用户名: 密码: 验证码:
冬小麦节水高产栽培群体源性能特征及其调控机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本研究以挖掘小麦全株光合潜力、同步提高产量和水分利用效率为目标,在水肥限制条件下,研究群体、个体、器官光合源的时空变化特征及其生理机制,突出非叶器官光合作用,揭示不同基因型不同光合器官光合性能的差异。并通过设置不同密度、灌水处理试验,探索建立大群体、小叶形、高光效、低耗水群体结构的节水高产、超高产栽培技术原理。主要结论如下:
     1 节水省肥高产群体中,非叶器官占有较大的绿色面积,对产量具有突出贡献。开花期单茎非叶面积占单茎总绿色面积的60%以上,群体绿色面积中非叶绿色面积也大于叶面积,且随着灌水量减少或密度的增大,非叶器官面积所占比例增加。统计分析表明,开花后群体总绿色面积以及非叶器官面积均与产量呈显著正相关。根据试验结果得出,实现7500~8250kg.hm~(-2)产量目标开花后适宜的LAI为4.81,其中上三叶高效LAI为3.11,非叶面积指数为6.86;单茎叶面积小尤其是上部叶片小、比叶重高、旗叶与茎秆夹角小,叶层透光好,群体光合速率和WUE均较高,这是节水高产群体的基本结构特征。采用器官遮光处理发现,穗光合对籽粒重的相对贡献率远大于旗叶叶片,穗下节间和旗叶鞘光合对粒重的贡献率也与旗叶相当。在旗叶节以上器官对粒重的总贡献率中,非叶器官的贡献率所占比例达70~80%,随灌水减少、密度增大而增加。
     2 小麦植株中叶与非叶器官气孔与叶绿体结构存在明显差异,节水小麦后期非叶器官叶绿体结构具有较高的稳定性。电镜观察发现,非叶器官表面气孔密度、单个器官气孔总数均低于旗叶叶片。各器官气孔密度随灌水减少呈增大趋势,而单个器官气孔总数水分处理间差异不明显,非叶器官气孔数目受水分变化的影响较小。从气孔大小来看,穗部器官(护颖、外稃、内稃和芒)的气孔略小于其它器官;就气孔分布特征而言,穗部器官的气孔较多分布在器官内侧(腹面或近轴面),有利于穗光合对籽粒呼吸释放CO_2的重新固定。随着灌水次数减少,各器官气孔器及气孔口径均表现出长度增加、宽度减小的趋势。对叶绿体超微结构观察发现,在正常供水条件下,非叶器官的叶绿体数目少于叶片,其中护颖和外稃叶绿体含有较多的淀粉粒。灌浆后期干旱胁迫对旗叶叶片和外稃叶绿体结构破坏最为严重,与叶片相比,穗下节间、旗叶鞘和护颖叶绿体结构相对稳定。
     3 节水栽培明显提高非叶器官的PEP羧化酶活性,增加PEPC/RUBPC比值,增强后期的光合耐逆机能。与旗叶叶片相比,穗、穗下节间和叶鞘的叶绿素相对含量(SPAD值)、PSⅡ活性(F_v/F_m)、净光合速率等相对较低,但光合功能期较长,在灌浆后期能保持较高的光合活性。同时,非叶器官气孔导度和蒸腾速率也低于叶片。开花后不同器官碳同化途径酶活性与其光合速率基本呈同步变化趋势。器官间比较,以穗部器官(护颖和外稃)PEPC活性最高,其次为穗下节间和旗叶鞘,而旗叶叶片的PEPC活性最低,水分胁迫下非叶器官PEPC活性呈上升趋势;RUBPC活性以旗叶和外稃较高,穗下节间、旗叶鞘和护颖相对较低,且随着灌水减少(或水分胁迫下),各器官RUBPC活性均有下降趋势。灌浆期非叶器官PEPC/RUBPC比值显著大于旗叶叶片,且随灌水次数减少(或水分胁迫下)表现出明显的增加趋势。同时发现,各器官RUBPC活性品种间差异不明显,某些器官(穗下节间和旗叶鞘)的PEPC活性存在基因型差异。
     4 籽粒灌浆前期茎鞘和穗颖中积累大量果聚糖,并于灌浆后期迅速降解、转运,节水与高密度
    
    中国农业大学博士学位论文摘要
    ............................
