospray ionisation and neutral loss liquid chromatography/tandem mass spectrometry in drug metabolism studies [J]. Journal of Mass Spectrometry, 1995, 30: 446~451.
    213. Jacob P III, Wilson M, Yu L, et al. Determination of 4-hydroxy-3-methoxyphenylethylene glycol 4-sulfate in human urine using liquid chromatography–tandem mass spectrometry [J]. Analytical Chemistry, 2002, 74: 5290~5296.
    214. Jacobstein D and Kader H. Antibiotic Therapy. In: Pediatric Inflammatory Bowel Disease. Mamula P, Markowitz JE, Baldassano RN (eds). Germany, Berlin: Springer, 2007, 25:329~336.
    215. Jadhav A S, Pathare D B, Shingare M S. A validation stability indicating RP–LC method for nitazoxanide, a new antiparasitic compound [J]. Chromatoraphyia, 2007, 66: 595~600.
    216. Jedlitschky G, Cassidy A J, Sales M, et al. Cloning and characterization of a novel human olfactory UDP-glucuronosyltransferase [J]. Biochemical Journal, 1999, 340 (Pt 3): 837~843.
    217. Jiang X M, Fitzgerald M, Chris M, et al. Redox control of exofacial protein thiols/disulfides by protein disulfide isomerase [J]. Journal of Biological Chemistry, 1999, 274:2416~2423.
    218. Johnson G R, and Spain J C. Evolution of catabolic pathways for synthetic compounds: bacterial pathways for degradation of 2,4-dinitrotoluene and nitrobenzene [J]. Applied Microbiology and Biotechnology, 2003, 62:110~123.
    219. Jordan P A, Gibbins J M. Extracellular disulfide exchange and the regulation of cellular function [J]. Antioxidants and Redox Signaling, 2006, 8:312~324.
    220. Kabil S M, Ashry E E, Ashraf N K. An open-label clinical study of nitazoxanide in the treatment of human fascioliasis [J]. Current Therapeutic Research, 2000, 61:339~345.
    221. Kamali F. The effect of probenecid on paracetamol metabolism and pharmacokinetics [J]. European Journal of Clinical Pharmacology, 1993, 45:551~553.
    222. Kassahun K, Davis M, Hu P, et al. Biotransformation of the naturally occurring isothiocyanate sulforaphane in the rat: identification of phase I metabolites and glutathione conjugates [J]. Chemical Research in Toxicology, 1997, 10: 1228~1233.
    223. Kauppila T, Kuuranne T, Meurer E C, et al. Atmospheric pressure photoionization mass spectrometry. Ionization mechanism and the effect of solvent on the ionization of naphthalenes [J]. Analytical Chemistry, 2002; 74: 5470~5479.
    224. Keski-Hynnil? H, Andersin R, Luukkanen L, et al. Analysis of catechol-type glucuronides in urine samples by liquid chromatography–electrospray ionization–tandem mass spectrometry [J]. Journal of Chromatography A, 1998, 794: 75~83.
    225. Keski-Hynnil? H, Kurkela M, Elovaara E, et al. Comparison of electrospray, atmospheric pressure chemical ionization, and atmospheric pressure photoionization in the identification of apomorphine, dobutamide, and entacapone phase II metabolites in biological samples [J]. Analytical Chemistry, 2002; 74: 3449~3457.
    226. Keski-Hynnil? H, Luukkanen L, Taskinen J, et al. Mass spectrometric and tandem mass spectrometric behavior of nitrocatechol glucuronides: a comparison of atmospheric pressure chemical ionization and electrospray ionization [J]. Journal of the American Society for MassSpectrometry, 1999, 10: 537~545.
    227. Keski-Hynnil? H, Raanaa K, Forsberg M, et al Quantitation of entacapone glucuronide in rat plasma by on-line coupled restricted-access media column and liquid chromatography–tandem mass spectrometry[J]. Journal of Chromatography B, 2001, 759: 227~236.
    228. Khandurina J, Guttman A. Bioanalysis in microfluidic devices [J]. Journal of Chromatography A, 2002, 943: 159~183.
    229. Kiatfuengfoo R, Suthiphongchai T, Prapunwattana P, et al. Mitochondria as the site of action of tetracycline on Plasmodium falciparum [J]. Molecular and Biochemical Parasitology, 1989, 34:109~115.
    230. Kim H J, Rozman P, Madhu C, et al. Homeostasis of sulfate and 3′-phosphoadenosine 5′-phosphosulfate in rats after acetaminophen administration [J]. The Journal of Pharmacology and Experimental Therapeutics, 1992, 261:1015~1021.
    231. Kita K, and Takamiya S. Electron-transfer complexes in Ascaris mitochondria [J]. Advances in Parasitology, 2002, 51:95~131.
    232. Kita K, Nihei C, Tomitsuka E. Parasite mitochondria as drug target: diversity and dynamic changes during the life cycle [J]. Current Medicinal Chemistry, 2003, 10:2535~2548.
    233. Kita K, Shiomi K, Omura S. Advances in drug discovery and biochemical studies [J]. Trends in Parasitology, 2007, 23:223~229.
    234. Kita, K, Hirawake H, Takamiya S. Cytochromes in the respiratory chain of helminth mitochondria [J]. International Journal for Parasitology, 1997, 27:617~630.
    235. Kletzin A, and Adams M W. Molecular and phylogenetic characterization of pyruvate and 2-ketoisovalerate ferredoxin oxidoreductases from Pyrococcus furiosus and pyruvate ferredoxin oxidoreductase from Thermotoga maritime [J]. The Journal of Bacteriology, 1996, 178: 248~257.
    236. Knodler L, Noiva R, Mehta K, et al. Novel protein-disulfide isomerases from the early-diverging protest Giardia lamblia [J]. Journal of Biological Chemistry, 1999, 274:29805~29811.
    237. K?hler P. The pathways of energy generation in filarial parasites [J]. Parasitology Today, 1991, 7:21~25.
    238. Komuniecki R, and Harris B G. Carbohydrate and energy metabolism in helminthes. In Marr J J and Müller M (ed.), Biochemistry and molecular biology of parasites. New York: Academic Press, 1995, p. 49~66.
    239. Korba B E, Montero A B, Farrar K, et al. Nitazoxanide, tizoxanide and other thiazolides are potent inhibitors of hepatitis B virus and hepatitis C virus replication [J]. Antiviral Research, 2008, 77:56~63.
    240. Korzekwa K R, Krishnamachary N, Shou M, et al. Evaluation of atypical cytochrome P450 kinetics with two-substrate models: evidence that multiple substrates can simultaneously bind to cytochrome P450 active sites [J]. Biochemistry, 1998, 37:4137~47.
    241. Kostiainen R, Bruins A P. Effect of multiple sprayers on dynamic range and flow rate limitations in electrospray and ionspray mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 1994, 8: 549~558.
    242. Kostiainen R, Kotiaho T, Kuuranne T, et al. Liquid chromatography/atmospheric pressure ionization–mass spectrometry in drug metabolism studies [J]. Journal of Mass Spectrometry,2003, 38: 357~372.
    243. Kostiainen R, Tuominen J, Luukkanen L, et al. Accurate mass measurements of some glucuronide derivatives by electrospray low resolution quadrupole mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 1997, 11: 283~285.
    244. Kratochwil N A, Huber W, Müller F, et al. Predicting plasma protein binding of drugs: a new approach [J]. Biochemical Pharmacology, 2002, 64:1355~1374.
    245. Kremer, J M H, Wilting J, Janssen L H M. Drug binding to human alpha-1-acid-glycoprotein in health and disease [J]. Pharmacological Review, 1988, 40: 1~47.
    246. Krolewiecki A, Leon S, Scott P, et al. Activity of azithromycin against Leishmania major in vitro and in vivo [J]. The American Journal of Tropical Medicine and Hygiene, 2002, 67:273~277.
    247. Kubalec P, Brandsteterova E. Determination of propafenone and its main metabolite 5-hydroxypropafenone in human serum with direct injection into a column-switching chromatographic system [J]. Journal of Chromatography B, 1999, 726: 211~218.
