用户名: 密码: 验证码:
昆虫柔性翼的本构关系及静动力特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近几年,随着微飞行器概念的提出,人们开始了对昆虫飞行的仿生研究。按照传统空气动力学无法解释昆虫的飞行,目前对昆虫飞行机理的认识正在逐步深入和提高。有学者预计,昆虫飞行的特殊机制包括两点:拍翅模式和柔性变形。昆虫正是通过主动的控制飞行以及翅膀自身的被动变形两者方式的结合来达到优化空气动力性能的目的,并从而实现其高超的飞行技能。本论文围绕这两点,对与其相关的重要问题进行了研究和探讨。从第一手的实验数据以及测量方法着手,对昆虫翅结构、材料、静动力学特性、自由飞行中的拍翅方式及翅膀变形等进行了一些研究。
     提出将投栅的办法应用于昆虫翼三维形貌以及静载下变形的测量。采用四步相移法获取位相,可以很好的避免背景和噪声的干扰,特别适合于昆虫翅测量中光照条件不够好的情况。另外,本文采用基于调制度分析的最小二乘位相去包络算法进行位相解调,进一步提高了实验精度。根据静载下变形的测量结果,基于翅膀条杆假设,获得了翅膀扭转刚度沿展向的分布规律。
     通过蜻蜓脉的应力松弛实验,验证了蜻蜓翼的粘弹性本构关系,并提出了相应的标准线性固体本构模型,测量了相应的本构特征参数。通过理论推导和数值模拟,说明昆虫翼中具有的粘性项增强了昆虫飞行中的动态刚度,从而避免了昆虫高频飞行中翅膀大变形的出现,起到明显的抗振作用,因此有很好的抗外界干扰能力。通过对蜻蜓翼往复拍动的模拟,发现弹性翼变形幅度过大且有明显的高次谐波出现,明显与真实情况不符;而粘弹性翼的高次谐波影响甚微,很快就可以达到稳定的周期变形,与真实情况符合。因此,粘弹性本构模型是昆虫翼材料属性的合理描述。
     本文还使用多普勒测振仪测量了蜻蜓翼的动力学参数,得到固有频率及其对应模态,并根据实验结果简要分析了昆虫翼的结构特征以及柔性变形特点。
     介绍了自主开发的由三棱镜实现的虚拟双目立体视觉测量系统,并将其应用于自由飞行蜻蜓的运动参数测量。通过建立昆虫随体坐标系和翅膀坐标系,本方法可以很好地将昆虫飞行的翅膀拍动及变形与身体位置姿态联系起来综合考察,对于观察昆虫飞行规律,探索飞行机理有着很好的应用前景。文章测量了蜻蜓直飞中的运动参数,并对实验结果特别是其反映出的柔性变形特点进行了初步分析和讨论。
     提出一种有效建立有限元昆虫模型的方案。该方法回避具体材料和结构特性参数的精确测量,利用上述实验测量获得的昆虫翼各基本综合参数资料,以翼的静动态力学综合表现为衡量标准建立“等效”有限元模型。
Bionic study of insect flight started with the appearance of MAV concept recent years. Traditional aerodynamics cannot explain the mechanism of insect flight, and new aerodynamic is being explored intensively. Some researcher forecast that the reason of insect overcoming aerodynamic limits relies on tow points: flapping and flexibility. Aerodynamical is optimized through the tow special mechanism. This thesis research some important problem related to the tow points: structure of insect wing, material, static and dynamic mechanical properties, flapping mode and wing deformation etc.
     Projecting fringe technique is applied to measure 3-d shape and deformation under static load. 4-step phase shift technique is applied to get phase. This technique is very suitable for the measurement of insect's wing, which could be immune of background noise very good. And the modulation analysis based weighted leas-squares approach for phase unwrapping increase the measurement precision.
     For the first time, a viscoelastic constitutive relation model related to the deformation of the dragonfly wing was established, that is, the standard linear solid model. Viscosity property of insect wing increase the dynamic stiffness of flapping wing, to avoid the appearance of big deformation while insect flaps its wing in high speed. The FEA results display viscosity property increase insect's anti-vibration function. Viscoelastic model was examined by FEA of dynamic deformation response for a model dragonfly wing under the action of the periodical inertial force in flapping motion, compared with the elastic constitutive relation model at the same time. Results show that the elastic model is not consistent with reality, as the resultant amplitude of elastic deformation is too large, furthermore, considerable higher-frequency components is produced. However, the viscoelastic deformation agrees well with the experiment. As a result, the viscoelastic constitutive relation model is confirmed to be the proper description of the insect wing material.
