用户名: 密码: 验证码:
黄芩素对大鼠海马CA1区突触可塑性的影响及其机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分黄芩素对大鼠海马CA1区突触可塑性的影响
     目的:黄芩素(Baicalein,BAI)是从黄芩的干燥根中提取的主要黄酮之一。以往研究表明BAI具有抗炎、抗病毒、抗氧化损伤等药理作用,并能改善脑损伤引起的认知障碍。已有报道黄酮类天然化合物可提高动物的认知能力、增强LTP。但黄芩总黄酮的单体黄芩素是否可改善正常动物的认知能力,影响LTP尚未见报道。本研究旨在观察BAI对大鼠海马脑片CA1区长时程增强(Long-term potentiation,LTP)的影响,并进一步探讨其作用机制。方法:急性分离大鼠海马脑片,通过细胞外记录海马CA1区场电位的方法,观察BAI对海马CA1区基础突触传递、突触前反应、长时程增强的影响。结果:低浓度BAI不影响基础突触传递,高浓度(100μmol/L)BAI显著增强fEPSP的斜率和幅度。10μmol/L BAI显著增强海马CA1区的LTP。10μmol/L BAI作用脑片后,反映突触前反应的两个指标PPR和输入-输出反应没有显著变化。N-甲基-D-天冬氨酸(NMDA)受体阻断剂APV可完全阻断BAI易化LTP的作用;胞内钙离子螯合剂BAPTA-AM可显著抑制BAI增强LTP的作用。L型电压依赖性钙通道阻断剂维拉帕米不能阻断BAI增强LTP的作用。结论:BAI能增强海马CA1区NMDA受体依赖的LTP,且该作用是钙离子依赖的。
     第二部分黄芩素对大鼠海马CA1区突触可塑性相关蛋白质表达的影响
     目的:神经颗粒素(Ng)是神经元内与钙调蛋白(CaM)结合的一种蛋白质,其主要作用是调节Ca2+和钙/钙调蛋白(Ca2+/CaM)介导的信号通路。钙/钙调蛋白依赖性蛋白激酶Ⅱ(CaMKII)是脑内Ca2+/CaM依赖的激酶之一,调节神经元的很多功能,与学习记忆密切相关。CaMKII第286位苏氨酸有一个自身磷酸化位点,通过自身磷酸化CaMKII可介导短暂胞内钙离子浓度([Ca2+]i)升高触发的某些生理功能的长时程改变。已知CaMKII是NMDA受体依赖的LTP所必需的。本研究旨在观察Ng、CaMKII在BAI易化LTP的过程中的作用,进一步探讨BAI增强LTP的机制。方法:利用western blot方法,场电位记录结束后提取CA1区蛋白质,观察BAI对海马脑片CA1区CaMKⅡ,pCaMKⅡ,Ng,pNg表达的影响。结果:高频刺激(HFS)可增加脑片pCaMKⅡ和pNg的表达;10μmol/L BAI可增加HFS脑片pCaMKⅡ和pNg的表达。结论:BAI易化LTP的作用与其增加pCaMKⅡ和pNg表达有关。
Part 1. Effects of BAI on synaptic plasticity of CA1 subfield in rat hippocampal slices
     Background: Baicalein is one of the major flavonoids extracted from the dried root of Scutellaria baicalensis Georgi (Huangqin). It has been widely used as an antibacterial and antiviral agent. Previous research has demonstrated that baicalein is a free radical scavenger and a selective inhibitor of 12-lipoxygenase. Total flavonoids isolated from Scutellaria baicalensis Georgi has been shown to improve memory impairment and chemical neuronal damage. Recently, several studies have demonstrated effects of mixtures of flavonoids on learning and memory and long-term potentiation (LTP). However, no detailed studies have been performed concerning the impact of BAI on LTP of CA1 subfield in rat hippocampal slices. The aim of the current investigation was to characterize the role of BAI on long-term potentiation (LTP) in the CA1 region of rat hippocampal slices and to elucidate the molecular sequence of events leading to these changes. Methods: Using hippocampal slice preparations and electrophysiology recording, we investigated the effects of BAI on fEPSP, PPR, I/O curve and LTP of CA1 subfield. Results: BAI did not affect basal synaptic transmission in normal slices at low concentration. However, administration of 100μmol/L BAI enhanced fEPSP in CA1 subfield significantly. LTP was enhanced by incubation of 10μmol/L BAI significantly. We found that administration of BAI did not alter the presynaptic glutamate release in response to both single pulse and tetanic stimulation. NMDA receptor antagonist APV blocked BAI-facilitated LTP. Pre-treatment of slices with verapamil had no significant effect on BAI-facilitated LTP. Calcium chelator BAPTA-AM prevented BAI-facilitated LTP significantly. Conclusion: These findings demonstrate that the natural product BAI facilitated LTP is dependent on NMDA receptors and [Ca2+] i.
