用户名: 密码: 验证码:
TGF-β_1诱导的大鼠心肌细胞肥大及葛根素干预的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
左室肥厚(Left Ventricular Hypertrophy,LVH)是高血压主要的靶器官损害之一,约有30%的高血压并发左室肥厚。众多研究表明LVH是发生心血管事件的独立危险因素。因此,逆转LVH是高血压治疗的主要目标之一。心肌细胞肥大是左室肥厚的主要病理变化,其发生、发展的分子机制正越来越受到重视。对心肌细胞肥大病理生理过程中细胞内信号转导机制的研究将有助于进一步探讨左室肥厚的发病机制,并为采取积极有效的药物治疗寻找新途径。
     转化生长因子β1(Transforming growth factor beta 1,TGF-β1)是一种调控细胞生长的重要细胞因子,参与免疫调节、创伤修复、胚胎发生、细胞增殖与凋亡、骨髓造血等调控。研究表明TGF-β1参与了高血压心肌肥厚、冠状动脉粥样硬化、心肌梗死后心力衰竭及心肌病等多种心血管疾病的发生、发展过程。近年研究发现TGF-β1由心肌成纤维细胞在血管紧张素II受体(Angiotensin II Receptor,ATR II)的刺激下,通过内分泌及旁分泌的方式产生,参与心肌细胞肥大、细胞外基质增生及心肌成纤维细胞肥大和增殖的病理生理过程,但其具体机制尚不明确。TGF/Smad (Drosophlia mothers against dpp and Celegans Sma,Smad)通路参与了心肌细胞肥大的过程,其具体作用复杂,且与其他信号通路交错表达,仍有待进一步研究。对TGF-β1在心肌细胞肥大中的作用特点、TGF-β1诱导心肌肥厚时调控核转录的下游信号分子及针对TGF-β1致肥大效应的干预手段等也研究较少。
     本研究以TGF-β1诱导的新生大鼠心肌细胞体外原代培养为实验模型,从观察药物刺激后心肌细胞的肥大和凋亡效应,并观察细胞内信号转导通路Smads的作用、癌基因p15及c-myc的表达、以及葛根素干预等的影响,旨在从多个角度探讨TGF-β1对心肌细胞肥大中的作用,为左室肥厚的发病机制和临床药物防治提供依据。实验内容主要包括以下三部分:
     第一部分新生SD大鼠心肌细胞的原代培养及鉴定
     目的建立新生SD大鼠心肌细胞体外原代培养模型。
     方法采用胰酶分步消化法、差速贴壁法及化学抑制法分离、纯化新生SD大鼠心肌细胞后作原代培养,采用倒置显微镜、透射电镜观察细胞。
     结果倒置显微镜下观察原代培养的心肌细胞呈不规则三角形、多边形,多数单个或成团细胞出现自发性搏动。培养的心肌细胞在3~7天内细胞形态和细胞搏动良好。透射电镜下观察心肌细胞线粒体丰富,肌丝排列整齐。
     结论采用胰酶消化法、差速贴壁法及化学抑制法建立体外原代培养的新生SD大鼠心肌细胞,经倒置显微镜和透射电镜观察证实所培养的细胞为心肌细胞。
     第二部分TGF-β1诱导的心肌细胞肥大和凋亡及其与Smads通路和癌基因相关蛋白的关系
     目的
     1.观察TGF-β1诱导的心肌细胞肥大和凋亡及其相互关系;
     2.探讨Samds通路在TGF-β1诱导心肌细胞肥大时的作用;
     3.了解TGF-β1诱导心肌细胞肥大时癌基因相关蛋白p15、c-myc的表达及其与Samds通路的相关性。
     方法
     应用不同浓度的TGF-β1(0.1μg/L、1μg/L、3μg/L)分别刺激15min、30min、1h、2h、24h后观察TGF-β1对心肌细胞的影响,单纯DMEM培养液组为空白对照组。TGF-β1诱导孵育24h,采用3H-亮氨酸掺入法检测心肌细胞蛋白合成速率,PI标记细胞内RNA含量,实时荧光定量PCR检测心肌细胞内ANF、α-MHC及β-MHC的mRNA表达,TdT-FragEL染色及FCM检测TGF-β1诱导的心肌细胞凋亡,透射电镜观察心肌细胞形态学变化。TGF-β1(3μg/L)作诱导浓度孵育心肌细胞15min、30min、1h、2h、24h,Western-blot检测Smad2、pSmad2、Smad2/3、p15、c-myc的蛋白表达。同时应用Smad2siRNA与TGF-β1(3μg/L)共孵育2小时和24h,特异性抑制Smads表达后观察心肌细胞蛋白合成速率、心脏胚胎型基因和Smad2的mRNA表达及Smad2、p15和c-myc的蛋白表达。
     结果
     1.TGF-β1对心肌细胞的影响
     1.1 3H-亮氨酸掺入法检测心肌细胞蛋白合成速率TGF-β1刺激心肌细胞24h后,心肌细胞蛋白合成速率均高于空白对照组,呈浓度依赖性(P<0.01)。抑制Smad2后心肌细胞合成速率较TGF-β1组明显下降(P<0.01)。
     1.2 PI标记的RNA含量检测TGF-β1组PI荧光强度明显高于对照组,其中TGF-β1(3μg/L)组荧光强度最高(92.89±3.12)(P<0.01),呈浓度依赖性(P<0.05)。
     1.3实时荧光定量PCR检测心肌细胞胚胎型心脏基因与对照组比较,TGF-β1组中ANFmRNA、β-MHCmRNA水平明显增高(1.61±0.14)、(2.28±0.13()P<0.01),呈剂量依赖性;α-MHCmRNA表达相对减少(0.69±0.05)(P<0.01)。
     1.4 TdT-FragEL染色心肌细胞凋亡对照组心肌细胞凋亡率为(1.3%±0.08%),TGF-β1组心肌细胞凋亡率明显增加,TGF-β1(3μg/L)组凋亡率最高达(9.4%±1.16%)(P<0.01)。
     1.5 FCM检测心肌细胞凋亡TGF-β1刺激可使心肌细胞凋亡率增加,Caspase-3表达增加,且呈剂量依赖性(P<0.01)。Capase-3表达与心肌细胞凋亡率呈正相关。
     1.6透视电镜观察心肌肥大和凋亡正常心肌细胞线粒体丰富,细胞核很小。TGF-β1(3μg/L)组心肌细胞线粒体肿胀增大,高尔基体丰富,心肌细胞核及核仁增大变形,异染质丰富,并且部分心肌细胞出现染色质边集或凋亡小体。对照组细胞形态正常,TGF-β1组观察到细胞肥大和凋亡形态同时出现。
     2. Smads通路表达
     2.1 Smad2mRNA水平检测心肌细胞中Smad2的mRNA水平在TGF-β1(3μg/L)刺激2h后显著上升,在Smad2基因沉默后较TGF-β1组明显下降(P<0.01)。
     2.2 Smads蛋白表达空白对照组心肌细胞pSmad2、Smad2/3微量表达,Smad2有少量表达;TGF-β1(3μg/L)刺激后pSmad2、Smad2/330min内即表达增加,至1~2h后达高峰,24h开始下降,蛋白表达量均较对照组显著增高(P<0.01)。Smad2在TGF-β1(3μg/L)刺激后有所增加(P<0.05),但与同时段内pSmad2相比,pSmad2增加明显(P<0.01)。抑制Smad2mRNA表达后,心肌细胞pSmad2蛋白水平较TGF-β1对照组明显下降(P<0.01)。心肌细胞蛋白合成速率与Smad2mRNA水平及pSmad2蛋白表达呈正相关(P<0.05)。
     3. p15及c-myc蛋白表达
     p15蛋白在对照组中表达极微(0.08±0.02),TGF-β1刺激后24h后p15蛋白表达增加(0.28±0.03)(P<0.01)。TGF-β1刺激后,c-myc表达也增高,作用2小时后表达最高(0.42±0.03)(P<0.01),24h后表达开始下降。与TGF-β1组相比,抑制Smad2表达后,p15蛋白降低(P<0.01),c-myc无明显改变(P>0.05)。心肌细胞蛋白合成速率与c-myc、p15蛋白表达呈正相关(P<0.05)。结论