     Doppler vibrometer which is based on the Doppler principle was used to stimulate the wing of dragonfly, recording the frequency curves of speed and getting its natural frequencies and modes .And also, we analyze the experimental results, discussing some characteristcs of the dragonfly's wing structures and flexibility.
     A novel and practical stereo camera system which uses only one camera and a biprism in front of the camera is applied to measure the kinematic parameters of free flight dragonfly and obtain many experimental data ,including body position and attitude, wing deformation, flapping angle, torsional angle etc, which will be very useful for the analyses of aerodynamics on insect flight. The flexibility of deformation is investigated spatially.
     A new method modeling finite elemental wing model is introduced, which refer to wing's static and dynamic mechanical representation and not get specific and detailed parameters of geometric and material.
引文
[1] Alexander DE.Unusual phase relationships between the forewings and hindwings in flying dragonflies. J.Exp. Biol., 1984, 109: 379-383.
    [2] Alexander RM. Winging their way. Nature, 2000, 405:17-18.
    [3] Azuma A, Watanabe T. Flight performance of a dragonfly. J.Exp. Biol., 1988, 137:221-252.
    [4] Baribeau Rejean. Influence of speckle on leaser range finders. Applied Optics, 1991,30(20):2873-2878.
    [5] Casey TM. A comparison of mechanical and energetic estimates of flight cost for hovering sphinx moths. J.Exp. Biol., 1981, 91: 117-129.
    [6] Combes SA.Wing flexibility and design for animal flight[D].USA: Zoology Department, University of Washington, 2002.
    [7] Combes S A, Daniel T L. Flexural stiffness in insect wings: Ⅰ.Scaling and the influence of wing venation. J.Exp. Biol., 2003a, 206:2979-2987.
    [8] Combes S A, Daniel T L. Flexural stiffness in insect wings:Ⅱ.Spatial distribution and dynamic wing bending. J.Exp. Biol., 2003b, 206:2989-2997.
    [9] Dickinson MH, Gotz KG. Unsteady aerodynamic performance of model wings at low Reynolds numbers. J.Exp. Biol., 1993, 174:45-64.
    [10] Dichinson MH.The wake dynamic and flight forces of the fruit fly fly Drosphila melanogaster. J. Exp. Biol., 1996, 199:2085-2104.
    [11] Dickinson MH, Lehmann F, Sane SR Wing rotation and the aerodynamic basis of insect flight. Science, 1999,284:1954-1960.
    [12] DooHyun Lee , InSo Kweon. A novel stereo camera system by a biprism. IEEE transaction robotics and automation, 2000, 16(5):528-541.
    [13] Dudley R, Ellington CE Mechanics of forward flight in bumblebees, I. Kinematics and morphology. 1990, (148): 19-52.
    [14] Dudley R. Extraordinary flight performance of orchid bees (apidae: Euglossini) hovering in heliox (80% He/20% O_2). J.Exp. Biol., 1995, 198:1065-1070.
    [15] Dudley R. Unsteady aerodynamics. Science, 1999, 284:1937-1938
    [16] Edwards RH. Cheng HK. The separation vortex in the Weis-Fogh circulation generation mechanism. J.Fluid Mech., 1982, 120:463-473.
    [17] Ennos AR. The importance of torsion in the design of insect wings. J. Exp. Biol., 1988, 140: 161-169
    [18] Ennos AR. The kinematics and aerodynamics of the free flight of some Diptera. J.Exp. Biol., 142, 49-85.
    [19] Ellington CP. The aerodynamics of hovering insect flight.Ⅰ.The quasi-steady analysis. Phil. Trans. R. Soc. Lond B, 1984a, 305:1-15.
    [20] Ellington CR The aerodynamics of hovering insect flight. Ⅱ.Morphologicai parameters. Phil. Trans. R. Soc. Lond. B, 1984b, 305:17-40.
    [21] Ellington CP. The aerodynamics of hovering insect flight. Ⅲ. Kinematics. Phil. Trans. R. Soc. Lond. B, 1984c, 305: 41-78.
    [22] Ermos AR. Comparative functional morphology of the wings of Diptera. Zoolf. Linn. Sco 1989, 96, 27-47.
    [23] Feng, Y. Z, The Mechanics of Biology. The publishing company of Chinese science, 1982: 131-141.
    [24] Fry SN, Sayaman R, Dickinson M H. The Aerodynamics of free-flight maneuvers in Drosophila. Science, 2003, 300: 495-498.
    [25] Ghiglia DC. Romero LA. Robust two-dimensional weighted and unweighted phase unwrapping that uses fast transforms and iterative methods. J. Opt.Soc.Am.A. 1994, 11 (1): 107-117.