     Part 2. Effects of BAI on plasticity-related proteins of CA1 subfield in rat hippocampal slices
     Background: Neurogranin (Ng) is a neural-specific CaM-binding protein that is a substrate for PKC. Ng is implicated in the modulation of Ca2+ and Ca2+/CaM-mediated signaling pathways. CaMKII is a major class of Ca2+/calmodulin-dependent protein kinases in the brain that contributes to various neuronal processes, associated with learning and memory formation. Interestingly, CaMKII contains an autophosphorylation site at threonine 286, the phosphorylation of which generates a Ca2+/CaM-independent, autonomously active form of CaMKII (pThr286-CaMKII). Through this mechanism, pCaMKII can evoke prolonged physiological responses triggered by transient increases in [Ca2+]i. It is clear that CaMKII is required as a mediator for NMDA receptor-dependent LTP. The aim of this study is to test the role of Ng and CaMKII in BAI-facilitated LTP. Methods: Western blot technique was employed to analyze the changes of CaMKII and Ng levels after BAI treatment and HFS stimulation. Results: 10μmol/L BAI increased the ratio of pCaMKIIα/CaMKII and pNg/Ng after HFS stimulation, measured in the total homogenate of hippocampal CA1 area. Conclusion: BAI-facilitated LTP was associated with increases in the expression of pCaMKII and pNg.
引文
1. Kim, H.K., et al. (1999) Effects of naturally occurring flavonoids on nitric oxide production in the macrophage cell line RAW 264.7 and their structure-activity relationships. Biochem Pharmacol 58, 759-765
    2. Wu, J.A., et al. (2001) Anti-HIV activity of medicinal herbs: usage and potential development. Am J Chin Med 29, 69-81
    3. Ahn, H.C., et al. (2001) Binding aspects of baicalein to HIV-1 integrase. Mol Cells 12, 127-130
    4. Middleton, E., Jr., and Kandaswami, C. (1992) Effects of flavonoids on immune and inflammatory cell functions. Biochem Pharmacol 43, 1167-1179
    5. Duarte, J., et al. (1993) Vasodilator effects of quercetin in isolated rat vascular smooth muscle. Eur J Pharmacol 239, 1-7
    6. Machha, A., and Mustafa, M.R. (2005) Chronic treatment with flavonoids prevents endothelial dysfunction in spontaneously hypertensive rat aorta. J Cardiovasc Pharmacol 46, 36-40
    7. Huang, Y., et al. (2005) Biological properties of baicalein in cardiovascular system. Curr Drug Targets Cardiovasc Haematol Disord 5, 177-184
    8. Liao, J.F., et al. (2003) Anxiolytic-like effects of baicalein and baicalin in the Vogel conflict test in mice. Eur J Pharmacol 464, 141-146
    9. Schweitzer, P., et al. (1993) Somatostatin inhibition of hippocampal CA1 pyramidal neurons: mediation by arachidonic acid and its metabolites. J Neurosci 13, 2033-2049
    10. Lebeau, A., et al. (2001) Baicalein protects cortical neurons from beta-amyloid (25-35) induced toxicity. Neuroreport 12, 2199-2202
    11. Lee, H.H., et al. (2003) Differential effects of natural polyphenols on neuronal survival in primary cultured central neurons against glutamate- and glucose deprivation-induced neuronal death. Brain Res 986, 103-113
    12. Hwang, Y.S., et al. (2002) Hwangryun-Hae-Dok-tang (Huanglian-Jie-Du-Tang) extract and its constituents reduce ischemia-reperfusion brain injury and neutrophil infiltration in rats. Life Sci 71, 2105-2117
    13. Liu, C., et al. (2007) Baicalein improves cognitive deficits induced by chronic cerebral hypoperfusion in rats. Pharmacol Biochem Behav 86, 423-430
    14. Maher, P., et al. (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 103, 16568-16573
    15. van Praag, H., et al. (2007) Plant-derived flavanol (-)epicatechin enhances angiogenesis and retention of spatial memory in mice. J Neurosci 27, 5869-5878
    16. Bliss, T.V., and Collingridge, G.L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39
    17. Lynch, M.A. (2004) Long-term potentiation and memory. Physiol Rev 84, 87-136