    248. Kuramochi T H, Hirawake S, Kojima S, et al. Sequence comparison between the flavoprotein subunit of the fumarate reductase (complex II) of the anaerobic parasitic nematode, Ascaris suum and the succinate dehydrogenase of the aerobic, free-living nematode, Caenorhabditis elegans [J]. Molecular and Biochemical Parasitology, 1994, 68:177~187.
    249. Kuuranne T, Aitio O, Vahermo M, et al. Enzyme-assisted synthesis and characterization of glucuronide conjugates of methyl-testosterone (17α-methylandrost-4- en-17β-ol-3-one) and nandrolone (estr-4-en-17β-ol-3-one) metabolites [J]. Bioconjugate Chemistry, 2002, 13: 194~199.
    250. Kuuranne T, Kotiaho T, Pedersen-Bjergaard S, et al. Feasibility of a liquid phase microextraction sample clean-up and LC–MS/MS screening method for selected anabolic steroid glucuronides in biological samples [J]. Journal of mass spectrometry, 2003, 38: 16~26.
    251. Kuuranne T, Vahermo M, Leinonen A, et al. Electrospray and atmospheric pressure chemical ionization tandem mass spectrometric behavior of eight steroid glucuronides [J]. Journal of the American Society for Mass Spectrometry, 2000, 11: 722~730.
    252. La Humma Y L. Pharmacogenetics. In: Dipiro JT, editor. A Pharmacotherapy, a pathophysiologic approach. 5th ed. New York (NY): McGraw Hill, 2002, p. 55~67.
    253. LaMantia M L, Lennarz W J. The essential function of yeast protein disulfide isomerase does not reside in its isomerase activity [J]. Cell, 1993, 74:899~908.
    254. Lampen A, Bader A, Bextmann T. Catalytic activities, protein-and mRNA-expression of cytochrome P450 isoenzymes in intestinal cell lines [J]. Xenobiotica, 1998, 28(5): 429~441.
    255. Lecluyse EL. Human hepatocyte cultures systems for the in vitro evaluation of cytochrome P450 expression and regulation [J]. European Journal of Pharmaceutical Sciences, 2001, 13: 343~368.
    256. Lee M S, Kerns E H. LC/MS applications in drug development [J]. Mass Spectrometry Reviews, 1999, 18: 187~279.
    257. Lee M S, Yost R A. Rapid identification of drugmetabolites with tandem mass spectrometry [J]. Biomedical & Environmental Mass Spectrometry, 1988, 15: 193~204.
    258. Levy G. Comparison of dissolution and absorption rates of different commercial aspirin tablets. Journal of Pharmaceutical Sciences, 1961, 50: 388~392.
    259. Li A P. Overview: Evaluation of metabolism-based drug toxicity in drug development [J].Chemico-Biological Interactions, 2009, 179:1~3.
    260. Li X, Brasseur P, Agnamey P, et al. Long-lasting anticryptosporidial activity of nitazoxanide in an immunosuppressed rat model [J]. Folia Parasitologica, 2003, 50:19~22.
    261. Liao L, Ma L, Bannai H, et al. Identification of a protein disulfide isomerase of Neospora caninum in excretory–secretory products and its IgA binding and enzymatic activities [J]. Veterinary Parasitology, 2006, 139:47~56.
    262. Lim C K, Lord G. Current developments in LC–MS for pharmaceutical analysis [J]. Biological & Pharmaceutical Bulletin, 2002, 25: 547~557.
    263. Lim H K, Chan K W, Sisenwine S, et al. Simultaneous screen for microsomal stability and metabolite profile by direct injection turbulent-laminar flow LC–LC and automated tandem mass spectrometry [J]. Analytical Chemistry, 2001, 73: 2140~2146.
    264. Lin J H, Lu A Y. Inhibition and induction of cytochrome P450 and the clinical implications. Clinical Pharmacokinetics, 1998, 35:361~390.
    265. Lindon J C, Nicholson J K, Wilson I D. Directly coupled HPLC–NMR and HPLC–NMR–MS in pharmaceutical research and development [J]. Journal of Chromatography B, 2000, 748: 233~258.
    266. Lindsay S. High performance liquid chromatography, second ed., New York: Wiley, 1992, pp. 337.
    267. Liu D Q, Pereira T. Interference of a carbamoyl glucuronide metabolite in quantitative liquid chromatography/tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2002, 16: 142~146.
    268. Liu D Q, Xia Y Q, Bakhtiar R. Use of liquid chromatography/ion trapmass spectrometry/triple quadrupole mass spectrometry system for metabolite identification [J]. Rapid Communications in Mass Spectrometry, 2002, 16: 1330~1336.
    269. Liu J H, Smith P C. Predicting the pharmacokinetics of acyl glucuronides and their parent compounds in disease states [J]. Current Drug Metabolism, 2006, 7(2): 147~163.
    270. Lloyd D, Harris J C, Biagini G A, et al. The plasma membrane of microaerophilic protists: oxidative and nitrosative stress [J]. Microbiology, 2004, 150: 1183~1190.
    271. Lopez L L, Yu X, Cui D, et al. Identification of drug metabolites in biological matrices by intelligent automated liquid chromatography/tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 1998, 12: 1756~1760.
    272. Low L K. Metabolic changes of drugs and related organic compounds. In: Delgado, J.N., Remers, W.A. (Eds.), Wilson and gisvold’s textbook of organic medicinal and pharmaceutical chemistry. Philadelphia: Lippincott-Raven, 1998, pp. 43~122.
    273. Lunte S M, Lunte C E. Microdialysis sampling for pharmacological studies: HPLC and CE analysis [J]. Advances in Chromatography, 1996, 36: 383~432.
    274. MacKay R J. Equine protozoal Myeloencephalitis: treatment, prognosis, and prevention [J]. Clinical Techniques in Equine Practice, 2006, 5:9~16.
    275. Malesuik M D, Goncalves S G, Steppe M. Development of a validated stability-indicating LC method for nitazoxanide in pharmaceutical formulations [J]. Chromatographia, 2008, 67:131~136.
    276. Manfred S, Martin H, Peter D. Liquid chromatography coupled with High-field proton NMR for profiling human urine for endogenous compounds and drug metabolites [J]. Journal of Pharmaceutical and Biomedical Analysis, 1992, 10: 601~605.
    277. Manzi S F, Shannon M. Drug interactions: a review [J]. Clinical Pediartic Emergency Medicine, 2005, 6:93~102.
    278. March R E, Todd J F J (eds). Practical Aspects of Ion Trap Mass Spectrometry. FL, Raton, Boca: CRC Press, 1995.
    279. Marion R, Baishanbo A, Gargala G, et al. Transient neonatal Cryptosporidium parvum infection triggers long-term jejunal hypersensitivity to distension in immunocompetent rats [J]. Infection and Immunity, 2006, 74 (7): 4387~4389.
    280. Markovich D. Physiological roles and regulation of mammalian sulfate transporters [J]. Physiology Review, 2001, 81:1499~1533.
    281. Martinez M. Article I: Noncompartmental methods of drug characterization: statistical moment theory [J]. Journal of the American Veterinary Medical Association, 1998, 213: 974~980.
    282. Martínez-Grueiro MM. Acid phosphatase activity in excretion/secretion products from Heligmosomoides polygyrus adults: an indicator of the physiological status of the worms [J]. Parasitology Research, 2002, 88:946~949.
    283. Mathis A, Wild P, Deplazes P, et al. The mitochondrial ribosome of the protozoan Acanthamoeba castellanii is the target for macrolide antibiotics [J]. Molecular and Biochemical Parasitology, 2004, 135:223~227.
    284. Matsumoto J, Müller N, Hemphill A, et al. 14-3-3- and II/3-10-gene expression as molecular markers to address viability and growth activity of Echinococcus multilocularis metacestodes [J]. Parasitology, 2006, 132:83~94.
    285. Matsumoto J, Sakamoto K, Shinjyo N, et al. Anaerobic NADH-fumarate reductase system is predominant in the respiratory chain of Echinococcus multilocularis, providing a novel target for the chemotherapy of Alveolar Echinococcosis [J]. Antimicrobial Agents and Chemotherapy, 2008, 52:164~170.