     1. TGF-β1诱导大鼠心肌细胞肥大的同时也诱导心肌细胞凋亡增加。
     2. TGF-β1诱导心肌细胞肥大的过程中Smad2蛋白磷酸化显著增高,Smad2/3、Smad2表达也增加。
     3. TGF-β1诱导心肌细胞肥大时伴随原癌基因c-myc和抑癌基因p15的蛋白表达增加;p15是Smad2通路的下游信号分子。
     第三部分葛根素对TGF-β1诱导心肌细胞肥大的干预研究
     目的
     1.观察葛根素对TGF-β1诱导的心肌细胞肥大和凋亡的影响;
     2.观察葛根素、Smad2siRNA对Smad2、p15、c-myc表达的影响;探讨葛根素对心肌细胞肥大的作用机制。
     方法
     葛根素(0.g1/L、1g/L、5g/L)或Smad2siRNA分别与TGF-β1(3μg/L)共同诱导培养心肌细胞24h后,采用3H-亮氨酸掺入法检测心肌细胞蛋白合成速率,实时荧光定量PCR检测心肌细胞内ANF、α-MHC及β-MHC的mRNA水平, FCM检测心肌细胞凋亡率。Western-blot检测分别培养2h及24h后Smad2、pSmad2、Smad2/3、p15、c-myc的表达。
     结果
     1.葛根素可明显改善TGF-β1诱导的心肌细胞肥大,葛根素干预后心肌细胞3H-掺入量为(20463.10±3052.15),比TGF-β1组(48625.18±3325.47)明显下降(P<0.01)。Smad2siRNA也可有效干预心肌细胞肥大(28675.08±2168.34),两组比较葛根素组干预更为明显(P<0.01)。
     2.经葛根素干预后,心肌细胞ANFmRNA、β-MHCmRNA水平较TGF-β1对照组下降,并且葛根素组(1.41±0.15、2.36±0.14)较Smad2siRNA组下降更明显(1.83±0.12、3.85±0.23)(P<0.01)。
     3.葛根素与TGF-β1共孵育24h后,可明显降低TGF-β1诱导的心肌细胞凋亡率(12.54%±1.12%),其中葛根素(5g/L)+TGF-β1(3μg/L)组凋亡率最低(2.83%±0.40%),呈剂量依赖性(P<0.01)。葛根素干预后Caspase-3水平明显下降,呈剂量依赖性(P<0.01)。
     4.与TGF-β1对照组相比,葛根素的干预使Smad2mRNA、pSmad2蛋白表达均明显下降(P<0.01),p15蛋白表达下降(P<0.01),c-myc表达无明显改变(P>0.05)。Smad2siRNA干预后,Smad2mRNA、pSmad2蛋白表达较葛根素组下降更明显(P<0.01),但对c-myc、p15的作用与葛根素组相比无明显差别(P>0.05)。
     结论
     1.葛根素可有效改善TGF-β1诱导的心肌细胞肥大和细胞凋亡;葛根素可通过明显降低Smad2磷酸化而改善心肌细胞肥大。
     2.葛根素干预可下调TGF-β1诱导下心肌细胞中p15的表达,而c-myc表达则无明显改变;
     3. Smad2siRNA也可有效干预心肌细胞肥大,两者比较葛根素干预效果更为明显。
Left ventricular hypertrophy (LVH)was one of the most important functional lesion of target organ(TO)about hypertension. 30% hypertension patients were complicated by LVH and 17% patients died of coronary heart disease(CHD)or heart failure (HF) coherented with hypertension. LVH was the independent risk factor for cardiovascular events, and for this reason retroconversion of LVH may became one of the end-all targets for hypertension therapy. The main pathological change of LVH was cardiomyocytes hypertrophy. Although the characters and mechanisms were thinked highly of people there was still lack of deeply learning about cardiomyocytes hypertrophy development. The study of the mechanisms about signal transduction intra-cellular may be helpful to investigate pathogenesy of cardiomyocytes hypertrophy to move forward a signle step.
     Transtorming growth factor beta 1(TGF-β1) was one of the significant cell factors who regulated growth with various functions. TGF-β1 has been predicted to contribute to the pathologies of LVH、CHD and HF after myocardial infarction(MI). Angiotensin II receptor (ATR II) was reported to stimulate paracrine and autocrine about TGF-β1 that a wide array of regulater for proliferation and hypertrophy of cardiac fibroblasts( CFs )、hyperplasy of extracellular matrix ( ECM ) and cardiomyocytes hypertrophy.The specific mechanisms of the regulation about TGF-β1 and TGF/Smad (Drosophlia mothers against dpp and Celegans Sma) for cardiomyocytes were still unknown.
     In our study cardiomyocytes hypertrophy were induced by TGF-β1 in rat to research mechanisms about cardiomyocytes hypertrophy though detecting cardiomyocytes hypertrophy and apoptosis, expressions of Smads, changes in p15 and c-myc. Intervention of puerarin was also observated to supply exprement data for drug prevention and cure. The experiments contained there parts as below.