    栽培促进营养体果聚箱降解和向籽粒运转。试验表明,不同器官贮藏物质转运量及对籽粒贡献率
    均表现为茎鞘>叶片>穗颖,且随密度增大、灌水减少而增加。开花后营养器官WSC及其主要
    成分果聚糖迅速积累,并于花后6d一12d达积累高峰,之后迅速降解向籽粒转运。非叶器官总的
    水溶性碳水化合物(WSC)转移率和对籽粒贡献率均随灌水的减少或密度增大而增加.就时间特
    征而言,减少灌水或增大密度,器官花前WSC贡献增加,而花后WSC的贡献率相应减少;就空
    间特征而言,上部茎鞘总的WSC贡献率大于下部茎鞘。
     5群体移l叶比(单位面积秘数与上三叶叶面积之比)是衡盘小麦节水栽培库源关系是否协调
    的适宜指标。结果表明,高穗叶比群体中非叶面积指数(以I)大于叶面积指数(LAI),冠层内
    光照状况明显改善,群体光合效率较高;在适宜叶面积基础上,增大穗叶比,非叶器官贮藏物质
    转移率和经济系数均提高,经济产量明显增加,而耗水量显著减少,从而使水分利用效率得到提
    高。节水省肥高产栽培适宜的枷叶比值为250一290穗加2.
     综合以上研究认为,在适宜叶面积指数基础上,扩大群体中非叶绿色面积增加穗/叶比,是节
    水省肥条件下提高产量的重要机制。通过适当增加基本苗增加穗数,从而扩大群体库容并扩大群
    体中非叶光合面积;通过拔节前控水控制单茎叶面积,增加穗/叶比值,从而改普群体结构并提高
    叶片质量,在高密度下实现源库协调和群体高光效、高转运、低耗水的统一,这是冬小麦节水省
    肥高产栽培的基本技术原理。
In order to identify the photosynthetic potential of different plant parts in winter wheat, to improve yield and water use efficiency (WUE) simultaneously, the photosynthetic source change characteristics and ecological physiology mechanics were studied in population, individual and organ level at different development stage under water and fertilizer limited condition, especially non-leaf organs, i.e., ear, internodes, leaf sheath. And the genetic difference in photosynthetic capacity in different organs was also studied. In addition, by setting different plants density and irrigation treatments, some points were also focused on the culture technology principles of water saving and super high yield by establishing the population structure with higher density, smaller phylliform, higher photosynthetic capacity and lower water consumption.
    1. In the population of water-saving, fertilizer-reducing and high-yielding, green area of non-leaf organs was larger than leaf blade, which contributes much to yield. Non-leaf organs green area accounted for 60% of total green area per stem , and non-leaf area index (NAD was higher than leaf area index(LAI), the proportion of NAI in the total green area index( GAD increased gradually with reducing irrigation times or increasing plant density. Statistic analysis indicated that GAI and NAI post-anthesis were correlated positively with yield, and to obtain the yield with 7500~8250kg.hm-2 , the suitable LAI, highly active LAI and NAI of three uppermost leaves after anthesis was 4.81, 3.11, 6.86 respectively.; The water-saving and high-yield population in winter wheat had such primary structure characteristics as lower leaf area per stem especially smaller size upper leaf, higher specific leaf weight, smaller angular between flag leaf and stem, better light intensity in canopy, which could lead to higher
     canopy photosynthetic rate and WUE. By shading plant parts treatment, photosynthetic contribution of ear to grain yield was found higher greatly than that of flag leaf blade, and the total contribution of peduncle and sheath to grain yield was equal to leaf blade. Photosynthetic contribution of non-leaf organs above flag leaf node to grain yield accounted for 70%~ 80%,which increased with water supply decreasing or plant density increasing.