    [26] Ghiglia DC. Minimum Lp-norm two-dimensional phase unwrapping. J.Opt.Soc.Am. A. 1999, 13(10): 1999-2013
    [27] Hedwig B, Becher G. Forewing movements and intracellular motoneurons stimulation in tethered flying locusts. J. Exp. Biol., 1998, 201: 731-744.
    [28] Herbert RC, Young PG, Smith CW Wootton RJ, Evans KE. The hind wing of the desert loeust(Schistocerca gregaria Forskal). Ⅲ. A finite element analysis of a deployable structure. J. Exp. Biol., 2000, 203: 2921-2931.
    [29] Herbert RC. Modelling insect wings using the finite element method. PhD thesis, 2002, Uniersity of Exeter.
    [30] Hunt., B. R., Matrix formulation of the reconstruction of phase values from phase differences, J. Opt. Soc. Am, 1979, 69(3): 393-399
    [31] Joshua Gluckman. Rectified catadioptric stereo sensors. IEEE transaction on patterrn analysis and machine intelligence, 2002, 24(2): 224-236.
    [32] Kent GC.Comparative Anatomy of the Vertebrater. St Louis, Missouri: Mosby-Year Book, Inc.
    [33] Kesel AB, Philippi U, Nachtigall W. Biomechanical aspects of the insect wing: an analysis using the finite element method. Computers in Biology and Medicine, 28(1998): 423-437.
    [34] Kesel AB. Aerodynamic characteristics of dragonfly wing sections compared with technical aero-foils. J. Exp. Biol., 2000, 203: 3125-3135.
    [35] Kutsch W, Schwarz G. Short Commucication: Wireless transmission of muscle potentials during free flight ofa locut. J. Exp. Biol., 1993, 185: 367-373.
    [36] Lim KB, Xiao Yong. Virtual stereovision system: new understanding on single-lens stereovision using a biprism. Journal of Electronic Imaging, 2005, 14(4): 1-11.
    [37] Lin Yuchi, Niu Xiaobing. Surface measurement using improved crossed-optical-axes geometry. Proceedings of SPIE, Optical Manufacturing Technologies, 2002, 4921: 43-46.
    [38] Liu H, Ellington CP. Kawachi K, et al. A computational fluid dynamic study of hawkmoth hovering. J. Exp. Biol., 1998, 201: 461-477.
    [39] Machida K, Shimanuki J. Structure analysis of the wing of a dragonfly. Proceedings of SPIE, Vol5828: 671-676.
    [40] Marden JH. Large-scale changes in thermal sensitivity of flight performance during adult maturation in a dragonfly. J. Exp. Biol., 1998, 198: 2095-2120
    [41] May ML. Dependence of flight behavior and heat-production on air-temperature in the green darner dragonfly anax-hunius (Odonata, aeshnidae). J.Exp. Biol., 1995a, 198(11): 2385-2392.
    [42] May ML Simultaneous control of head and thoracic temperature by the green darner dragonfly anax-hunius (Odonata, aeshnidae). J.Exp. Biol., 1995b, 198(11): 2373-2384.
    [43] Maxworthy T.Experiments on the Weis-fogh mechanism of lift generation by insects in hovering flight.Part Ⅰ, Dynamics of the 'fling'. J.Exp. Biol., 1973, 93: 47-63.
    [44] Mueller TJ. Fixed and flapping wing dynamics for MAV applications. AIAA Progress in Astron. and Aeron., 2001,195.
    [45] Newman DJS. 1982 The functional wing morphology of some Odonata. PhD thesis, University of Exeter.
    [46] Newman DJS and Wootton RJ. An approach to the mechanics of pleating in dragonfly wings. J.Exp. Biol., 1986, 125, 361-372.
    [47] Okamoto M, Yasuda K, Azuma A.Aerodynamic characteristics of the wings and body of a dragonfly.J.Exp. Biol., 1996, 199, 281-294.
    [48] Qian KM, Wu XP. Modulation analysis based weighted least-squares approach for phase unwrapping. Acta Photonica sinica. 2001, 30(6):585-588.
    [49] Raney and Slominski.Mechanization and control concepts for biologically inspired micro aerial vehicles.AIAA paper, 2003, 5345.
    [50] Roberts SP, Harrison JF. Mechanisms of thermoregulation in flying bees. Amer. Zool.,1998, 38: 492-502.
    [51] Shyy W, Berg M and Ljungqvist D. Flapping and flexible wings for biological and micro air vehicles. Prog Aerospace Sci., 1999, 35:455-505.