     Part One: Primary culture and identify of cardiomyocytes in rat Objective
     To construct the cardiomyocytes primary culture model in rat.
     Methods
     Cardiomyocytes were isolated by trypsin digestion and differential attachment methods from neonatal Sprague Dawley (SD) rats, identified by inverted microscope and transmission electron microscope (TEM) observation.
     Results
     Observed with inverted microscope, primary cardiomyocytes appeared irregularity triangle and polygonm, and the most part of cardiomyocytes spontaneous beated rhythmically. Observed with TEM, cardiomyocytes were plentiful with mitochondria, and actin filaments were lined up in order.
     Conclusion
     It was succeed to primary culture neonatal SD rat cardiomyocytes by trypsin digestion and differential attachment methods.
     Part Two: Cardiomyocytes hypertrophy and apoptosis induced by TGF-β1 to observe Smads pathway and oncogene protein expressions
     Objectives
     To observe the hypertrophy and apoptosis of cardiomyocytes induced by TGF-β1 and determine the expression of Smads pathway in neonatal SD rat catdiomyocytes, and the expressions of oncogene protein p15 and c-myc were also detected.
     Methods
     Cardiomyocytes were stimulated by TGF-β1 with different concentrations (0.1μg/L、1μg/L、3μg/L) , and TGF-β1(3μg/L) stimulated cardiomyocytes for different periods of 15min、30min、1h、2h and 24h. Velocity of cardiomyocytes protein were observed by 3H-Leu incorporation, and Propidium iodide (PI)staining was used to assayed RNA contents. Apoptosis were assayed by flow cytometry (FCM) and FragEL staining. The hypertrophic response was assayed by measuring the expressions of ANF、α-MHC andβ-MHCmRNA detected by real-time PCR. Expressions of hypertrophy and apoptosis were detected by TEM. The Western-blot was performed to detected protein expressions of Smad2、pSmad2、Smad2/3、p15 and c-myc. RNAi was used to be a specific inhibitor to Smad2 as a control. Cardiomyocytes in Smad2siRNA control group were essayed by 3H-Leu incorporation、real-time PCR and western-blot.
     Results
     1. The effects of TGF-β1 on cardiomyocytes
     3H-Leu incorporation in cardiomyocytes Stimulated with TGF-β1 for 24h, to compare with the black control, the rate of protein synthesis in cardiomyocytes was elevated significantly in concentration-dependent manner (P﹤0.01). While in the Smad2siRNA control group the rate of protein synthesis was decreased than TGF-β1group(P﹤0.01).
     RNA contents detected by PI staining Fluorescence intensity of PI in TGF-β1 group was obviously higher than control group (P﹤0.01).
     Embryon gene detected by real-time PCR Expression Levels of ANFmRNA andβ-MHCmRNA were higher in TGF-β1 group and elevated significantly in concentration-dependent manner (P﹤0.01).
     Apoptosis detected by TdT-FragEL staining Rates of apoptosis in cardiomyocytes induced by TGF-β1were improved(P<0.01).
     FCM assaied apoptosis Changes of cardiomyocytes apoptosis induced by TGF-β1 was associated with upregulation of Caspase-3(P<0.01).
     TEM observed cardiomyocytes hypertrophy and apoptosis Cardiomyocytes in control group were plenty of cytomicrosome. Cardiomyocytes in TGF-β1 group showed hypertrophy with increase of actin filament and tumefaction of cytomicrosome, and a part of cardiomyocytes in TGF-β1 group also expressed apoptosis by concentrate of caryon and vacuoled of cytomicrosome. Hypertrophy and apoptosis apperanced in TGF-β1 group cardiomyocytes at the same time.
     2. TGF-β1 activates Smads signal
     Smad2 mRNA levels Smad2 mRNA level was higher than black control group in cardiomyocytes induced by TGF-β1 and the Smad2 mRNA level was also efficiently downregulated by RNAi to Smad2(P<0.01).
     Smads proteins TGF-β1 induced early activation of pSmad2 and Smad2/3 at 30 minutes and max expression at 2h, and TGF-β1 induced significant pSmad2 expressions until 24 hours(P<0.01). Expressions of Smad2 were not as obviously as pSmad2 ( P<0.05 ) . Smad2 phosphorylation was dowenregulated efficiently in Smad2siRNA control group(P<0.01)
     3. Oncogene p15 and c-myc TGF-β1 induced the early activation of c-myc and late activation of p15 in cardiomyocytes compared with control group (P<0.01). In Smad2siRNA control group p15 was inhibited alone with pSmad2(P<0.01).
     Conclusions
     1. TGF-β1 induced cardiomyocytes hypertrophy and apoptosis at the same time.
     2. TGF-β1 activatied early and late Smad2 activation and upregulation to induced cardiomyocytes hypertrophy.
     3. TGF-β1 also activated ealy upregulation of c-myc and late upregulation of p15. C-myc and p15 expressions maybe assiocatied with cardiomyocytes hypertrophy. p15 could be the downstream signaling molecule of Smads pathway.
     Part Three: Study of puerarin intervetion on hypertrophic cardiomyocytes induced by TGF-β1
     Objective
     To investigate the effects of puerain intervention on hypertrophic cardiomyocytes induced by TGF-β1 and obveried the inhibition of puerarin to phosphorylation of Smad2 that was compared with Smad2siRNA intervention.
     Methods
     Puerarin(0.1g/L、1g/L、5g/L) with TGF-β1(3μg/L ) co-stimulated or Smad2siRNA with TGF-β1(3μg/L) co-stimulated for 2h and 24h for assessing protein synthesis rate, ANF,β-MHC andα-MHCmRNA expression, pSmad2, Smad2, p15 and c-myc proteins changes in cardiomyocyte.The methods of 3H-Leu incorporation, real time PCR, FCM and Western-blot were used.
     Results
     1. Hypertrophy induced by TGF-β1 were obviousily changed by intervention of puerain and Smad2siRNA. Compared with TGF-β1 group, the protein synthesis rate in cardiomyocytes was downregulated significantly in puerain group than in siRNA group (P<0.01).
     2. It was shown that levels of ANFmRNA andβ-MHCmRNA were downregulated by puerain and Smad2siRNA especialiy by puerain (P<0.01).
     3. Puerarin(1g/L) with TGF-β1(3μg/L ) co-stimulated cardiomyocytes were able to decrease apoptosis rate compared with TGF-β1(3μg/L) group (P<0.01). Level of Caspase-3 was also downregulated (P<0.01).
     4. PSmad2 protein was significantly downregulated by puerarin. p15 protein was inhibited by puerarin intervention. And Smad2siRNA intervention could also inhibited pSmad2 and p15 protein expression(P<0.01).