    2. There was obvious difference in stoma and chloroplast ultrastructure between leaf blade and non-leaf organ in winter wheat plant, chloroplast ultrastructure of non-leaf organs showed more stable compared with leaf blade in the late development stage under water-saving culture condition. Through electron microscopic, stomatal frequency and total stoma quantity of non-leaf organs was found lower than that of flag leaf. Stomata frequency of various organs increased with the decrease of water supply, but the total stoma number per organ did not increase. In stomata size, stoma of apparatus on the ear (glume, lemma,palea,awn) was a little smaller than that of other organs. With the decrease of water supply, stomatal aperture length of various organs increased, but the width of those decreased gradually. As to the stomatal distribution, stoma located mostly in the inner side(ventral or adaxial) of organs in ear, which could contribute to re-fixing CO2 released by grain respiration. The chloroplast ultrastruct
    ure was also observed, and the results showed that chloroplast number of non-leaf
    
    
    
    
    organs was lower than that of leaf blade, and many starch grains were found in the chloroplast of glume and lemma under normal water supply condition. The chloroplast structure of flag leaf blade and lemma was destroyed severely subjected to drought stress at the later stage of grain filling, while the peduncle, sheath and glume showed relatively stable.
    3. Under water-saving cultivation condition , PEPCcase activities and PEPC/RUBP ratio of non-leaf organs increased obviously, which increased the photosynthetic stress tolerance capability at the later grain-filling stage. There was significant difference in the photosynthet
引文
[1]曹树青,赵永强,张荣铣,等.高产小麦旗叶光合作用及与籽粒灌浆进程关系德研究.中国农业科学,200,33(6):19~25
    [2]曹显祖,朱庆森.水稻品种的源库特征及其类型划分的研究.作物学报,1987,13(4):265~272
    [3]查静娟.磷酸烯醇式丙酮酸羧化酶活性的测定.见:现代植物生理学实验指南,中国科学院上海植物生理研究所,上海市植物生理学会编,1999,科学出版社,120~121
    [4]邓西平,山仑.旱地春小麦对有限灌水高效利用的研究.干旱地区农业研究,1995,13(3):43~46
    [5]董树亭.高产冬小麦群体光合能力与产量关系的研究.作物学报,1991,17(6):461~468
    [6]段续川,许霖庆,左宝玉,等.冬小麦叶片细胞的研究—冬小麦个体发育过程中叶肉细胞及其它类型细胞结构变化的观察.植物学报,1974,16(3):254~261
    [7]郭天财,王之杰,胡廷积,等.不同穗型小麦品种群体光合特性及产量性状的研究.作物学报,2001,27(3):633~639
    [8]郭文善,封超年,严六零,等.小麦开花后源库关系分析.作物学报,1995,21(3):334~340
    [9]韩凤山,赵明,赵松山,等.农作物光合作用“午睡”及其产量潜力.华北农学报,1986,1(4):49~53
    [10]韩凤山,赵明,赵松山.小麦午睡原因的研究 I.大田生态因子与午睡的关系.作物学报,1984,10(2):137~143
    [11]郝逎斌,谭克辉,那松青,等.C3植物绿色器官PEP羧化酶活性的比较研究.植物学报,1991,33(9):692~697
    [12]胡昌浩,董树亭,岳寿松,等.高产夏玉米群体光合速率与产量关系的研究.作物学报,1993,19(1):63~66
    [13]黄介生.也谈节水农业发展战略.中国农村水利水电,1999,1:7-9
    [14]侯有良,钟改荣,O'Brien.普通小麦营养器官氮素和果聚糖的运转.中国农业科学,2002,35(9):1066~1070