    [52] Sunada S, Kawachi K, Watanabe I.Performance of a butterfly in take-off flight. J.Exp. Biol., 1993, 183: 249-277.
    [53] Sunada S, Ellington C.P.A new method for explaining the generation of aerodynamic forces in flapping flight. Math. Meth.Appl.Sci., 2001,24:1-10.
    [54] Sunada S, Zeng LJ, Kawachi. K. The relationship between dragonfly wing structure and torsional deformation. J.Exp. Biol., 1998, 193:39-45.
    [55] Sudo S, Tsuyuki K.A study on the wing structure and flapping behavior of a dragonfly. JSME International Journal, Series C, 42(3), 1999, 721-728,
    [56] Smith MJ.Simulating moth wing aerodynamics: Towards the development of flapping-wing technology.AIAA, 1996, 34(7): 1448-1455.
    [57] Smith CW, Herbert T, Wootton RJ, Evans KE The hind wing of the desert locust(Schistocerca gregaria Forskdl). II. Mechanical properties and functioning of the membrane. J.Exp. Biol., 2000, 203:2933-2943.
    [58] Song DQ, Wang H, Zeng LJ. Measuring the camber deformation of a dragonfly wing using projected comb fringe.Review of Science Instrument, 2001, 72(5): 2450-2454.
    [59] Song F, Lee KL. Experimental studies of the material properties of the forewing of cicada (Hom6ptera, Cicàdidae). J.Exp. Biol., 2004, 207: 3035-3042.
    [60] Spedding GR. The aerodynamics of flight. In Advances in Comparative and Environmental Physiology Ⅱ, Mechanics of Animal Locomotion(ed. R. McN.Alexander), Springer-Verlag. 1992: 51-111.
    [61] Spedding, GR. On the significance of unsteady effects in the aerodynamic performance of flying animals, Contemp. Math., 1993, 141: 401-419.
    [62] Srygley RB, Thomas ALR. Unconventional lift-generating mechanisms in free-flying butterflies. Nature, 2002, 420: 660-664.
    [63] Sane SP. The aerodynamics of insect flight. J. Exp. Biol., 2003, 206: 4191-4208.
    [64] Usherwood JR, Ellington CP. The aerodynamics of revolving wings. Ⅰ. Model hawkmoth wings. J. Exp. Biol., 2002a, 205: 1547-1564.
    [65] Usherwood JR, Eilington CP. The aerodynamics of revolving wings. Ⅱ. Propeller force coefficients from mayfly to quail. J.Exp. Biol., 2002b, 205: 1565-1576.
    [66] Vest MS. Unsteady aerodynamic model of flapping wings. AIAA, 1996, 34(7): 1435-1440.
    [67] Vogel S. Flight in Drosphila. Ⅱ. Variations in stroke parameters and wing contour. J. Exp. Biol., 1967, 46: 383-392.
    [68] Wagner, H. Flight performance and visual control of flight of the free-flying housefly (MUSCA DOMESTICAL.). Ⅰ. Organization of flight motion Trans. R. Soc. Lond. B, 1986a, 312: 527-551.
    [69] Watanabe H. 1995 Structural analysis of dragonfly wings with FEM. Tokyo: Kawachi Millibioflight Project Workshop.
    [70] Waleling JM. Dragonfly aerodynamics and unsteady mechanisms: a review. Odonatologica, 1993, 22: 319-334.
    [71] Wakeling JM, Ellington CP. Dragonfly flight Ⅱ Velccities, accelerations and kinematics of flapping flight. J. Exp. Biol., 1997, 200: 557-585.
    [72] Wang H, Zeng LJ, Liu H, Yin CY. Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. J. Exp. Biol., 2003, 206: 745-757.
    [73] Wang H, Zeng LJ, Yin CY. Measuring the body position, attitude and wing deformation of a free flight dragonfly by combining a comb fringe pattern with sign points on the wing. Measuring Science and Technology, 2002, 13: 903-908.
    [74] Weis-fogh T. Biology and physics of locust flight. Ⅱ. Flight performance of the Desert Locust(Schistocerca gregaria). Phil. Trans. R. Soc. Lond B, 1956, 239: 459-510.
    [75] Weis-fogh T. Quick estimates of flight fitness in hovering animals, including novel mechanics for lift production. J. Exp. Biol., 1973, 59: 169-230.
    [76] Willmott A P, Ellington C P. Measuring the attack of beating insect wings: Robust three-dimensional reconstruction from two-dimensional images (J). J Exp Biol., 1997a, 200: 2693-2704
    [77] Willmott A P, Ellington C P. The mechanics of flight in the hawkmoth manduca sexta, Ⅰ. Kinematics of hovering and forward flight (J). J Exp Biol., 1997b, 200: 2705-2722.