     Conclusions
     1. Puerarin was able to amendment cardiomyocytes hypertrophy and apoptosis induced by TGF-β1 in rat.
     2. Hypertrophy of cardiomyocytes was depressed by puerain with marked downregulation of Smad2 phosphorylation. Intervention of puerarin could drcreased p15 protein expressions in cardiomyocytes.
     3. Compared with Smad2siRNA intervention, puerarin intervention had preferable effect.
引文
[1]英俊岐,王歆月,濮蓉晖,等.高血压左室肥厚形成及其逆转研究进展.医学综述, 2003, 9(12): 738-740.
    [2] Song H, Foster AH, Chi-Ming W, et al. Presentation and localization of transforming growth factor beta isoforms and its receptor subtypes in human myocardium in the absence and presence of heart failure. Circulation, 1997, I: I-362.
    [3] Sporn MB, Robert AB, Wakefield LM, et al. Transforming growth factor-beta: biological function and chemical structure. Science, 1986, 233(4763): 532-534.
    [4] Massague J.TGF-βsignal transduction. Annu Rev Biochem, 1998, 67: 753-791.
    [5] Li G, Stacey L. Elevated insμlin-like growth factor-I and transforming growth factor-beta1 and their receptors in patients with idiopathic hypertrophic obstructive cardiomy-opathy. Apossib lemechanism.Circμlation, 1998, 98(19): 144-149.
    [6] Schultz J J,Witt S A,Glascock B J,et al. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angitensin II. J Clin Invest, 2002, 109(6):787-796.
    [7] Seiya K, Seiju U, Kiyoushi T, et al. Ectopic expression of Smad7 inhibit transforming growth facotr-beta responses in vascular smooth muscle cells. Life Sciences, 2001, 69: 2641-2652.
    [8] Weibin Shi, Chuanxi Sun, Bin He, et al. GADD34–PP1c recruited by Smad7 dephosphorylates TGF? type I receptor. J Cell Biol, 2004, 164(2):291-300.
    [9]黄俊,覃国辉,马业新.转化生长因子-β1及其胞内信号通路SMADs在大鼠心肌肥厚中的作用.中国病理生理杂志, 2004, 20(9):1601-1604.
    [10]陈炳华,黄俊,马业新.转化生长因子β1在大鼠心肌细胞肥大中的作用.中国基层医药, 2004, 11(7):771-772.
    [11] Tan FL, Yin JQ.Application of RNAi to cancer research and therapy. Front Biosic, 2005, 10:1946-1960.
    [12]江志平,青立中,徐新,等.葛根素对高血压病患者左室肥厚的影响.实用心脑肺血管病杂志, 2004, 12(10): 260-262.
    [13]张玲,王洪新,齐志敏,等.葛根素对大鼠心肌肥厚的相关细胞因子的影响.中成药,2007, 29(7):960-963.
    [14] Mezei O, Banz WJ,Sterger RW, et al. Soy isoflavones exert antidiabetie and Hypoplidemic effects through the PPAR pathways in obese Zuker rats and murine. Cell J Nutr, 2003, 133:1238-1243.
    [15] Babiker FA, De Wndt LJ, Van Eiekels M, et al. 17beta-estradiol amagonizes caxdiomyocytes hypertrophy by auocrine/paracine stimulation of a guanylyl cyclase A receptor-cycle guanosine mo nopho sphate-dependeni prote in kinase pathway. Circulation, 2004, 109(2): 269-276.
    [16] Xie RQ, Du J, Hao YM. Myocardial protection and mechanism of Puerarin Injection on patients of coronary heartdisease with ische-mia/reperfusion.Chin J IntegrMed, 2003, 23(12): 895-897.
    [17] Gray MO, Long CS, Karliner JS, et al. Angiotension II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts. Cardiovasc Res, 1998, 40: 352-363.
    [18] Matsubara H, Moriguchi Y, Mori Y, et al. Transactivation of EGF receptor induced by angiotensin II regulates fibronectin and TGF-beta gene expression via transcriptional and post-transcriptional mechanisms. Mol-Cell-Biochem, 2000, 212(1-2): 187-201.
    [19] Watkins SJ, Jonker L, Arthur HM. A direct interaction between TGFbeta activated kinase 1 and the TGFbeta type II receptor: implications for TGFbeta signalling and cardiac hypertrophy. Cardiovasc Res, 2006, 69(2):432-439.
    [20] Carroll JF, Tyagi SC.Extracellular matrix remodeling in the heart of the homocysteinemic obese rabbit. Am-J-Hypertens, 2005, 18(5): 692-698.
    [21] Staller P, Peukert K, Kiermaier A, et al. Repression of p15INK4b expression by Myc throμgh association with Miz-1. Nat Cell Biol, 2001, 3(4):392-399.
    [22] Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. Nat Med, 2004, 10(8):789-799.
    [23] Han HJ, Han JY, Heo JS,et al. ANGII-stimulated DNA synthesis is mediated by ANG II receptor-dependent Ca(2+)/PKC as well as EGF receptor-dependent PI3K/Akt/mTOR/p70S6K1 signal pathways in mouse embryonic stem cells. J-Cell-Physiol, 2007, 211(3): 618-629.
    [24] Zhang SQ, Ding B, Guo ZG, et al. Inhibitory effect of antisense oligo deoxynucleotide to p44/p42 MAPK on angiotensin II-induced hypertrophic response in cultured neonatal rat cardiac myocyte. Acta-Pharmacol-Sin, 2004, 25(1): 41-46.
    [25] Manabe I, Shindo T, Nagai R. Gene expression in fibroblasts and fibrosis: involvement in cardiac hypertrophy. Circ Res, 2002, 99:1103-1113.
    [26] Wansheng Wang, Xiao R, Huang, et al. Ellery Canlas Essential Role of Smad3 in Angiotensin II–Induced Vascular Fibrosis. Circulation Research, 2006, 98:1032-1039.
    [27] Redondo S, Ruiz E, Padilla E, et al. Role of TGF-beta1 in vascular smooth muscle cell apoptosis induced by angiotensin II. Eur J Pharmacol, 2007, 556(1-3):36-44.
    [28] Ono H, Saitoh M, Ono Y, et al. Imidapril improves L-NAME-exacerbated nephrosclerosis with TGF-beta 1 inhibition in spontaneously hypertensive rats. J Hypertens, 2004, 22(7):1389-1395.
    [29] Xu C, Lee S, Singh TM, et al. Molecular mechanisms of aortic wall remodeling in response to hypertension. J Vasc Surg, 2001, 33(3):570-578.