    286. Matuszewski B K, Constanzer M L, Chavez-Eng C M. Matrix effect in quantitative LC/MS/MS analyses of biological fluids: a method for determination of finasteride in human plasma at picogram per milliliter concentrations [J]. Analytical Chemistry, 1998, 70: 882~889.
    287. Matysiak Budnik T, Mégraud F, et al. In-vitro transfer of nitazoxanide across the intestinal epithelial barrier [J]. Journal of Pharmacy and Pharmacology, 2002, 54:1413~1417.
    288. Matz L M, Herbert H H Jr. Evaluation of opiate separation by high-resolution electrospray ionization–ion mobility spectrometry/mass spectrometry [J]. Analytical Chemistry, 2001, 73: 1664~1669.
    289. McClure S, Palma K. Treatment of equine protozoal myeloencephalitis with Nitazoxanide [J]. Journal of Equine Veterinary Science, 1999, 19:639~641.
    290. McFadden G I, and Roos D S. Apicomplexan plastids as drug targets [J]. Trends in Microbiology, 1999, 7:328~333.
    291. McLoughlin D A, Olah T V, Gilbert J D. A direct technique for the simultaneous determination of 10 drug candidates in plasma by liquid chromatography–atmospheric pressure chemical ionization mass spectrometry interfaced to a Prospekt solidphase extraction system [J]. Journal of Pharmaceutical and Biomedical Analysis, 1997, 15: 1893~1901.
    292. McManus D P, and Smyth J D.. Differences in the chemical composition and carbohydrate metabolism of Echinococcus granulosus (horse and sheep strains) and E. multilocularis [J].Parasitology, 1978, 77:103~109.
    293. McManus, D P, and Smyth J D. Intermediary carbohydrate metabolism in protoscoleces of Echinococcus granulosus (horse and sheep strains) and E. multilocularis [J]. Parasitology, 1982, 84:351~366.
    294. McVay C S, Rolfe R D. In vitro and in vivo activities of nitazoxanide against Clostridium difficile [J]. Antimicrobial Agents and Chemotherapy, 2000, 44:2254~2258.
    295. Mégraud F, Occhialini A, Rossignol J F. Nitazoxanide, a potential drug for eradication of Helicobacter pylori with no cross-resistance to Metronidazole [J]. Antimicrobial Agents and Chemotherapy, 1998, 42:2836~2840.
    296. Menon S, and Ragsdale S W. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase [J]. Biochemistry, 1996, 35:15814~15821.
    297. Middleton K R, Saz, H J. Comparative utilization of pyruvate by Brugia pahangi, Dipetalonema viteae, and Litomosoides carinii [J]. The Journal of Parasitology, 1979, 65:1~7.
    298. Molestina R E, and Sinai A P. Detection of a novel parasite kinase activity at the Toxoplasma gondii parasitophorous vacuole membrane capable of phosphorylating host IkappaBalpha [J]. Cell Microbiology, 2005, 7:351~362.
    299. Molestina R E, Payne T M, Coppens I, et al. Activation of NF-kappaB by Toxoplasma gondii correlates with increased expression of antiapoptotic genes and localization of phosphorylated IkappaB to the parasitophorous vacuole membrane [J]. Journal of Cell Science, 2003, 116:4359~4371.
    300. Monostory K, Kohalmy K, Ludanyi K. Biotransformation of deramciclane in primary hepatocytes of rat, mouse, rabbit, dog and human [J]. Drug Metabolism and Disposition, 2005, 23: 1~25.
    301. Morgenstern R, Lundqvist G, Andersson G, et al. The distribution of microsomal glutathione transferase among different organelles, different organs, and different organisms [J]. Biochemical Pharmacology, 1984, 33: 3609~3614.
    302. Moro P, Schantz P M. Echinococcosis: a review [J]. International Journal of Infectious Diseases, 2009, 13:125~133.
    303. Morris M E , Yuen V, Tang B K, et al. Competing pathways in drug metabolism. I. Effect of input concentration on the conjugation of gentisamide in the once-through in situ perfused rat liver preparation [J]. The Journal of Pharmacology and Experimental Therapeutics, 1988, 245:614~624.
    304. Mück W. Quantitative analysis of pharmacokinetic study samples by liquid chromatography coupled to tandem mass spectrometry (LC–MS/MS) [J]. Pharmazie, 1999, 54: 639~644.
    305. Mulder G J, Coughtrie M W, Burchell B. Glucuronidation. In Conjugation Reactions in Drug Metabolism: an Integrated Approach. Mulder G J (ed). London: Taylor and Francis, 1990, 42~91.
    306. Mulder G J, Hagedoorn A H. UDP glucuronyl transferase and phenolsulfotransferase in vivo and in vitro conjugation of harmol and harmalol [J]. Biochemical Pharmacology, 1974, 23: 2101~2109.
    307. Mulder G J, Scholtens E. The availability of inorganic sulphate in blood for sulphate conjugation of drugs in rat liver in vivo. (35s)sulphate incorporation into harmol sulphate [J]. Biochemical Journal, 1978, 172: 247~251.
    308. Müller J, Naguleswaran A, Müller N, et al. Neospora caninum: Functional inhibition of protein disulfide isomerase by the broad-spectrum anti-parasitic drug nitazoxanide and other thiazolides [J]. Experimental Parasitology, 2008, 118:80~88.
    309. Müller J, Rühle G, Müller N, et al. In vitro effects of thiazolides on Giardia lamblia WB clone C6 cultured axenically and in coculture with Caco2 cells [J]. Antimicrobial Agents and Chemotherapy, 2006, 50:162~170.
    310. Müller J, Sterk M, Hemphill A, et al. Characterization of Giardia lamblia WB C6 clones resistant to nitazoxanide and to metronidazole [J]. Journal of Antimicrobial Chemotherapy, 2007, 60:280~287.
    311. Müller J, Wastling J, Sanderson S, et al. A novel Giardia lamblia nitroreductase, G1NR1, ineracts with Nitazoxanide and other thiazolides [J]. Antimicrobial Agents and Chemotherapy, 2007, 51:1979~1986.
    312. Murphy J R, Friedmann J C. Pre-clinical toxicology of nitazoxanide, a new antiparasitic agent [J]. Journal of Applied Toxicology, 1985, 5:49~52.
    313. Musher D M, Logan N, Hamill R J, et al. Nitazoxanide for the treatment of Clostridium difficile colitis [J]. Clinical Infectious Diseases, 2006, 43:421~427.
    314. Musher D M, Logan N, Mehendiratta V, et al. Clostridium difficile colitis that fails conventional metronidazole therapy: response to nitazoxanide [J]. Journal of Antimicrobial Chemotherapy, 2007, 59(4): 705~710.
    315. Naderer O J, Dupuis R E, Heinzen E L, et al. The influence of norfloxacin and metronidazole on the disposition of mycophenolate mofetil [J]. Journal of Clinical Pharmacology, 2005, 45: 219~226.
    316. Nagata K, Ozawa S, Miyata M, et al. Isolation and expression of a cDNA encoding a male-specific rat sulfotransferase that catalyzes activation of n-hydroxy-2-acetylaminofluorene [J]. Journal of Biological Chemistry, 1993, 268: 24720~24725.
    317. Naguleswaran A, Alaeddine F, Guionaud C, et al. Neospora caninum protein disulfide isomerase is involved in tachyzoite–host cell interaction [J]. International Journal for Parasitology, 2005, 35:1459~1472.
    318. Nassar A E, Bjorge S M, Lee D Y. On-line liquid chromatography–accurate radioisotope counting coupledwith a radioactivity detector and mass spectrometer formetabolite identification in drug discovery and development [J]. Analytical Chemistry, 2003, 75: 785~790.
    319. Nebert D W, Nelson D R, Coon M J, et al. The P450 superfamily: update on new sequences, gene mapping and recommended nomenclature [J]. DNA and Cell Biology, 1991, 10:1~14.
    320. Nicholson J K, Lindon J C, Scarfe G B, et al. High-performance liquid chromatography linked to inductively coupled plasma mass spectrometry and orthogonal acceleration time-of-flight mass spectrometry for the simultaneous detection and identification of metabolites of 2-bromo-4-trifluoromethyl-[13C]-acetanilide in rat urine [J]. Analytical Chemistry, 2001, 73: 1491~1494.