    18. Malenka, R.C., and Bear, M.F. (2004) LTP and LTD: an embarrassment of riches. Neuron 44, 5-21
    19. Malenka, R.C., and Nicoll, R.A. (1999) Long-term potentiation--a decade of progress? Science 285, 1870-1874
    1. Schulz, P.E., et al. (1994) Changes in paired-pulse facilitation suggest presynaptic involvement in long-term potentiation. J Neurosci 14, 5325-5337
    2. Bliss, T.V., and Collingridge, G.L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39
    3. Malenka, R.C., and Nicoll, R.A. (1999) Long-term potentiation--a decade of progress? Science 285, 1870-1874
    4. Morgan, S.L., and Teyler, T.J. (2001) Electrical stimuli patterned after the theta-rhythm induce multiple forms of LTP. J Neurophysiol 86, 1289-1296
    5. Morgan, S.L., and Teyler, T.J. (1999) VDCCs and NMDARs underlie two forms of LTP in CA1 hippocampus in vivo. J Neurophysiol 82, 736-740
    6. Raymond, C.R. (2007) LTP forms 1, 2 and 3: different mechanisms for the "long" in long-term potentiation. Trends Neurosci 30, 167-175
    7. Matias, C.M., et al. (2003) Effect of D-2 amino-5-phosphonopentanoate and nifedipine on postsynaptic calcium changes associated with long-term potentiation in hippocampal CA1 area. Brain Res 976, 90-99
    8. Cavus, I., and Teyler, T. (1996) Two forms of long-term potentiation in area CA1 activate different signal transduction cascades. J Neurophysiol 76, 3038-3047
    9. Shankar, S., et al. (1998) Aging differentially alters forms of long-term potentiation in rat hippocampal area CA1. J Neurophysiol 79, 334-341
    1. Prichard, L., et al. (1999) Interactions between neurogranin and calmodulin in vivo. J Biol Chem 274, 7689-7694
    2. Chakravarthy, B., et al. (1999) Ca2+-calmodulin and protein kinase Cs: a hypothetical synthesis of their conflicting convergences on shared substrate domains. Trends Neurosci 22, 12-16
    3. Gerendasy, D.D., and Sutcliffe, J.G. (1997) RC3/neurogranin, a postsynaptic calpacitin for setting the response threshold to calcium influxes. Mol Neurobiol 15, 131-163
    4. Malenka, R.C., and Bear, M.F. (2004) LTP and LTD: an embarrassment of riches. Neuron 44, 5-21
    5. Lisman, J., et al. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3, 175-190
    6. Soderling, T.R., et al. (2001) Cellular signaling through multifunctionalCa2+/calmodulin-dependent protein kinase II. J Biol Chem 276, 3719-3722
    7. Hudmon, A., and Schulman, H. (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71, 473-510
    8. Gao, Z., et al. (1999) Free radical scavenging and antioxidant activities of flavonoids extracted from the radix of Scutellaria baicalensis Georgi. Biochim Biophys Acta 1472, 643-650
    9. Maher, P., et al. (2006) Flavonoid fisetin promotes ERK-dependent long-term potentiation and enhances memory. Proc Natl Acad Sci U S A 103, 16568-16573
    10. Schweitzer, P., et al. (1993) Somatostatin inhibition of hippocampal CA1 pyramidal neurons: mediation by arachidonic acid and its metabolites. J Neurosci 13, 2033-2049
    1. Bliss, T.V., and Lomo, T. (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232, 331-356
    2. Bliss, T.V., and Collingridge, G.L. (1993) A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361, 31-39
    3. Lynch, M.A. (2004) Long-term potentiation and memory. Physiol Rev 84, 87-136
    4. Malenka, R.C., and Bear, M.F. (2004) LTP and LTD: an embarrassment of riches. Neuron 44, 5-21
    5. Nicoll, R.A., and Schmitz, D. (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6, 863-876
    6. Yasuda, H., et al. (2003) A developmental switch in the signaling cascades for LTP induction. Nat Neurosci 6, 15-16
    7. Malenka, R.C., and Nicoll, R.A. (1999) Long-term potentiation--a decade of progress? Science 285, 1870-1874
    8. Lynch, G., et al. (1983) Intracellular injections of EGTA block induction of hippocampal long-term potentiation. Nature 305, 719-721