    [15]黄卓辉等.小麦光合作用的初步研究.小麦丰产研究论文集,上海科技出版社,1962,166~172
    [16]贾大林等.节水农业技术体系与途径研究.见:许越先等,农业用水有效性研究,科学出版社,1992
    [17]康绍忠主编.西北地区农业节水与水资源持续利用.中国农业出版社,1999
    [18]兰林旺,周殿玺,等.小麦节水高产研究.北京:中国农业大学出版社,1995
    [19]赖世登等.小麦光合速率和光呼吸的研究.植物学报,1981,(2):121~124
    
    
    [20]李寒冰,白克智,胡玉熹,等.4种作物部分非叶器官气孔频度及其在光合作用中的意义.植物生态学报,2002,26(3):351~354
    [21]李建民,周殿玺等著.冬小麦水肥高效利用栽培技术原理.北京:中国农业大学出版社,2000
    [22]李卫华,郝乃斌,戈巧英,等.C_3植物中C_4途径的研究进展.植物学通报,1999,16(2):97~106
    [23]李小云等.小麦不同叶位叶片细胞及其细胞形态的初步观察.作物学报,1984,10(3):207~215
    [24]李雁鸣.麦类作物燕麦和黎类作物高梁叶片解剖结构和光合性能的比较研究:[博士学位论文].北京:北京农业大学,1990
    [25]李雁鸣,王焕忠等.需水性不同的两个冬小麦品种叶片光合特性的比较研究.作物学报,2000,20(1):94~96
    [26]李秧秧,上官周平,刘文兆.冬小麦不同生育期灌水组合下产量、耗水量和水分利用效率关系的探讨.地理科学进展,1998,17(增刊):18~25
    [27]李跃建,朱华忠,伍玲,等,不同小麦品种剑叶的光合速率、影响因素及其与穗重关系的研究.四川大学学报,2003,40(3):579~581
    [28]林世青,许春辉,张其德,等.叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的作用.植物学通报,1992,9(1):1~10
    [29]凌启鸿主编.作物群体质量.上海:上海科学技术出版社,2000.11
    [30]刘殿英等.土壤水分对冬小麦根系的影响.山东农业大学学报,1991,22(2):104~110
    [31]刘来华,李韵珠等.冬小麦水氮有效利用的研究.中国农业大学学报,1996,1(5):67~73
    [32]刘文兆.作物生产、水分消耗与水分利用效率间的动态联系.自然资源学报,1998,13(1):23~26
    [33]卢从明,张其德,匡廷云.水分胁迫对小麦叶绿素a荧光诱导动力学的影响.生物物理学报,1993,9(3):453~457
    [34]卢从明,张其德,匡廷云,等.水分胁迫抑制水稻光合作用的机理.作物学报,1994,20(5):601~606
    [35]卢从明,唐崇钦,张其德,等.水分胁迫对小麦叶绿体色素蛋白复合体的影响.植物学报,1995,37(12):950~955
    [36]卢敏华等.叶片衰老和气孔关闭.植物生理学报,1983,9(1):63~68
    [37]卢振民,牛文元.冬小麦“午睡”现象的田间实验研究.生态学杂志,1987,6(3):14~16
    [38]罗春梅.小麦穗部的某些光合特性及其与籽粒产量的关系.植物生理学通讯,1985(5):27~30
    [39]马国英,吴源英,徐锡忠,等.不同小麦种叶片光合特性及叶绿体超微结构的比较.植物生理学通讯,1991,27(4):255~259
    [40]马瑞昆,塞家利,刘淑贞,等.冬小麦推迟春季首次灌水后不同品种的产量及水分利用效
    
    率.华北农学报,1995,10(4):20~25
    [41]马瑞昆等.高产冬小麦叶水势的变化特点与节水调控.华北农学报,1994,9(2):4~19
    [42]马瑞昆等.高产节水小麦基因型生理特性及综合评价.中国农业科学,1995,28(6):32~39
    [43]牛立元,茹振钢,刘明久.小麦光合作用日变化及光合潜势评价方法研究.麦类作物学报,2002,22(2):51~54
    [44]庞鸿宾主编.节水农业工程技术.郑州:河南科学技术出版社,2000
    [45]裘昭峰,翟立业.小麦穗和芒表面积的估测.作物学报,1985,11:138
    [46]山仑、徐萌.节水农业及其生理生态基础.应用生态学报,1991,2(1):70~76
    [47]山仑等.春小麦对有限灌水的生理生态反应.见:许越先等,农业用水有效性研究,科学出版社,1992
    [48]单玉珊主编.小麦高产栽培研究文集.北京:中国农业科技出版社,1998,12
    [49]史吉平等.水分胁迫对小麦光合作用的影响.国外农学——麦类作物,1995,(5):49~51
    [50]史兰波,李云荫.水分胁迫对冬小麦幼苗几种生理指标和叶绿体超微结构的影响.植物生理学通讯,1990,(2):28~31
    [51]王邦锡,何军贤,黄久常.水分胁迫导致小麦叶片光合作用下降的非气孔因素.植物生理学报,1992,18(1):77~84
    [52]王风茹,张红,商振清,等.干旱逆境下小麦幼苗细胞叶绿体与钙离子的关系.河北农业大学学报,2001,24(4):21~24
    [53]王和洲等.小麦节水高产的土壤水分调控标准研究.灌溉排水,1999,18(1):14~17
    [54]王瑞英,于振文,姜东.冬小麦旗叶衰老过程中光合色素变化及调控.莱阳农学院学报,1997,14(3):172~175
    [55]王月福,李素美,王玉叶,等.水分对冬小麦开花后光合产物积累运转的影响.莱阳农学院学报,1998,15(2):94~98
    [56]王志敏,王树安,苏宝林.小麦茎秆贮藏物质的积累与再运转(综述).北京农业大学学报,1994,20(4):369~372
    [57]王志敏.高等植物中的果聚糖代谢.植物生理学通讯,2000,36(1):71~76
    [58]王忠等.麦芒的结构及其光合特性.植物学,1993,35(12):921~928.