    321. Nishikawa Y, Makala L, Otsuka H, et al. Mechanisms of apoptosis in murine fibroblasts by two intracellular protozoan parasites, Toxoplasma gondii and Neospora caninum [J]. Parasite Immunology, 2002, 24:347~354.
    322. Nishikawa Y, Mishima M, Nagasawa H, et al. Interferon-gamma-induced apoptosis in hostcells infected with Neospora caninum [J]. Parasitology, 2001, 123:25~31.
    323. Nitazoxanide Approved for Use in Adults. Clinical Infectious Diseases, 2005, 41: iii~iv.
    324. Noiva R. Protein disulfide isomerase: the multifunctional redox chaperone of the endoplasmic reticulum [J]. Seminars in Cellular and Developmental Biology, 1999, 10, 481~493.
    325. Ochoa T J, White A C Jr. Nitazoxanide for the treatment of intestinal parasite in children [J]. The Pediatric Infectious Disease Journal, 2005, 24(7): 641~642.
    326. Olah T V, McLoughlin D A, Gilbert J D. The simultaneous determination of mixtures of drug candidates by liquid chromatography/atmospheric pressure chemical ionization mass spectrometry as an in vivo drug screening procedure [J]. Rapid Communications in Mass Spectrometry, 1997, 11: 17~23.
    327. Oliveira E J, Watson D G. Liquid chromatography–mass spectrometry in the study of the metabolism of drugs and other xenobiotics [J]. Biomedical Chromatography, 2000, 14: 351~372.
    328. Omura S, Miyadera H, Ui H, et al. An anthelmintic compound, nafuredin, shows selective inhibition of complex I in helminth mitochondria [J]. Proceedings of the National Academy of Sciences USA, 2001, 98:60~62.
    329. Onorato J M, Henion J D, Lefebvre P M, et al. Selected reaction monitoring LC-MS determination of idoxifene and its pyrrolidinone metabolite in human plasma using robotic high-throughput, sequential sample injection [J]. Analytical Chemistry, 2001, 73: 119~125.
    330. Ortiz J J, Ayoub A, Gargala G, et al. Randomized clinical study of nitazoxanide compared to metronidazole in the treatment of symptomatic giardiasis in children from northern Peru [J]. Alimentary Pharmacology & Therapeutics, 2001, 15:1409~1415.
    331. Ortiz J J, Lopez Chegne N, Gargala G, et al. Comparative clinical studies of nitazoxanide, albendazole and praziquantel in the treatment of ascariasis, trichuriasis and hymenolepiasis in children from Peru [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 2002, 96:193~196.
    332. Palomares-Alonso F, Piliado J C, Palencia G, et al. Efficacy of nitazoxanide, tizoxanide and tizoxanide/albendazole sulphoxide combination against Taenia crassiceps cysts [J]. Journal of Antimicrobial Chemotherapy, 2007, 59:212~218.
    333. Pang K S, Koster H, Halsema I C, et al. Aberrant pharmacokinetics of harmol in the perfused rat liver preparation: sulfate and glucuronide conjugations [J]. The Journal of Pharmacology and Experimental Therapeutics, 1981, 219: 134~140.
    334. Pang K S, Koster H, Halsema I C, et al. Normal and retrograde perfusion to probe the zonal distribution of sulfation and glucuronidation activities of harmol in the perfused rat liver preparation [J]. The Journal of Pharmacology and Experimental Therapeutics, 1983, 224:647~653.
    335. Pang K S, Schwab A J, Goresky C A, et al. Transport, binding, and metabolism of sulfate conjugates in the liver [J]. Chemico-Biological Interactions, 1994, 92: 179~207.
    336. Pang K S, Terrell J A. Retrograde perfusion to probe the heterogeneous distribution of hepatic drug metabolizing enzymes in rats [J]. The Journal of Pharmacology and Experimental Therapeutics, 1981, 216:339~346.
    337. Pankuch G A, and Appelbaum P C. Activities of tizoxanide and nitazoxanide compared to those of five other thiazolides and three other agents against anaerobic species [J].Antimicrobial Agents and Chemotherapy, 2006, 50:1112~1117.
    338. Parashar A, Arya R. Nitazoxanide [J]. Indian Pediatrics, 2005, 42(11):1161~1165.
    339. Parkinson A. Biotransformation of xenobiotics. In Casarett & Doull’s Toxicology, Klaassen C D (ed). New York: McGraw-Hill, 2001, 133~224.
    340. Parkinson A. Biotransformation of xenobiotics. In: Klaassen, C.D., Thomas, M.J., Hazucha, M.J. (Eds.), Casarett and Doull’s Toxicology: The Basic Science of Poisons. New York: McGraw-Hill Medical Publishing Division, 2001, pp. 113~186.
    341. Patel M S, and Roche T E. Molecular biology and biochemistry of pyruvate dehydrogenase complexes [J]. The FASEB Journal, 1990, 4:3224~3233.
    342. Paul D, Standifer K M, Inturrisi C E, et al. Pharmacological characterization of morphine-6-β-glucuronide, a very potent morphine metabolite [J]. The Journal of Pharmacology and Experimental Therapeutics, 1989, 251: 477~483.
    343. Pedersen-Bjergaard S, Rasmussen K E. Liquid-liquid-liquid microextraction for sample preparation of biological fluids prior to capillary electrophoresis [J]. Analytical Chemistry, 1999, 71: 2650~2656.
    344. Perhalski R J, Yost R A, Wilder B J. Structural elucidation of drug metabolites by triple quadrupole mass spectrometry [J]. Analytical Chemistry, 1982, 54: 1466~1471.
    345. Perters W H, Roelofs H M. Time-dependent activity and expression of glutathione S-transferases in the human colon adenocarcinome cell line Caco-2 [J]. Biochemical Journal, 1989, 264: 613~616. Prueksaritanont T, Gorham L M, Hochman J H. Comparative studies of drug-metabolizing enzymes in dog,monkey,and human small intestines,and in Caco-2 cells [J]. Drug Metabolism and Disposition, 1996, 24: 634~642.
    346. Pike E, Skuterud B, Kierulf P, et al. The relative importance of albumin, lipoprotein and orosomucoid for drug serum binding [J]. Clinical Pharmacokinetics, 1984, S1: 84~85.
    347. Pilard S, Caradec F, Jackson P, et al. Identification of an N-(hydroxysulfonyl)oxy metabolite using in vitro microorganism screening, high-resolution and tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2000, 14: 2362~2366.
    348. Pohl M, Sprenger G A, Muller M. A new perspective on thiamine catalysis. Current Opinion in Biotechnology, 2004, 15:335~342.
    349. Poon G K, Kwei G, Wang R, et al. Integrating qualitative and quantitative liquid chromatography/tandem mass spectrometric analysis to support drug discovery [J]. Rapid Communications in Mass Spectrometry, 1999, 13: 1943~1950.
    350. Poon G K. Drug metabolism and pharmacokinetics. In Electrospray Ionization Mass Spectrometry, Fundamentals, Instrumentation and Applications, Cole R B (ed). New York: Wiley, 1997, 499~526.
    351. Pozo O J, Ventura R, Monfort N, et al. Evaluation of different scan methods for the urinary detection of corticosteroid metabolites by liquid chromatography tandem mass spectrometry [J]. Journal of Mass Spectrometry, 2009, doi: 10.1002/jms.1568.
    352. Primm T P, Gilbert H F. Hormone binding by protein disulfide isomerase, a high capacity hormone reservoir of the endoplasmic reticulum [J]. Journal of Biological Chemistry, 2001, 276: 281~286.
    353. Pukrittayakamee S, Clemens R, Chantra A, et al. Therapeutic responses to antibacterial drugs in vivax malaria [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene,2001, 95:524~528.
    354. Pusecjer K, Schewitz J, Gfrorer P. On flow identification of metabolites of paracetamol from human urine usine using directly coupled CZE-NMR and CEC-NMR spectroscopy [J]. Analytical Communication, 1998, 35(7):213~215.
    355. Radominska A, Comer K A, Zimniak P, et al. Human liver steroid sulphotransferase sulphates bile acids [J]. Biochemical Journal, 1990, 272: 597~604.