    9. Malenka, R.C., et al. (1988) Postsynaptic calcium is sufficient for potentiation of hippocampal synaptic transmission. Science 242, 81-84
    10. Sanes, J.R., and Lichtman, J.W. (1999) Can molecules explain long-term potentiation? Nat Neurosci 2, 597-604
    11. Hoffman, D.A., et al. (2002) Molecular dissection of hippocampal theta-burst pairing potentiation. Proc Natl Acad Sci U S A 99, 7740-7745
    12. Lisman, J., et al. (2002) The molecular basis of CaMKII function in synaptic and behavioural memory. Nat Rev Neurosci 3, 175-190
    13. Kirkwood, A., et al. (1997) Age-dependent decrease of synaptic plasticity in the neocortex of alphaCaMKII mutant mice. Proc Natl Acad Sci U S A 94, 3380-3383
    14. Blitzer, R.D., et al. (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280, 1940-1942
    15. Brown, G.P., et al. (2000) Long-term potentiation induced by theta frequency stimulation is regulated by a protein phosphatase-1-operated gate. J Neurosci 20, 7880-7887
    16. Hu, G.Y., et al. (1987) Protein kinase C injection into hippocampal pyramidal cells elicits features of long term potentiation. Nature 328, 426-429
    17. Linden, D.J., and Routtenberg, A. (1989) The role of protein kinase C in long-term potentiation: a testable model. Brain Res Brain Res Rev 14, 279-296
    18. Sweatt, J.D. (2004) Mitogen-activated protein kinases in synaptic plasticity and memory. Curr Opin Neurobiol 14, 311-317
    19. Thomas, G.M., and Huganir, R.L. (2004) MAPK cascade signalling and synaptic plasticity. Nat Rev Neurosci 5, 173-183
    20. Salter, M.W., and Kalia, L.V. (2004) Src kinases: a hub for NMDA receptor regulation. Nat Rev Neurosci 5, 317-328
    21. Makhinson, M., et al. (1999) Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J Neurosci 19, 2500-2510
    22. Ouyang, Y., et al. (1997) Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus. J Neurosci 17, 5416-5427
    23. Giese, K.P., et al. (1998) Autophosphorylation at Thr286 of the alpha calcium-calmodulin kinase II in LTP and learning. Science 279, 870-873
    24. Kullmann, D.M., and Siegelbaum, S.A. (1995) The site of expression of NMDA receptor-dependent LTP: new fuel for an old fire. Neuron 15, 997-1002
    25. Luscher, C., et al. (1999) Role of AMPA receptor cycling in synaptic transmission and plasticity. Neuron 24, 649-658
    26. Malinow, R., and Malenka, R.C. (2002) AMPA receptor trafficking and synapticplasticity. Annu Rev Neurosci 25, 103-126
    27. Benke, T.A., et al. (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393, 793-797
    28. Bredt, D.S., and Nicoll, R.A. (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40, 361-379
    29. Hayashi, Y., et al. (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287, 2262-2267
    30. Zamanillo, D., et al. (1999) Importance of AMPA receptors for hippocampal synaptic plasticity but not for spatial learning. Science 284, 1805-1811
    31. Choi, S., et al. (2000) Postfusional regulation of cleft glutamate concentration during LTP at 'silent synapses'. Nat Neurosci 3, 330-336
    32. Zakharenko, S.S., et al. (2003) Presynaptic BDNF required for a presynaptic but not postsynaptic component of LTP at hippocampal CA1-CA3 synapses. Neuron 39, 975-990
    33. Williams, J.H. (1996) Retrograde messengers and long-term potentiation: a progress report. J Lipid Mediat Cell Signal 14, 331-339
    34. Poo, M.M. (2001) Neurotrophins as synaptic modulators. Nat Rev Neurosci 2, 24-32
    35. Nicoll, R.A., and Malenka, R.C. (1995) Contrasting properties of two forms of long-term potentiation in the hippocampus. Nature 377, 115-118
    36. Zalutsky, R.A., and Nicoll, R.A. (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248, 1619-1624
    37. Mellor, J., and Nicoll, R.A. (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 4, 125-126