    [78] Wootton, R. J. The mechanical design of insect wings. Sci..Am. 1990. november, 114-120.
    [79] Wootton RJ. Functional morphology of insect wings. Annu. Rev. Entomol. 1992. 37: 113-140
    [80] Wootton RJ. Leading edge section and asymmetric twisting in the wings of flying butterflies. J.Exp. Biol., 1993, 180:105-117.
    [81] Wootton RJ. Geometry and mechanics of insect hindwing fans: a modeling approach. Proc R. Soc. Lond. 1995, B262, 181-187.
    [82] Wootton RJ. Smart engineering in the mid-carboniferous: how well could palaeozoic dragonflies fly? J.Exp. Biol., 1998, 282(5389):749-751.
    [83] Wootton RJ. Invertebrate paraxial locomotory appendages: design, deformation and control. J.Exp. Biol., 1999, 202:3333-3345.
    [84] Wootton R J. From insects to microvehicle. Nature, 2000a, 403:144-145.
    [85] Wootton RJ, Evans KE, Herbert T, Smith CW. The hind wing of the desert locust(Schistocerca gregaria Forskal). I. Functional morphology and mode of operation. J .Exp. Biol., 2000b, 203:2921-2931.
    [86] Wootton RJ, Herbert RC, Young PG, Evans KE. Approaches to the structural modeling of insect wings. Phil. Trans. R. Soc. Lond. B, 2003, 358:1577-1587.
    [87] Zeng LJ, Matsumoto H. Divergent-ray projection method for measuring the flapping angle, lag angle, and torsional angle of a bumblebee wing. Opt. Eng. November 1996a, 35(11):3135-3139.
    [88] Zeng LJ, Matsumoto H, Kawachi. K. Scanning beam collimation method for measuring dynamic angle variations using an acousto-optic deflector. Opt. Eng. June 1996b, 35(6): 1662-1667.
    [89] Zeng LJ, Matsumoto H, Kawachi. K. Simultaneous measurement of the shape and thickness of a dragonfly wing. Measurement Science and Technology. 1996c, 7:1728-1732.
    [90] Zeng LJ, Matsumoto H, Kawachi. K. A fringe shadow method for measuring flapping angle and torsional angle of a dragonfly wing. Measurement Science and Technology. 1996d, 7:776-781.
    [91] Zeng LJ, Matsumoto H, Kawachi K. Two-dimensional, noncontact measurement of the natural frequencies of dragonfly wings using a quadrant position sensor. Optical Engineering, 1995.34(4), 1226-1231.
    [92] Zeng LJ, Hao Q, Kawachi K. A scanning projected line method for measuring a beating bumblebee wing. Opt Commun, 2000, 183:37-43.
    [93] Zeng LJ, Song D J, Dudley R. Measuring of spanwise torsional angles and camber deformation on wings of free-flying dragonflies. ISIST, 2002, 1:80-84.
    [94] Zhang ZY. A flexible new technique for camera calibration. IEEE transactions on pattern analysis and machine intelligence. 2000, 22(11): 1330-1334.
    [95] 续伯钦.昆虫翼的变形测量.第214次香山科学会议《飞行和游动的生物力学与仿生技术》文集,2003,p34.
    [96] 曾理江.昆虫运动机理研究及其应用.学科进展,2000,4(26):206-211.
    [97] 曾理江.宋德强,郝群.昆虫运动机理的研究.光学技术,Nov.1999,6(26):18-21.
    [98] 宋德强,王浩.投影梳状条纹插值法测量蜻蜓的翅膀变形.中国激光.2001,28(5).
    [99] 马颂德,张正友.计算机视觉—计算理论与算法基础.北京:科学出版社,1998.
    [100] 周光泉,刘孝敏.粘弹性理论.中国科学技术大学出版社,合肥,1996.
    [101] 鲍麟,童秉纲.模型翼拍动中动态柔性变形效应的数值研究.中国科学院研究生院学报.2005,22(6):676-684.
    [102] 蒋震宇,缪泓,张青川,伍小平.调制度分析在等步长相移法相位展开中的应用.光学学报. 2004,24(8):1032-1038.
    [103] 曹树谦.振动模态结构和分析.天津大学出版社.
    [104] 章敏晋.图像工程下册,清华大学出版社,2000.
    [105] 冯康等.,数值计算方法,国防工业出版社,1978
    [106] 王浩.自由飞行昆虫运动参数的测量研究.博士论文,清华大学,2002.
    [107] 雷朝亮.普通昆虫学.中国农业大学,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700