    356. Ragsdale S W. Pyruvate ferredoxin oxidoreductase and its radical intermediate [J]. Chemical reviews, 2003, 103:2333~2346.
    357. Rane V P, Sangshetti J N, Patil K R, et al. Stability-indicating LC determination of nitazoxanide in bulk drug and in pharmaceutical dosage form [J]. Chromatographia, 2008, 455~459.
    358. Rao R U, Huang Y, Fischer K, et al. Brugia malayi: Effects of nitazoxanide and tizoxanide on adult worms and microfilariae of filarial nematodes [J]. Experimental Parasitology, 2008, 121:38~45.
    359. Rapson E B, Chilwan A S, Jenkins D C. Acetylcholinesterase secretion—a parameter for the interpretation of in vitro anthelmintic screens [J]. Parasitology, 1986, 92:425~430.
    360. Rapson E B, Jenkins D C, Chilwan A S. Improved detection of anthelmintic activity in an in vitro screen utilizing adult Nippostrongylus brasiliensis [J]. Parasitology Research, 1987, 73:190~191.
    361. Rasmussen K E, Pedersen-Bjergaard S, Krogh M, et al. Development of a simple in-vial liquid-phase microextraction device for drug analysis compatible with capillary gas chromatography, capillary electrophoresis and high-performance liquid chromatography [J]. Journal of Chromatography A, 2000, 873: 3~11.
    362. Ratna S, Chiba M, Bandyopadhyay L, et al. Futile cycling between 4-methylumbelliferone and its conjugates in perfused rat liver [J]. Hepatology, 1993, 17:838~853.
    363. Rendic S, Di Carlo FJ. Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors [J]. Drug Metabolism Review, 1997, 29: 413~580.
    364. Reviewer guidance: validation of chromatographic methods, Validation, US Department of Health and Human Services, Food and Drug Administration, CDER, Rockville, USA, 1994.
    365. Riviere H E. Veterinary pharmacokinetics in the 21th century [J]. Journal of Veterinary Pharmacology and Therapeutics, 2000, 1:55~56
    366. Robb D B, Covey T R, Bruins A P. Atmospheric pressure photoionization: an ionization method for liquid chromatography–mass spectrometry [J]. Analytical Chemistry, 2000; 72: 3653~3659.
    367. Roberts M S, Magnusson B M, Burczynski F J, et al. Enterohepatic circulation: physiological, pharmacokinetic and clinical implications [J]. Clinical Pharmacokinetics, 2002, 41: 751~790.
    368. Rodriguez-Fonseca C, Amils R, Garrett R A. Fine structure of the peptidyl transfease centre on 23S-like rRNAs deduced from chemical probing of antibiotic-ribosome complexes. Journal of Molecular Biology, 1995, 247:224~235.
    369. Rodriguez-Garcia R, Rodriguez-Guzman L M, Cruz del Castillo A H. Effectiveness and safety of mebendazole compared to nitazoxanide in the treatment of Giardia lamblia in children [J]. Revista de gastroenterología de México, 1999; 64:122~126.
    370. Romark Laboratories. Romark advances development of Alinia in treating Clostridiumdifficile-associated disease [media release]. 2005 Dec 8
    371. Romark Pharmaceuticals. Alinia. (Nitazoxanide) tablets. (Nitazoxanide) for oral suspension [online]. Available from URL: http://www.romark.com [Accessed 2009 Mar 25]
    372. Romberg R, Olofsen E, Sarton E, et al. Pharmacokinetic-pharmacodynamic modeling of morphine-6-glucuronide-induced analgesia in healthy volunteers: absence of sex differences [J]. Anesthesiology, 2004, 100: 120~133.
    373. Romero Cabello R, Guerroro L R, Munoz Garcia M R, et al. Nitazoxanide for the treatment of intestinal protozoan and helminthic infections in Mexico [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1997, 91:701~703.
    374. Roos D S. The apicoplast as a potential therapeutic target in Toxoplasma and other apicomplexan parasites: some additional thoughts [J]. Parasitology Today, 1999, 15:41.
    375. Rosenberg D W, Leif T. Regulation of cytochrome P450 in cultured human colonic cells [J]. Archives of Biochemistry and Biophysics, 1993, 300: 186~192.
    376. Rossen J W, Bouma J, Raatgeep R H, et al. Inhibition of cyclooxygenase activity reduces rotavirus infection at a postbinding step [J]. Journal of Virology, 2004; 78: 9721~9730.
    377. Rossignol J F, Stachulski A. Synthesis and antibacterial activities of tizoxanide and its O-aryl glucuronide [J]. Journal of Chemical Research, 1999, S: 44~45.
    378. Rossignol J F, Abaza H, Friedman H. Successful treatment of human fascioliasis with nitazoxanide [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1998, 92: 103~104.
    379. Rossignol J F, Abu-Zekry M, Hussein A, et al Effect of nitazoxanide for treatment of severe rotavirus diarrhea: randomised double-blind placebo-controlled trial [J]. Lancet, 2006, 368:124~129.
    380. Rossignol J F, Ayoub A, Ayers M S. Treatment of diarrhea caused by Cryptosporidium parvum: a prospective randomized, double-blind, placebo-controlled study of nitazoxanide [J]. The Journal of Infectious Diseases, 2001a, 184:103~106
    381. Rossignol J F, Ayoub A, Ayers M S. Treatment of diarrhea caused by Giardia intestinalis and Entamoeba histolytica or E. diaper: a randomized, double-blind, placebo-controlled study of nitazoxanide [J]. The Journal of Infectious Diseases, 2001b, 184:381~384.
    382. Rossignol J F, Cavier R. 2-Benzamido-5-nitrothiazoles [J]. Chem Abstract, 1975, 83:28216n.
    383. Rossignol J F, Cavier R. New derivatives of 2-benzamido-5-ntro-thiazoles. U.S. Patent. No. 3,950,351, 1976.
    384. Rossignol J F, EI-Gohary Y M. Nitazoxanide in the treatment of viral gastroenteritis: a randomized double-blind placebo-controlled clinical trial [J]. Alimentary Pharmacology & Therapeutics, 2006a, 24:1423~1430.
    385. Rossignol J F, Hidalgo H, Feregrino M, et al. A double-‘blind’placebo-controlled study of nitazoxanide in the treatment of cryptosporidial diarrhoea in AIDS patients in Mexico [J]. Transactions of the Royal Society of Tropical Medicine and Hygiene, 1998, 92 (6): 663~666.
    386. Rossignol J F, Kabil S M, El-Gohary Y, et al. Effect of nitazoxanide in diarrhea and enteritis caused by Cryptosporidium species [J]. Clinical Gastroenterology and Hepatology, 2006a, 4 (3): 320~324.
    387. Rossignol J F, Kabil S M, Said M, et al. Effect of nitazoxanide in persistent diarrhea and enteritis associated with Blastocystis hominis [J]. Clinical Gastroenterology and Hepatology, 2005, 3(10): 987~991.
    388. Rossignol J F, Maisonneuve H. Nitazoxanide in the treatment of Taenia saginata and Hymenolepis nana infections [J]. American Journal of Tropical Medicine and Hygiene, 1984, 33:511~512.
    389. Rossignol J F, Stachulski A V. Syntheses and antibacterial activities of tizoxanide, an N-(Nitrothiazolyl)salicylamide, and its O-aryl glucuronide. Journal of Chemical Research, 1999, S:44~45.
    390. Rossignol J F, Zekry M A, Hussein A, et al. Effect of nitazoxanide for treatment of severe rotavirus diarrhea: randomized double-blind placebo-controlled trial [J]. Lancet, 2006b, 368:124~129.
    391. Rossignol J F. Nitazoxanide in the treatment of acquired immune deficiency syndrome-related cryptosporidiosis: results of the United States compassionate use program in 365 patients [J]. Alimentary Pharmacology & Therapeutics, 2006, 24(5): 887~894.
    392. Rossignol J F. Specific parasiticidal use of 2-benzamido-5-ntro-thiazole derivatives. U.S Patent. No.4,315,018, 1982.