    [1] Yamauchi Y, Harada A, Kawahara K. Changes in the fluctuation of interbeat intervals in spontaneously beating cultured cardiac my-ocytes: experimental and modeling studies. Biological Cybernetics, 2002, 86(2):147-154.
    [2] Galvez A, Morales MP, Eltit JM, et al. A rapid and strong apoptotic process is triggered by hyperosmotic stress in cultured rat cardiacmyocytes. Cell Tissue Res, 2001, 304(2):279-285.
    [3] Simpson P, Savion S. Differentiation of rat myocytes in single cell cultures with and without proliferating nonmyocardial cells.Cross-striations, ultrastructure, and chronotropic response to isoproterenol. Circ Res, 1982, 50(1):101-116.
    [4]陈爱兰,陈敏生,何兆初,等.伊贝沙坦对血管紧张素II所致心肌细胞蛋白质合成和肌球蛋白重链表达的影响.现代临床医学生物工程学杂志, 2006, 12(6): 475-477.
    [5]区彩文,陈敏生,张立健,等.血管紧张素II及其受体拮抗剂对结缔组织生长因子表达的影响.广州医学院学报, 2004, 32(3):11-14.
    [6] Yoon J, Shim WJ, RO YM, et al. Transdifferentiation of mesenchymal stem cells into cardiomyocytes by direct cell to cell contact with neonatal cardiomyoctes but not adult cardiomyocytes. Ann Hematol, 2005, 84(11): 715-721.
    [7] Gomez JP, Potreau D, Branka JE, et al. Developmental changes in Ca2+ currents from newborn rat cardiomyocytes in primary culture. Pflugers Arch, 1994, 428(3-4):241-249.
    [8] Chen HJ, Yao L, Chen TG, et al. Atorvastatin prevents connexin43 remodeling in hypertrophied left ventricular myocardium of spontaneously hypertensive rats. Chin Med J, 2007, 120(21):1902-1907.
    [1] Gray MO, Long CS, Karliner JS, et al. Angiotension II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-β1 and endothelin-1 from fibroblasts. Cardiovasc Res, 1998, 40: 352-363.
    [2]黄俊,覃国辉,马业新,等.转化生长因子β1与大鼠心肌细胞肥大关系的实验研究.中华科技大学学报, 2003, 32(5):484-488.
    [3] Harada M, Itoh H, Nakagawa O, et al. Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation, 1997, 96(10): 3737-3744.
    [4] Lijnen P, Petrov V.Renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. J Mol Cardiol, 1999, 31(5): 949-970.
    [5] Desjardins F, Aubin MC, Carrier M, et al.Decrease of endothelin receptor subtype ETB and release of COX-derived products contribute to endothelial dysfunction of porcine epicardial coronary arteries in left ventricular hypertrophy. J-Cardiovasc-Pharmacol, 2005, 45(6): 499-508.
    [6] Allen AR, Kelso EJ, Bell D, et al. Modulation of contractile function throμgh neuropeptide Y receptors during development of cardiomyocyte hypertrophy. J-Pharmacol-Exp-Ther, 2006 Dec, 319(3): 1286-1296.
    [7] Kuch WA, Slubowska K, Kostrubiec M, et al. Plasma neuropeptide Y immunoreactivity influences left ventricular mass in pheochromocytoma. Clin-Chim-Acta, 2004, 345(1-2): 43-47.
    [8] Starksen NF, Simpson PC, Bishopric N, et al. Cardiac myocyte hypertrophy is associated with c-myc protooncogene expression. Proc Nati Acad Sci USA, 1986, 83: 8348.
    [9] Cabral AM, Vasquez EL, Moyses MR, et al. Sex hormone modulation of ventricular hypertrophy in sinoaortic denervated roots. Hypertension, 1988, suppl: 1-93.
    [10] Seiya K, Seiju U, Kiyoushi T, et al. Ectopic expression of Smad7 inhibits transforminggrowth facotr-beta responses in vascular smooth muscle cells Life Sciences, 2001, 69: 2641-2652.
    [11] Weibin Shi, Chuanxi Sun, Bin He, et al. GADD34–PP1c recruited by Smad7 dephosphorylates TGF? type I receptor. J Cell Biol, 2004, 164(2):291-300.
    [12] Huang CY, Kuo WW, Chueh PJ. Transforming growth factor-beta induces the expression of ANF and hypertrophic growth in cultured cardiomyoblast cells through. Biochem Biophys Res Commun, 2004, 324(1):424-431.
    [13] Lijnen P, Petrov V.Antagonism of the renin-angiotensin-aldosterone system and collagen metabolism in cardiac fibroblasts. Methods Find Exp Clin Pharmacol, 1999, 21(3):215-227.
    [14] Chen HB, Shen J, Ip YT, et al. Identification of phosphatases for Smad in the BMP/DPP pathway.Genes Dev, 2006, 20(6):648-653.
    [15] Kamb A, Gruisn A, Weaver J, et al. A cell cycle regulator potentially involved in genesis of many tumor types. Science, 1994, 264 (5157): 436-440.
    [16] Xing E P, Nie Y, Song Y, et al. Mechanism of inactivation of p14ARF, p15INK4B, P16INK4Agenes in human esophageal squamous cell carcinoma. Clin Cancer Res, 1999, 5 (10): 2704-2713.
    [17] Yonemitsu Y, Kaneda Y, Tanaka S, et al, Transfer of wild-type P53 gene ffectively inhibits vascular smooth muscle cell proliferation in vitro and vivo. Circ Res, 1998, 82(2):147-156.
    [18]刘洪,向前,祝菊萍,等.血管紧张素酶抑制剂对自发性高血压大鼠颈动脉血管平滑肌抑癌基因和原癌基因表达的干预作用.国际医药卫生导报, 2005, 11: 4-6.
    [19] Uwhof C, Vander LA. Mechanical stress induced cardiac hypertrophy: mechanisms and signal transduction pathways. Cardiovasc Res, 2000, 47(1):23-37. Review.
    [20] De Simone G, Pasanisi F, Contaldo F, Link of nonhemodynamic factors to hemodynamic determinants of left ventricular hypertrophy. Hypertension, 2001, 38(1):13-18. Review.
    [21] Staller P, Peukert K, Kiermaier A, et al. Repressionop15INK4 bexpression by Myc throμgh association withMiz2. NatCellBiol, 2001, 3(4):392-399.
    [22] Vogelstein B, Kinzler KW. Cancer genes and the pathways they control. NatMed, 2004, 10(8):789-799.