    [59]王忠等.小麦穗的光合特性.植物学报,1991,33(4):286~291
    [60]魏爱丽,王志敏等.野生一粒麦与普通栽培小麦不同绿色器官光合特性与叶绿体结构特征.作物学报,2002.(3)
    [61]吴凯等.冬小麦水分耗散特性与农业节水.地理学报,1997,52(5):455~459
    [62]吴海卿,段爱旺,杨传福.冬小麦对不同土壤水分的生理和形态响应.华北农学报,2000,15(1):92~96
    [63]吴姝,张树源,沈允钢.昼夜温差对小麦生长特性的影响.作物学报,1998,25(3):333~337
    [64]吴源英,方志伟,马万山,等.小麦叶片叶肉细胞及叶绿体的形态、结构与光合速率的关系.主要作物生理特性、生长发育及控制技术课题研究报告,1988,2:1~8
    
    
    [65]肖凯,张荣铣.小麦叶片老化过程中光合功能衰退的可能机制.作物学报,1998,24(6):805~810
    [66]肖颖.水分胁迫对小麦旗叶光合特性的影响.河北农业大学学报,2002,25(4):7~10
    [67]徐恒永,赵君实.高产小麦的冠层光合能力及不同器官的贡献.作物学报,1995,21(2):204~209
    [68]许大全,丁勇,武海.田间小麦叶片光合效率日变化与光合“午睡”的关系.植物生理学报,1992,18(3):279~284
    [69]许大全.光合作用的“午睡”现象.植物生理学通讯,1997,(6):466~467
    [70]许霖庆.小麦叶片细胞的研究Ⅱ.小麦壮苗与黄弱苗叶片细胞的比较观察.植物学报,1962,10(4):292~297
    [71]徐恒永,赵君实,李群,等.高产小麦光合源调节对群体光合能力和产量的影响.江苏农学院报,1996,17(专刊):79~84
    [72]薛崧,汪沛洪.水分胁迫对冬小麦CO2同化作用的影响.植物生理学报,1992,18(1):1~7
    [73]严威凯.不同小麦品种源库状况的初步研究.西北农业大学学报,1988,16(2):39~44
    [74]闫文芝.对影响小麦气孔密度变化因素初探.内蒙古农业科技,1997,(3):9~12
    [75]杨建昌,王志琴,朱庆森.不同土壤水分状况下氮素营养对水稻产量的影响及其生理机制的研究.中国农业科学,1996,29(4):58~66
    [76]姚雅琴,汪沛洪,胡东维.水分胁迫下对小麦叶肉细胞超微结构变化与抗旱性的关系.西北植物学报,1993,13(1):16~20
    [77]余松烈,元新华.小麦生育后期植株不同部位的光合同化量及其运转、贮藏与群体大小关系的研究.山东农学院学报,1982,(2):75~86
    [78]于振文,田奇卓,潘庆民,等.黄淮麦区冬小麦超高产栽培的理论与实践.作物学报,2002,28(5):577~585
    [79]元新华等.中高产麦田水分变化规律及节水灌溉方案的研究.山东农业大学学报,1993,24(1):55~62
    [80]由懋正.华北平原冬小麦水分利用率研究.见:许越先等,农业用水有效性研究,科学出版社,1992
    [81]翟凤林.超高产节水小麦育种及其进展与展望.北京农业科学,1999,17(1):9~14
    [82]翟虎渠,曹树青,万建民,等.超高产杂交稻灌浆期光合功能与产量德关系.中国科学(C辑),2002,32(3):211~217
    [83]张久刚等.肥料对提高山早地小麦水分利用率的研究.山西农业科学,1996,24(3):7~9
    [84]张其德,刘合芹,张建华,等.限水灌溉对冬小麦旗叶某些光合特性的影响.作物学报,2000,26(6):869~873
    [85]张秋英,李发东,刘孟雨,等.水分胁迫对小麦旗叶叶绿素a荧光参数和光合速率的影响.干旱地区农业研究,2002,20(3):80~84
    [86]张荣铣,刘晓忠,宣亚南,等.小麦叶片展开后光合碳同化能力——叶源量的估算,中国
    
    农业科学,1997,30(1):84~91
    [87]张荣铣,程在全.关于光合速率高值持续期的初步研究.南京师大学报,1992,15(增刊):75~86
    [88]张荣铣,魏锦城.关于改进小麦光合特性与光合生产力的几个问题.南京师大学报.1992,15(增刊):149~160