    393. Rousu T, Pelkonen O, Tolonen A. Rapid detection and characterization of reactive drug metabolites in vitro using several isotope-labeled trapping agents and ultra-performance liquid chromatography/time-of-flight mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 2009, 23(6):843~55.
    394. Ryser H J, Fluckiger R. Progress in targeting HIV-1 entry [J]. Drug Discovery Today, 2005, 10, 1085~1094.
    395. Sadiq S T, Glasgow K W, Drakeley C J, et al. Effects of azithromycin on malariometric indices in The Gambia [J]. Lancet, 1995, 346:881~882.
    396. Salamanca F F, Grueiro M M, Fernández A R, et al. Nematocidal activity of nitazoxanide in laboratory models [J]. Parasitology Research, 2003, 91:321~324.
    397. Sara Caleson A, ?stin A, Lena Sunesson A. Development of a LC-MS/MS method for the analysis of volatile primary and secondary amines as NIT(naphthylisothiocyanate) derivatives [J]. Analytical and Bioanalytical Chemistry, 2004, 378: 932~939.
    398. Saruta F, Kuramochi T, Nakamura K, et al. Stage-specific isoforms of complex II (succinate-ubiquinone oxidoreductase) in mitochondria from the parasitic nematode, Ascaris suum [J]. Journal of Biological Chemistry, 1995, 270:928~932.
    399. Schnyder M, Kohler L, Hemphill A, et al. Prophylactic and therapeutic efficacy of nitazoxanide against Cryptosporidium parvum in experimentally challenged neonatal calves [J]. Veterinary Parasitology, 2009, 160:149~154.
    400. Schoen A E, Heller R T, Schweingruber H, et al. High accuracy mass measurements with a high resolution triple quadrupole mass spectrometer. Presented at the 50th ASMS Conference on Mass Spectrom. And Allied Topics, Orlando, F L, 2002.
    401. Schuster H, Chiodini P L. Parasitic infections of the intestine [J]. Current Opinion in Infectious Diseases, 2001, 14(5):587~591.
    402. Schwartz J C, Wade A P, Enke C G, et al. Systematic delineation of scan modes in multidimensional mass spectrometry [J]. Analytical Chemistry, 1990, 62: 1809~1818.
    403. Shahin M M. Ion-molecule interaction in the cathode region of a glow discharge [J]. The Journal of Chemical Physics, 1965, 43: 1798~1805.
    404. Shen D D, Kunze K L, Thummel K E. Enzyme-catalyzed processes of first-pass hepatic and intestinal drug extraction [J]. Advanced Drug Delivery Reviews, 1997, 27: 99~127.
    405. Shirley M A, Wheelan P, Howell S R, et al. Oxidative metabolism of a rexinoid and rapid phase II metabolite identification by mass spectrometry [J]. Drug Metabolism and Disposition, 1997, 25: 1144~1149.
    406. Shockcor J P, Unger S E, Savina P, et al. Application of directly coupled LC–NMR–MS to the structural elucidation of metabolites of the HIV-1 reverse-transcriptase inhibitor BW935U83 [J]. Journal of Chromatography B, 2000, 748: 269~279.
    407. Shou M, Grogan J, Mancewicz J A, et al. Activaction of CYP 3A4: evidence for the simultaneous binding of two substrates in a cytochrome P450 active site [J]. Biochemistry, 1994, 33: 6450~6455.
    408. Siles-Lucas M, Merli M, Gottstein B. 14-3-3 Proteins in Echinococcus: Their role and potential as protective antigens [J]. Experimental Parasitology, 2008, 119:516~523.
    409. Siles-Lucas M, Nunes C P, et al. Comparative analysis of the 14-3-3 gene and its expression in Echinococcus granulosus and Echinococcus multilocularis metacestodes [J]. Parasitology, 2001, 122: 281~287.
    410. Sin C H, Lee E D, Lee M L. Atmospheric pressure ionization time-of-flight mass spectrometry with a supersonic ion beam [J]. Analytical Chemistry, 1991, 63: 2897~2900.
    411. Sinai A P, Payne T M, Carmen J C, et al. Mechanisms underlying the manipulation of host apoptotic pathways by Toxoplasma gondii [J]. International Journal for Parasitology, 2004, 34:381~391.
    412. Sinz M W, Podoll T. The mass spectrometer in drugmetabolism, In Mass Spectrometry in Drug Discovery, Rossi D T, Sinz M W (eds). New York: Marcel Dekker, 2002, 271~336.
    413. Sisson G J. Jeong Y, Goodwin A, et al.. Metronidazole activation is mutagenic and causes DNA fragmentation in Helicobacter pylori and in Escherichia coli containing a cloned H. pylori RdxA+ (nitroreductase) gene [J]. Journal of Bacteriology, 2000, 182:5091~5096.
    414. Sisson G, Goodwin A, Raudoikiene A, et al. Enzymes associated with reductive activation and action of nitazoxanide, nitrofurans, and metronidazole in Helicobacter pylori [J]. Antimicrobial Agents and Chemotherapy, 2002, 46:2116~2123.
    415. Sitia R, Molteni S N. Stress, protein (mis)folding, and signaling: the redox connection. Science’s Signal Transduction Knowledge Environment, 2004, 239:pe27.
    416. Sliskovic I, Raturi A, Mutus B. Characterization of the S-denitrosation activity of protein disulfide isomerase [J]. Journal of Biological Chemistry, 2005, 280:8733~8741.
    417. Smith D P, Giles K, Bateman R H, et al. Monitoring copopulated conformational states during protein folding events using electrospray ionization-ion mobility spectrometry-mass spectrometry [J]. Journal of the American Society for Mass Spectrometry, 2007, 18(12):2180~2190.
    418. Smith M A, Edwards D I. The influence of microaerophilia and anaerobiosis on metronidazole uptake in Helicobacter pylori [J]. Journal of Antimicrobial Chemotherapy,1995, 36:453~46.
    419. Smith P C, Benet L Z, McDonagh A F. Covalent binding of zomepirac glucuronide to proteins: evidence for a schiff base mechanism [J]. Drug Metabolism and Disposition, 1990a, 18: 639~644.
    420. Smith P C, McDonagh A F, Benet L Z. Effect of esterase inhibition on the disposition of zomepirac glucuronide and its covalent binding to plasma proteins in the guinea pig [J]. The Journal of Pharmacology and Experimental Therapeutics, 1990b, 252, 218~224.
    421. Snyder L R, Glajch J L. Practical HPLC method development and validation, second ed., New York: Wiley, 1997, pp. 765
    422. Spahn-Langguth H, Benet L Z. Acyl glucuronides revisited: is the glucuronidation process a toxification as well as a detoxification mechanism [J]? Drug Metabolism Review, 1992, 24: 5~47.
    423. Staack R F, Hopfgartner G. New analytical strategies in studying drug metabolism [J]. Analytical and Bioanalytical Chemistry, 2007, 388:1365~1380.
    424. Steinborner S, Henion J D. Liquid–liquid extraction in the 96-well plate format with SRM LC/MS quantitative determination of methotrexate and its major metabolite in human plasma [J]. Analytical Chemistry, 1999, 71: 2340~2345.
    425. Sterk M, Müller J, Hemphill A, et al. Characterization of a Giardia lamblia WB C6 clone resistant to the isoflavone formononetin [J]. Microbiology, 2007, 153:4150~4158.
    426. Stettler M, Fink R, Walker M, et al. In vitro parasiticidal effect of nitazoxanide against Echinococcus multilocularis metacestodes [J]. Antimicrobial Agents and Chemotherapy, 2003, 47:467~474.
    427. Stettler M, Rossginol J F, Fink R, et al. Secondary and primary murine alveolar echinococcosis: combined albendazole/nitazoxanide chemotherapy exhibits profound anti-parasitic activity. International Journal for Parasitology, 2004, 34, 615~624.
    428. Stockis A, Allemon A M, De Bruyn S, et al. Nitazoxanide pharmacokinetics and tolerability in man after single ascending oral doses [J]. International Journal of Clinical Pharmacology and Therapeutics, 2002a, 40: 213~220.
    429. Stockis A, De Bruyn S, Gengler C, et al. Nitazoxanide pharmacokinetics and tolerability in man during 7 days dosing with 0.5g and 1g b.i.d [J]. International Journal of Clinical Pharmacology and Therapeutics, 2002b, 40: 221~227.