    [23] Rocha KM, Forti FL, Lepique AP, et al.Deconstructing the molecular mechanisms of cell cycle control in a mouseadrenocor-tical cell line:roles of ACTH. Microsc Res Tech, 2003,61(3):268-274.
    [24] Moustakas A, Pardali K, Gaal A, et al. Mechanisms of TGF-beta signaling in regulation of cell growth and differentiation. ImmunolLett, 2002, 82(1-2):85-91.
    [25] Feng XH, Liang YY, Liang M, et al. Direct interaction of c-Myc with Smad2 and Smad3 to inhibit TGF-beta-mediated induction of the CDK inhibitor p15(Ink4B). Mol Cell, 2002, 9(1): 133-143.
    [26] Watkins SJ, Jonker L, Arthur HM. A direct interaction between TGFbeta activated kinase 1 and the TGFbeta type II receptor: implications for TGFbeta signalling and cardiac hypertrophy. Cardiovasc Res, 2006, 69(2):432-439.
    [27] Morkin E. Regμlation of myosin heavy chain genes in the heart. Circulation, 1993, 87: 1451-1453.
    [28] Wachhost SP, Rockman HA, Ross J, et al. Inhibition of local angiotensinⅡaction prevents myocardiol hypertrophy due to pressure overload in mice. J Am Coll Cardiol, 1993, 22: 433A.
    [29] Ruixing Y, Jinzhen W, Dezhai Y, et al. Jiaquan L.Cardioprotective role of cardiotrophin-1 gene transfer in a murine model of myocardial infarction. Growth Factors, 2007, 25(4):286-294.
    [30] López N, Varo N, Díez J, et al. MA.Loss of myocardial LIF receptor in experimental heart failure reduces cardiotrophin-1 cytoprotection. A role for neurohumoral agonists? Cardiovasc Res, 2007, 75(3):536-545.
    [31] McWhinnie R, Pechkovsky DV, Zhou D, et al.Endothelin-1 induces hypertrophy and inhibits apoptosis in human airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2007, 292(1): 278-286.
    [32] Kajstura J, Fiordaliso F, Andreoli AM, et al. IGF-1 overexpression inhibits the development of diabetic cardiomyopathy and angiotensin II-mediated oxidative stress. Diabetes, 2001, 50(6):1414-1424.
    [33] Zhang LJ, Yang M, Ding YL. Bcl-2, TGFbeta1, and apoptosis in placenta tissues in patients with hypertensive disorder complicating pregnancy. Zhong Nan Da Xue Xue Bao Yi Xue Ban, 2007, 32(5):883-889.
    [34] Chihara Y, Ono H, Ishimitsu T, et al. Roles of TGF-beta1 and apoptosis in the progression of glomerulosclerosis in human IgA nephropathy. Clin Nephrol, 2006, 65(6):385-392.
    [35] Yu W, Zhao YY, Zhang ZW, et al. Angiotension II receptor 1 blocker modifies theexpression of apoptosis-related proteins and transforming growth factor-beta1 in prostate tissue of spontaneously hypertensive rats. BJU Int, 2007, 100(5):1161-1165.
    [36] Onorati F, Forte A, Mastroroberto P, et al. Hypertension induces compensatory arterial remodeling following arteriotomy.J Surg Res, 2007, 143(2):300-310.
    [37] Morgan HE, Baker KM.Cardiac hypertrophy mechanical,neural and endocrine dependence. Circulation, 1991, 83(1):13-25.
    [38] Schr?der D, Heger J, Piper HM, et al. J Mol Med. Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat. J Mol Med, 2006, 84(11):975-983.
    [39] Kumar S, Boehm J, Lee JC. p38 MAP kinases: key signalling molecμles as therapeutic targets for inflammatory diseases. Nat Rev Drug Discov, 2003, 2(9): 717-726.
    [40] Ning AM, Davis RJ. Targeting JNK for therapeutic benefit: from junk to gold. Nat Rev Drug Discov, 2003, 2(7): 554-565.
    [41] Obata T, Brown GE, Yaffe MB. MAP kinase pathways activated by stress: the p38 MAPK pathway. Crit Care Med, 2000, 28(4 Suppl): N67-77.
    [42] Beltrami AP, Urbanek K, Kajstura J, et al. Evidence that humancardiac myocytes divide after myocardial infarction. N Engl J Med, 2001, 344(23): 1750-1757
    [43] Piero Anversa, Jan Kajstura. Ventricular myocytes are not terminally differentiated in the adult mammalian heart. Circ Res, 1998, 83: 1-14.
    [44] Kajstura J, Leri A, Finato N, et al. Myocyte proliferation in end-stagecardiac failure in humans. Proc Natl Acad Sci U S A, 1998, 95:8801-8805.
    [45] Anversa P, Nadal-Ginard B. Myocyte renewal and ventricular remodelling. Nature, 2002, 415: 240-243.
    [46] Kajstura J, Pertoldi B, Leri A, et al. Telomere shortening is an in viv marker of myocyte replication and aging. Am J Pathol, 2000, 156: 813-819.
    [47] Ausma J, Wijffels M, Thone F, et al. Structural changes of atrial myocardium due to sustained atrial fibrillation in the goat.Circula-tion, 1997, 96: 3157-3163.
    [48] Wouters L, Liu GS, Flameng W, et al. Structural remodeling of atri-al myocardium in patients with cardiac valve disease and atrial fibril-lation. Exp Clin Cardiol, 2001, 5: 158-163.
    [49] Reiss K, Cheng W, Pierzchalski P,et al. Insulin-like growth factor-1receptor and its ligand regulate the reentry of adult ventricular myocytesinto the cell cycle. Exp Cell Res, 1997,235:198-209.
    [50] Setoguchi M, Leri A, Wang S,et al. Activation of cyclins and cyclin-dependent kinases, DNA synthesis, and myocyte mitotic division inpacing-induced heart failure in dogs. Lab Invest, 1999, 79:1545-1558.
    [51] Grünenfelder J, Miniati DN, Murata S, et al. Up-regulation of Bcl-2 through hyperbaric pressure transfection of TGF-beta1 ameliorates ischemia-reperfusion injury in rat cardiac allografts. J Heart-Lung-Transplant, 2002, 21(2):244-250.
    [1]朱智彤,姚智,娄建石,等.葛根素对缺氧-复氧时乳鼠心肌细胞分泌细胞因子的作用.中国药理学通报, 2001, 17(3): 296-298.
    [2]温葭,陈士林, Filly Cheung,等.葛根素对心肌细胞一氧化氮影响的研究.中国心血管病研究杂志, 2006, 4(10): 777-779.