    38. Henze, D.A., et al. (2000) The multifarious hippocampal mossy fiber pathway: a review. Neuroscience 98, 407-427
    39. Yeckel, M.F., et al. (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 2, 625-633
    40. Contractor, A., et al. (2001) Kainate receptors are involved in short- and long-termplasticity at mossy fiber synapses in the hippocampus. Neuron 29, 209-216
    41. Schmitz, D., et al. (2003) Presynaptic kainate receptors impart an associative property to hippocampal mossy fiber long-term potentiation. Nat Neurosci 6, 1058-1063
    42. Wang, H., et al. (2003) Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation. J Neurosci 23, 9710-9718
    43. Reid, C.A., et al. (2004) Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses. J Neurosci 24, 3618-3626
    44. Racine, R.J., et al. (1983) Long-term potentiation phenomena in the rat limbic forebrain. Brain Res 260, 217-231
    45. Silva, A.J., et al. (1996) Impaired learning in mice with abnormal short-lived plasticity. Curr Biol 6, 1509-1518
    46. Cavazzini, M., et al. (2005) Ca2+ and synaptic plasticity. Cell Calcium 38, 355-367
    47. Raymond, C.R., and Redman, S.J. (2002) Different calcium sources are narrowly tuned to the induction of different forms of LTP. J Neurophysiol 88, 249-255
    48. Raymond, C.R., and Redman, S.J. (2006) Spatial segregation of neuronal calcium signals encodes different forms of LTP in rat hippocampus. J Physiol 570, 97-111
    49. Sorra, K.E., and Harris, K.M. (2000) Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501-511
    50. Augustine, G.J., et al. (2003) Local calcium signaling in neurons. Neuron 40, 331-346
    51. Feng, W., et al. (2002) Homer regulates gain of ryanodine receptor type 1 channel complex. J Biol Chem 277, 44722-44730
    52. Raymond, C.R., et al. (2000) Metabotropic glutamate receptors trigger homosynaptic protein synthesis to prolong long-term potentiation. J Neurosci 20, 969-976
    53. Anwyl, R. (1999) Metabotropic glutamate receptors: electrophysiological properties and role in plasticity. Brain Res Brain Res Rev 29, 83-120
    54. Nakamura, T., et al. (2002) Spatial segregation and interaction of calcium signalling mechanisms in rat hippocampal CA1 pyramidal neurons. J Physiol 543, 465-480
    55. Zhou, S., and Ross, W.N. (2002) Threshold conditions for synaptically evoking Ca(2+) waves in hippocampal pyramidal neurons. J Neurophysiol 87, 1799-1804
    56. Reymann, K.G., and Frey, J.U. (2007) The late maintenance of hippocampal LTP: requirements, phases, 'synaptic tagging', 'late-associativity' and implications. Neuropharmacology 52, 24-40
    57. Cavus, I., and Teyler, T. (1996) Two forms of long-term potentiation in area CA1 activate different signal transduction cascades. J Neurophysiol 76, 3038-3047
    58. Winder, D.G., et al. (1999) ERK plays a regulatory role in induction of LTP by theta frequency stimulation and its modulation by beta-adrenergic receptors. Neuron 24, 715-726
    59. Rosenblum, K., et al. (2002) The role of extracellular regulated kinases I/II in late-phase long-term potentiation. J Neurosci 22, 5432-5441
    60. Karpova, A., et al. (2006) Involvement of multiple phosphatidylinositol 3-kinase-dependent pathways in the persistence of late-phase long term potentiation expression. Neuroscience 137, 833-841
    61. De Koninck, P., and Schulman, H. (1998) Sensitivity of CaM kinase II to the frequency of Ca2+ oscillations. Science 279, 227-230
    62. Sutton, M.A., and Schuman, E.M. (2005) Local translational control in dendrites and its role in long-term synaptic plasticity. J Neurobiol 64, 116-131
    63. Kelleher, R.J., 3rd, et al. (2004) Translational regulatory mechanisms in persistent forms of synaptic plasticity. Neuron 44, 59-73
    64. Cracco, J.B., et al. (2005) Protein synthesis-dependent LTP in isolated dendrites of CA1 pyramidal cells. Hippocampus 15, 551-556