    430. Stockis A, Deroubaix X, Lins R, et al. Pharmacokinetics of nitazoxanide after single oral dose administration in 6 healthy volunteers. International Journal of Clinical Pharmacology and Therapeutics, 1996, 34:349~351.
    431. Stommel E W, Cho E, Steide J A, et al. Identification and role of thiols in Toxoplasma gondii egress [J]. Experimental Biology and Medicine, 2001, 226:229~236.
    432. Stommel E W, Ely K H, Schwartzman J D, et al. Toxoplasma gondii: dithiol-induced Ca2+ flux causes egress of parasites from the parasitophorous vacuole [J]. Experimental Parasitology, 1997, 87: 88~97.
    433. Strott C A. Sulfonation and molecular action [J]. Endocrine Review, 2002, 23:703~732.
    434. Sullayman Adagu I, Nolder D, Warhurst D C, et al. In vitro activity of nitazoxanide and related compounds against isolates of Giardia intestinalis, Entamoeba histolytica and Trichomonas vaginalis [J]. Journal of Antimicrobial Chemotherapy, 2002, 49:103~111.
    435. Sundstrom I, Hedeland M, Bondesson U, et al. Identification of glucuronide conjugates of ketobemidone and its phase I metabolites in human urine utilizing accurate mass and tandem time-of-flight mass spectrometry [J]. Journal of Mass Spectrometry, 2002, 37: 414~420.
    436. Sutton K L, Caruso J A. Liquid chromatography–inductively coupled plasma mass spectrometry [J]. Journal of Chromatography A, 1999, 856: 243~258.
    437. Suzuki K T, Yoneda S, Itoh M, et al. Enriched stable isotopes of elements used as tracers: methods of presenting high-performance liquid chromatographic–inductively coupled argon plasma mass spectrometric data [J]. Journal of Chromatography B, 1995, 670: 63~71.
    438. Swart R, Koivisto P, Markides K E. Column switching in capillary liquid chromatography–tandem mass spectrometry for the quantitation of pg/ml concentrations if the free basic drug tolterodine and its active 5-hydroxymethyl metabolite in microliter volumes of plasma [J]. Journal of Chromatography A, 1998, 828: 209~218.
    439. Sweeny D J, Reinke L A. Sulfation of acetaminophen in isolated rat hepatocytes. Relationship to sulfate ion concentrations and intracellular levels of 3′-phosphoadenosine-5′-phosphosulfate [J]. Drug Metabolism and Disposition, 1988, 16:712~715.
    440. Sweetman S C. Martindale. The complete Drug reference [M]. London: Pharmaceutical press, 2002, 598~599.
    441. Syage JA, Evans MD. Photoionization mass spectrometry as a powerful new tool for drug discovery [J]. Spectroscopy, 2001, 16: 14.
    442. Taylor E W, Jia W, Bush M, et al. Accelerating the drug optimization process: identification, structure elucidation, and quantification of in vivo metabolites using stable isotopes with LC/MSn and the chemiluminescent nitrogen detector [J]. Analytical Chemistry, 2002, 74: 3232~3238.
    443. Taylor W R, Richie T L, Fryauff D J, et al. Malaria prophylaxis using azithromycin: a double-blind, placebo-controlled trial in Irian Jaya [J]. Indonesia Clinical Infectious Diseases, 1999, 28:74~81.
    444. Theodos C M, Griffiths J K, D’Onfro J, et al. Efficacy of nitazoxanide against Cryptosopridium parvum in cell culture and in animal models [J]. Antimicrobial Agents and Chemotherapy, 1998, 42:1959~1965.
    445. Thompson R C. In: Thompson R C, Lymbery A J (Eds.), Echinococcus and hydatid disease. UK, Wallingford: CAB International, 1995.
    446. Tielens, A G. Rotte M C, van Hellemond J J, et al. Mitochondria as we don’t know them [J]. Trends in Biochemical Sciences, 2002, 27:564~572.
    447. Tiller P R, Land A P, Jardine I, et al. Application of liquid chromatography–mass spectrometryn analysis to the characterization of novel glyburide metabolites formed in vitro [J]. Journal of Chromatography A, 1998, 794: 15~25.
    448. Tiller P R, Romanyshyn L A. Implications of matrix effects in ultra-fast gradient or isocratic liquid chromatography with mass spectrometry in drug discovery [J]. Rapid Communications in Mass Spectrometry, 2002; 16: 92~98.
    449. Tiller P R, Romanyshyn L A. Liquid chromatography/tandem mass spectrometric quantification withmetabolite screening as a strategy to enhance the early drug discovery process [J]. Rapid Communications in Mass Spectrometry, 2002; 16: 1225~1231.
    450. Tomb J F, White O, Kerlavage A R, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori [J]. Nature, 1997, 388: 539~547.
    451. Tong W, Chowdhury S K, Chen J C, et al. Fragmentation of N-oxides (deoxygenation) in atmospheric pressure ionization: investigation of the activation process [J]. Rapid Communications in Mass Spectrometry, 2001, 15: 2085~2090.
    452. Tri–Med Co. Ltd. Clinical information on nitazoxanide. Published online. 2002, http://www.trimed.com .au
    453. Tukey R H, Strassburg C P. Human UDP-glucuronosyltransferases: metabolism, expression, and disease [J]. Annual Review of pharmacology and Toxicology, 2000, 40: 581~616.
    454. Turano C, Coppari S, Altieri F, et al. Proteins of the PDI family: unpredicted non-ER locations and functions [J]. Journal of Cellular Physiology, 2002, 193:154~163.
    455. Uip D E, Lima A L, Amato V S, et al. Roxithromycin treatment for diarrhoea caused by Cryptosporidium spp. in patients with AIDS [J]. Journal of Antimicrobial Chemotherapy, 1998, 41:93~97.
    456. Vdovenko A A, Williams J E. Blastocystis hominis: neutral red supravital staining and its application to in vitro drug sensitivity testing [J]. Parasitology Research, 2000, 86:573~581.
    457. Veltkamp A C, Das H A, Frei R W, et al. On-line low-level radiometric detection of [14C]remoxipride in liquid chromatographic effluents. Application to urine samples [J]. Journal of Chromatography, 1987, 384: 357~369.
    458. Verbeeck R K, Cardinal J A, Wallace S M. Effect of age and sex on the plasma binding of acidic and basic drugs [J]. European Journal of Clinical Pharmacology, 1984, 27: 91~97.
    459. Walker M, Rossignol J F, Torgerson P, et al. In vitro effects of nitazoxanide on Echinococcus granulosus protoscoleces and metacestodes [J]. Journal of Antimicrobial Chemotherapy, 2004, 53:1~8.
    460. Wallace A W, Victory J M, Amsden G W. Lack of bioequivalence when levofloxacin and calcium-fortified orange juice are coadministered to healthy volunteers [J]. Journal of Clinical Pharmacology, 2003, 43:539~544.
    461. Walles M, Thum T, Levsen K, et al. Verapamil: new insight into the molecular mechanism of drug oxidation in the human heart [J]. Journal of Chromatography A, 2002, 970: 117~130.
    462. Waters. Waters Micromass Quattro micro API Mass Spectrometer Operator’s Guide. 71500058602, Revision C, 2005
    463. Weidolf L, Covey T R. Studies on the metabolism of omeprazole in the rat using liquid chromatography/ionspray mass spectrometry and the isotope cluster technique with [34S]omeprazole [J]. Rapid Communications in Mass Spectrometry, 1992, 6: 192~196.
    464. Weinshilboum R M, Otterness D M, Aksoy I A, et al. Sulfation and sulfotransferases. 1. Sulfotransferase molecular biology: cDNA and genes [J]. FASEB Journal, 1997, 11:3~14.
    465. Weissinger J, Crawford L M. Pharmacological principles of the disposition of drugs and other xenobiotics. In: Crawford, L M, Franco, D A, eds. Animal Drugs and Human Health. Basel, Lancaster: Technomic Publishing Company, 1994, Ch. 2, pp 45.