    [3] Xie RQ, Du J, HaoYM. Myocardialprotection andmechanism of Puerarin Injection on patients of coronary heartdiseasewith ische-mia/reperfusion.Chin J IntegrMed, 2003, 23(12): 895-897.
    [4] Mizuguchi Y, Yokomuro S, Mishima T, et al. Short hairpin RNA modμlates transforming growth factor beta signaling in life-threatening liver failure in mice. Gastroenterology, 2005, 129(5):1654-1662.
    [5]温葭,陈士林,徐宏喜.葛根素对细胞凋亡影响的研究.现代中药研究与实践, 2006, 20(1): 61-64.
    [6]岳红文,胡小琴.葛根素对心血管系统的药用价值.中国中西医结合杂志, 1996, 16 (6):382-384.
    [7]张玲,王洪新,齐志敏,等.葛根素对大鼠心肌肥厚的相关细胞因子的影响.中成药, 2007, 29(7): 960-963.
    [8] Moser L, Faulhaber J, Wiesner RJ, et al. Predominant acti-vation of endothelin-dependent cardiac hypertrophy by norepineph-rine in rat left ventricle. Am J Physiol Regul Integr CompPhysiol, 2002, 282(5): 1389-1394.
    [9] Babiker FA, De Wndlt LJ, Van Eickels M, et al. 17beta-estradiol amagonizes caxdiomyocytes hypertrophy by auocrine/paracine sitmulation of a guanylyl cyclase A recetor-cyclic guanosine monopho sphate-dependeniprote in kinase pathway. Circulation, 2004, 109(2):269-276.
    [10] Gardner JD, Brower GL, Voloshenyuk TG, et al.Cardioprotection in female rats subjected to chronic volume overload: synergistic interaction of estrogen and phytoestrogens. Am J Physiol Heart Circ Physiol, 2008, 294(1):198-204.
    [11] Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therpy? Lanct, 2003, 362:1401-1403.
    [12] Caplen NJ. Gene therapy prigress and prospects: Downregulating gene expression: the impact of RNA interference. Gene Ther, 2004, 11:1241-1248.
    [13]吴青,周祖玉,陶大昌.葛根素预处理对大鼠缺血再灌注心肌细胞凋亡的影响.基础医学与临床, 2005, 25 (2):147-151.
    [14] Mercedes L, Kuroski B. Estrogen, natriuretic peptides and the renin-angiotensin system. Cadiovascular Res, 1999, 41: 524-531.
    [15] Sangaralingham SJ, Tse MY, Pang SC. Estrogen delays the progression of salt-induced cardiac hypertrophy by influencing the renin-angiotensin system in heterozygous proANP gene-disrupted mice. Mol Cell Biochem, 2007, 306(1-2): 221-230.
    [16]朱庆磊,何爱霞,吕欣然.葛根素对氧自由基的清除和抗氧化性损伤作用.解放军药学学报, 2001, 17 (10):123.
    [17] Jiang B, Liu J H, Bao M, et al. Hydrogen peroxide induced apoptosis in pc12 cells and the protective effect of puerarin. Cell Biology International, 2003, 27: 1025-1031.
    [18]方放治,戴德哉,王自正,等.葛根素对抗H2O2引起血管平滑肌细胞凋亡及坏死.中国药科大学学报, 2002, 33 (3):241-244.
    [19] Xiong FL, Sun XH, Gan LP, et al. Puerarin protects rat pancreatic islets from damage by hydrogen peroxide. Eur-J-Pharmacol, 2006, 529(1-3): 1-7.
    [20] Dong K, Tao QM, Xia Q, et al. Endothelium-independent vasorelaxant effect of puerarin on rat thoracic aorta. Zhongguo-Zhong-Yao-Za-Zhi, 2004, 29(10): 981-984.
    [21] Jacque J M, Triques K, Stevenson M, et al. Modμlation of HIV21 replication by RNAi. Nature, 2002, 418:435-438.
    [22] Lum L, Yao S, Mozer B, et al. Identification of hedgehog pathway components by RNAi in Drosophila cμltured cells. Cell, 2003, 299:2039-2045.
    [23]石瑞丽,张建军.葛根素对缺氧性血管内皮细胞凋亡的保护作用。药学学报, 2003, 38 (2):103-107.
    [24] Yeom SY, Jeoung D, Ha KS,et al. Small interfering RNA (siRNA) targetted to Smad3 inhibits transforming growth factor-beta signaling. Biotechnol-Lett, 2004, 26(9): 699-703.
    [25] Nakamura H, Siddiqui SS, Shen X, et al.RNA interference targeting transforming growth factor-beta type II receptor suppresses ocular inflammation and fibrosis. Mol-Vis, 2004, 10: 703-711.
    [26] Kushibiki T, Nagata-Nakajima N, Sugai M, et al. Delivery of plasmid DNA expressing small interference RNA for TGF-beta type II receptor by cationized gelatin to prevent interstitial renal fibrosis. J-Control-Release, 2005, 105(3): 318-331.
    [27]陈春球,尹路. RNA干扰技术在树突状细胞中的应用.国际输血及血液学杂志, 2006, 29(6):532-534.
    [28] Chen AA, Derfus AM, Kherani SR, et al. Quantum dots to monitor RNAi delivery and improve gene silencing. Nucleic Acids Res, 2005, 33(22):e190.
    [1]刘峰.高血压的心脏并发症.中国实用内科杂志, 2002, 22(4):1981
    [2] Massague J. TGF-βsignal transduction. Annu Rev Biochem, 1998, 67: 753-791.
    [3] Li G, Stacey L. Elevated insulin-like growth factor-I and transforming growth factor-beta1 and their receptors in patients with idiopathic hypertrophic obstructive cardiomy-opathy. Apossib lemechanism.Circulation, 1998, 98(19 Suppl): II 144-149.
    [4] Schultz J J,Witt S A,Glascock B J,et al. TGF-beta1 mediates the hypertrophic cardiomyocyte growth induced by angitensin II. J Clin Invest, 2002, 109(6):787-796.
    [5] Seiya K, Seiju U, Kiyoushi T, et al. Ectopic expression of Smad7 inhibits transforming growth facotr-beta responses in vascular smooth muscle cells. Life Sciences, 2001, 69:2641-2652.
    [6] Weibin Shi, Chuanxi Sun, Bin He, et al. GADD34–PP1c recruited by Smad7 dephosphorylates TGF? type I receptor. J Cell Biol, 2004, 164(2): 291-300.
    [7]姜勇,罗深秋.细胞信号转导的分子基础与功能调控.科学出版社, 2005, 274.
    [8] Siegel PM, Massague J. Cytostatic and apoptotic actions of TGF-beta in homeostasis and cancer. Nat Rev Cancer, 2003, 3: 807-821.