    65. Otani, S., et al. (1989) Maintenance of long-term potentiation in rat dentate gyrus requires protein synthesis but not messenger RNA synthesis immediately post-tetanization. Neuroscience 28, 519-526
    66. Gelinas, J.N., and Nguyen, P.V. (2005) Beta-adrenergic receptor activation facilitates induction of a protein synthesis-dependent late phase of long-term potentiation. J Neurosci 25, 3294-3303
    67. Codazzi, F., et al. (2006) Synergistic control of protein kinase Cgamma activity by ionotropic and metabotropic glutamate receptor inputs in hippocampal neurons. J Neurosci 26, 3404-3411
    68. Havik, B., et al. (2003) Bursts of high-frequency stimulation trigger rapid delivery of pre-existing alpha-CaMKII mRNA to synapses: a mechanism in dendritic protein synthesis during long-term potentiation in adult awake rats. Eur J Neurosci 17, 2679-2689
    69. Abraham, W.C., and Williams, J.M. (2003) Properties and mechanisms of LTP maintenance. Neuroscientist 9, 463-474
    70. Chawla, S. (2002) Regulation of gene expression by Ca2+ signals in neuronal cells. Eur J Pharmacol 447, 131-140
    71. Fields, R.D., et al. (2005) Temporal integration of intracellular Ca2+ signaling networks in regulating gene expression by action potentials. Cell Calcium 37, 433-442
    72. Impey, S., et al. (1996) Induction of CRE-mediated gene expression by stimuli that generate long-lasting LTP in area CA1 of the hippocampus. Neuron 16, 973-982
    73. Bading, H., et al. (1993) Regulation of gene expression in hippocampal neurons by distinct calcium signaling pathways. Science 260, 181-186
    74. Davis, S., et al. (2000) The MAPK/ERK cascade targets both Elk-1 and cAMP response element-binding protein to control long-term potentiation-dependent gene expression in the dentate gyrus in vivo. J Neurosci 20, 4563-4572
    75. Selcher, J.C., et al. (2003) A role for ERK MAP kinase in physiologic temporal integration in hippocampal area CA1. Learn Mem 10, 26-39
    76. Kanterewicz, B.I., et al. (2000) The extracellular signal-regulated kinase cascade is required for NMDA receptor-independent LTP in area CA1 but not area CA3 of the hippocampus. J Neurosci 20, 3057-3066
    77. Jay, T.M. (2003) Dopamine: a potential substrate for synaptic plasticity and memory mechanisms. Prog Neurobiol 69, 375-390
    78. Zakharenko, S.S., et al. (2001) Visualization of changes in presynaptic function during long-term synaptic plasticity. Nat Neurosci 4, 711-717
    79. Huang, Y.Y., et al. (2005) Genetic evidence for a protein-kinase-A-mediated presynaptic component in NMDA-receptor-dependent forms of long-term synaptic potentiation. Proc Natl Acad Sci U S A 102, 9365-9370
    80. Borroni, A.M., et al. (2000) Role of voltage-dependent calcium channel long-term potentiation (LTP) and NMDA LTP in spatial memory. J Neurosci 20, 9272-9276
    81. Woodside, B.L., et al. (2004) NMDA receptors and voltage-dependent calcium channels mediate different aspects of acquisition and retention of a spatial memory task. Neurobiol Learn Mem 81, 105-114
    82. Mizuno, K., and Giese, K.P. (2005) Hippocampus-dependent memory formation: do memory type-specific mechanisms exist? J Pharmacol Sci 98, 191-197
    83. Naie, K., and Manahan-Vaughan, D. (2005) Pharmacological antagonism of metabotropic glutamate receptor 1 regulates long-term potentiation and spatial reference memory in the dentate gyrus of freely moving rats via N-methyl-D-aspartate and metabotropic glutamate receptor-dependent mechanisms. Eur J Neurosci 21, 411-421
    84. Balschun, D., et al. (1999) Deletion of the ryanodine receptor type 3 (RyR3) impairs forms of synaptic plasticity and spatial learning. EMBO J 18, 5264-5273
    85. Futatsugi, A., et al. (1999) Facilitation of NMDAR-independent LTP and spatial learning in mutant mice lacking ryanodine receptor type 3. Neuron 24, 701-713

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700