    466. Weissmann C. Molecular genetics of transmissible spongiform encephalopathies [J]. Journal of Biological, 1999, 274:3~6.
    467. Wiebkin P, Fry J R, Jones C A, et al. Biphenyl metabolism in isolated rat hepatocytes Effect of induction and nature of the conjugates [J]. Biochemical Pharmacology, 1978, 27: 1899~1907.
    468. Wilkinson B, Gilbert H F. Protein disulfide isomerase [J]. Biochimica et Biophysica Acta, 2004, 1699: 35~44.
    469. Wilkinson G R, Shand D G. A physiological approach to hepatic drug clearance [J]. Clinical Pharmacology and Therapeutics, 1975, 18: 377~390.
    470. Williams J A, Hyland R, Jones B C, et al. Drug–drug interactions for UDP-glucuronosyltransferase substrates: a pharmacokinetic explanation for typically observed low exposure (auci/auc) ratios [J]. Drug Metabolism and Disposition, 2004, 32: 1201~1208.
    471. Williams J A, Stone E M, Fakis G, et al. N-acetyltransferases, sulfotransferases andheterocyclic amine activation in the breast [J]. Pharmacogenetics, 2001, 11:373~388.
    472. Wilm M, Mann M. Analytical properties of the nanoelectrospray ion source [J]. Analytical Chemistry, 1996, 68:1~8.
    473. Wilshire H. Physico-chemical properties of drugs and metabolites and their extraction from biological material. In Principles and Practice of Bioanalysis, Venn RV (ed). London: Taylor and Francis, 2000, 1~27.
    474. Wolfe R R. Radioactive and Stable Isotope Tracers in Biomedicine. New York: Wiley-Liss, 1992.
    475. Wong P S H, Yoshioka K, Xie F, et al. In vivo microdialysis/liquid chromatography/tandem mass spectrometry for the online monitoring of melatonin in rat [J]. Rapid Communications in Mass Spectrometry, 1999, 13: 407~411.
    476. Woodford-Williams E, Alvarez A S, Webster D, et al. The serum protein patterns in“normal”and pathological ageing [J]. Gerontologia, 1964, 10: 86~99.
    477. Woolf T F. Handbook of drug metabolism. NewYork: Marcel Dekker Inc, 1999.
    478. Wu R, McMahon T B. Structures, energetics, and dynamics of gas phase ions studied by FTICR and HPMS [J]. Mass Spectrometry Reviews, 2009, doi: 10.1002/mas.20223
    479. Xu R N, Fan L, Rieser M J, et al. Recent advances in high-throughput quantitative bioanalysis by LC-MS/MS [J]. Journal of Pharmaceutical and Biomedical Analysis, 2007, 44: 342~355.
    480. Yamamoto Y, Hakki A, Friedman H, et al. Nitazoxanide, a nitrothiazolide antiparasitic drug, is an anti-Helicobacter pylori agent with anti-vacuolating toxin activity [J]. Chemotherapy, 1999, 45 (4): 303~312.
    481. Yamaoka K, Nakagawa T, Uno T. Application of Akaike’s Information Criterion (AIC) in the evaluation of linear pharmacokinetics equations [J]. Journal of Pharmacokinetics and Biopharmaceutics, 1978, 6(2): 165~175.
    482. Yamashita M, Fenn J B. Electrospray ion source [J]. Another variation on the free-jet theme [J]. The Journal of Physical Chemistry, 1984, 88: 4451~4459.
    483. Yamazoe Y, Nagata K, Ozawa S, et al. Structural similarity and diversity of sulfotransferases [J]. Chemico-Biological Interactions, 1994, 92:107~117.
    484. Yang C, Henion J. Atmospheric pressure photoionization liquid chromatographic–mass spectrometric determination of idoxifene and its metabolites in human plasma [J]. J Chromatography A, 2002, 970: 155~165.
    485. Yang L, Mann T D, Little D, et al. Evaluation of a four-channel multiplexed electrospray triple quadrupole mass spectrometer for the simultaneous validation of LC/MS/MS methods in four different preclinical matrixes [J]. Analytical Chemistry, 2001, 73: 1740~1747.
    486. Yee S. In vitro permeability across Caco-2 cells(clonic) can predict in vivo(small intestinal),absorption in man-fact or myth [J]. Pharmaceutical Research, 1997, 14: 763~766.
    487. Yin Y, Martin J, McCarter JP, et al. Identification and analysis of genes expressed in the adult filarial parasitic nematode Dirofilaria immitis [J]. International Journal for Parasitology, 2006, 36: 829~839.
    488. Yonish-Rouach E, Grunwald D, Wilder S, et al. p53-mediated cell death: relationship to cell cycle control [J]. Molecular and Cellular Biology, 1993, 13(3):1415~1423.
    489. Zamek-Gliszczynski M J, Hoffmaster K A, Nezasa K I, et al. Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate,glucuronide, and glutathione metabolites [J]. European Journal of Pharmaceutical Sciences, 2006, 27: 447~486.
    490. Zamek-Gliszczynski M J, Hoffmaster K A, Nezasa K I, et al. Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites [J]. European Journal of Pharmaceutical Sciences, 2006, 27: 447~486.
    491. Zamek-Gliszczynski M J, Hoffmaster K A, Nezasa K I, et al. Integration of hepatic drug transporters and phase II metabolizing enzymes: Mechanisms of hepatic excretion of sulfate, glucuronide, and glutathione metabolites [J]. European Journal of Pharmaceutical Sciences, 2006, 27: 447~486.
    492. Zell M, Husser C, Hopfgartner G. Low picogram determination of Ro 48–6791 and its major metabolite, Ro 48–6792, in plasma with column switching microbore high performance liquid chromatography coupled to ion spray tandem mass spectrometry [J]. Rapid Communications in Mass Spectrometry, 1997, 11: 1107~1114.
    493. Zeugin T, Zysset T, Cotting J. Therapeutic monitoring of albendazole: a high performance liquid chromatography method for determination of its active metabolite albendazole sulfoxide [J]. Therapeutic Drug Monitoring, 1990, 12:187~190.
    494. Zhang H Y. Detection and characterization of metabolites in biological matrices using mass defect filtering of liquid chromatography/high resolution mass spectrometry data [J]. Drug Metabolism and Disposition, 2006, 34:1722~1733.
    495. Zhang H, Henion J, Yang Y, et al. Application of atmospheric pressure ionisation time-of-flight mass spectrometry coupled with liquid chromatography for the characterization of in vitro drug metabolites [J]. Analytical Chemistry, 2000b, 72: 3342~3348.
    496. Zhang H, Henion J. Quantitative and qualitative determination of estrogen sulfates in human urine by liquid chromatography/tandem mass spectrometry using 96-well technology [J]. Analytical chemistry, 1999, 71, 3955~3964.
    497. Zhang N, Fountain S T, Bi H, et al. Quantification and rapid metabolite identification in drug discovery using API time-of-flight LC/MS [J]. Analytical Chemistry, 2000a, 72: 800~806.
    498. Zhang W S, Li A L. Medicinal Chemistry. Beijing: Higher Education Press, 1999, p. 43.
    499. Zhang Y F, Cheng XY, Zhong D F. Pharmacokinetics of loratdine and its active metabolite descarboethoxyloratadine in healthy Chinese subjects [J]. Acta Pharmacologica Sinica, 2003, 24(7): 715~718.
    500. Zhao Z Z, Zhang L F, Xue F Q, et al. Liquid chromatography–tandem mass spectrometry analysis of nitazoxanide and its major metabolites in goat. Journal of Chromatography B, 2008a, 875(2): 427~436.
    501. Zhao Z Z, Zhang L F, Xue F Q, et al. Metabolic profile of nitazoxanide in goat feces. Chromatographia, 2008b, 68(9–10): 731~738.
    502. Zimmer D. Introduction to quantitative liquid chromatography-tandem mass spectrometry (LC–MS–MS) [J]. Chromatographia, 2003, 57: S325~S332.
    503. Zulu I, Kelly P, Njobvu L, et al. Nitazoxanide for persistent diarrhoea in Zambian acquired immune deficiency syndrome patients: a randomized-controlled trial [J]. Alimentary Pharmacology & Therapeutics, 2005, 21 (6): 757~763.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700