    [9] Wall NR, Shi Y. Small RNA: can RNA interference be exploited for therpy? Lanct, 2003, 362:1401-1403.
    [10] Caplen NJ. Downregulating gene expression: the impact of RNA interference. Gene Ther, 2004, 11:1241-1248.
    [11] Tan FL, Yin JQ. Application of RNAi to cancer research and therapy. Front Biosic, 2005,10:1946-1960.
    [12]汪长华.心肌细胞的培养及注意事项.中国心脏起搏与心电生理杂志, 2003, 17(3): 230-323.
    [13]张瑞英,孙红艺,富路,等.血管紧张素转换酶抑制剂和AT-1受体拮抗剂联合应用对大鼠心室重构影响的实验研究.中国实用内科杂志, 2005, 1:36-38.
    [14] Watkins SJ, Jonker L, Arthur HM. A direct interaction between TGFbeta activated kinase 1 and the TGFbeta type II receptor: implications for TGFbeta signalling and cardiac hypertrophy. Cardiovasc Res, 2006, 69(2):432-439.
    [15] Gray MO, Long CS, Kalinyak JE, et al. Angiotensin II stimulates cardiac myocyte hypertrophy via paracrine release of TGF-beta 1 and endothelin-1 from fibroblasts. Cardiovasc-Res, 1998, 40(2): 352-363.
    [16] Van Wamel AJ, Ruwhof C, van der Valk-Kokshoom LE, et al.The role of angiotensinII, endothelin-1 and transforming growth factor-beta as autocrine/paracrine mediators of stretch-induced cardiomyocyte hypertrophy. Mol Cell Biochem, 2001, 218(1-2): 113-124.
    [17] Harada M, Itoh H, Nakagawa O,et al.Significance of ventricular myocytes and nonmyocytes interaction during cardiocyte hypertrophy: evidence for endothelin-1 as a paracrine hypertrophic factor from cardiac nonmyocytes. Circulation, 1997, 96(10): 3737-3744.
    [18] Lijnen,-P, Petrov,-V.Antagonism of the renin-angiotensin system, hypertrophy and gene expression in cardiac myocytes. Methods-Find-Exp-Clin-Pharmacol, 1999, 21(5): 363-374.
    [19] Matsubara H, Moriguchi Y, Mori Y, et al. Transactivation of EGF receptor induced by angiotensin II regulates fibronectin and TGF-beta gene expression via transcriptional and post-transcriptional mechanisms. Mol-Cell-Biochem, 2000, 212(1-2): 187-201.
    [20] van Wamel AJ, Ruwhof C, van der Valk-Kokshoorn LJ, et al. Stretch-induced paracrine hypertrophic stimuli increase TGF-beta1 expression in cardiomyocytes.Mol Cell Biochem, 2002, 236(1-2):147-153.
    [21] Wang W, Huang XR, Canlas E, et al. Essential Role of Smad3 in Angiotensin II–Induced Vascular Fibrosis. Circulation Research, 2006, 98:1032-1039.
    [22] Chow JY, Quach KT, Cabrera BL, et al. RAS/ERK modulates TGFbeta-regulated PTEN expression in human pancreatic adenocarcinoma cells. Carcinogenesis, 2007, 28(11): 2321-2327.
    [23] Yang M, Huang H, Li J, Li D, et al.Tyrosine phosphorylation of the LDL receptor-relatedprotein (LRP) and activation of the ERK pathway are required for connective tissue growth factor to potentiate myofibroblast differentiation. FASEB J, 2004, 18(15):1920-1921.
    [24] Akel S, Bertolette D, Petrow-Sadowski C, et al. Levels of Smad7 regulate Smad and mitogen activated kinases (MAPKs) signaling and controls erythroid and megakaryocytic differentiation of erythroleukemia cells. Platelets, 2007, 18(8):566-578.
    [25] Derynck R, Roberts AB, Winkler ME, et al. Human transforming growth factor-alpha: precursor structure and expression in E. coli. Cell, 1984, 38(1):287-297.
    [26] Massague J. The transforming growth factor-beta family.Annu Rev Cell Biol, 1990, 6:597-641.
    [27] Lin HY, Moustakas A. TGF-beta receptors:structure and function.Ceu Mol Biol Renew, 1994, 40(3):337-349.
    [28] Derynck R.TGF-beta-receptor-mediated signaling. Trends Biochem Sci, 1994, 19(12): 548-553.
    [29] Ebner R, Chen RH, Shum L, et al. Cloning of a type I TGF-beta receptor and its effect on TGF-beta binding to the type II receptor. Science, 1993, 260(5112):1344-1348.
    [30] PerssonU, IzumiH, Souchelnytskyi S, et al.TheL45 loop in type I recep-tors for TGF-beta family members is a critical determinant in specifying Smad isoform activation. FEBS Lett, 1998, 1434:83-88.
    [31] Logolo AF, Nonogaki S, Miguel RE, et al. Transferming growth factor-beta expression in head and neck squamous cel curcinoma patients as re-lated to prognosis. J Oral Pathol Med, 2003, 32(3):139-145.
    [32] Derynck R, Akhurst RJ, Balmain A. TGF-beta signaling in tumor sup-pression and cancer progression. Nat Genet, 2001, 29:117-129.
    [33] Choy L, Derynck R.The type II transforming growth factor (TGF)-beta receptor-interacting protein TRIP-1 acts as a modulator of the TGF-beta response. J Biol Chem, 1998, 273(47):31455-31462.
    [34] Sadoshima J, Izmw S. Critical role of the ATl receptor for subtype. Circ Res, 1993, 73 (3):413.
    [35] Glennon PE, Sugden PH, Poole- Wilson PA.Cellular mecha-nisms of cardiac hypertrophy. Br Heart J, 1995, 73: 496-499.
    [36] Matsumoto-Ida M, Takimoto Y, Aoyama T, et a1. Acti-vation of TGF-β1-TAK1-p38 MAPK pathway in spared cardiomyocytes is involved in left ventricular remodeling after myocardial infarction in rats. Am J Physiol Heart Circ Physiol, 2006, 290(2):709-715.
    [37] Cross talk among Smad, MAPK, and integrin signaling pathways enhances adventitial fibroblast functions activated by transforming growth factor-beta1 and inhibited by Gax. Arterioscler Thromb Vasc Biol, 2008, 28(4):725-731.
    [38] Schr?der D, Heger J, Piper HM, et al. Angiotensin II stimulates apoptosis via TGF-beta1 signaling in ventricular cardiomyocytes of rat. J Mol Med, 2006, 84(11):975-983.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700