    [89]张守仁.叶绿素荧光动力学参数的意义及讨论.植物学通报,1999,16(4):444~448
    [90]张树源,武海,沈振西,等.青海高原小麦叶片净光合速率日变化的中午降低现象对环境中生态因素的响应.西北植物学报,1995,15(3):212~218
    [91]张薇.司徒淞,王和洲.节水农业的土壤水分调控与标准研究.农业工程学报,1996,12(2):23~27
    [92]张晓艳,杨惠敏,侯宗东,等.土壤水分和种植密度对春小麦叶片气孔的影响.植物生态学报,2003,27(1):133~136
    [93]张正斌.小麦水分利用效率若干问题探讨.麦类作物学报,1998,18(1):35~38
    [94]赵春江,郭晓维.不同穗型冬小麦叶片荧光诱变及光谱特性.中国农业科学,1999,32(2):43~46
    [95]赵明,李少昆,王志敏,等.论作物源的数量、质量关系及其类型划分.中国农业大学学报,1998,3(3):53~58
    [96]赵明,王树安,李少昆.论作物产量研究的“三合结构”模式.北京农业大学学报,1995,21(4):359~364
    [97]赵瑞霞,张齐宝,吴秀瑛,等.干旱对小麦叶片下表皮细胞、气孔密度及大小的影响.内蒙古农业科技,2001,(6):6~7
    [98]赵致,陈坤玲,张军.不同类型小麦品种抽穗后光合生理性状的变化.西南农业学报,1997,10(4):20~26
    [99]郑国生,王焘.田间冬小麦叶片光合午休过程中的非气孔限制.应用生态学报,2001,12(5):799~800
    [100]郑连生.河北省农业节水发展方向和措施.干旱地区农业研究,1995,13(1):78~83
    [101]郑丕尧,李雁鸣.麦类和黎类作物光合器官细胞形态和光合性能的比较.中国农业科学,1993,(4):29-35
    [102]郑丕尧等.大麦不同叶位叶鞘同化细胞形态的初步观察.作物学报,1986,12(3):183~186
    [103]郑有飞等.小麦的水分利用效率及其最优化问题.中国农业气象,1997,18(4):13~17
    [104]郑有飞,颜景义,张卫国.小麦气孔阻力对气象条件的响应.中国农业气象,1995,16(3):9~13
    [105]朱庆森,张祖建,杨建昌.亚种间杂交稻产量源库关系的研究.中国农业科学,1997,30(3):52~59
    [106]左宝玉,段续川.冬小麦不同层次叶片中叶绿体超微结构及其功能的研究.植物学报,1978,20(3):223~228
    [107]Aaoyagi et al. Pyruvate orthosphosphate dikinase gene expression in developing wheat seeds.
    
    Piant Physiology 1984, 75: 393-396
    [108]Anderson J.M., D.T. Goodchild and N.K. Boardman. Composition of the photosystems and chloroplast structure in extreme shade plants, Biochim. Biophys.Acta. 1973, 325: 573-585
    [109]Araus J L, Brown H R, Febrero A. Ear photosynthesis, carbon isotope discrimination and the contribution of respiratory CO_2 to differences in grain mass in durum wheat, Plant, Cell and Environment, 1993a, 16: 383-392.
    [110]Araus J.L et al. Immunocytochemical localization of phosphoenolpyruvate carboxylase and photosynthetic gas-exchange characteristics in ears of Triticum durum Desf. Planta. 1993b, 191: 507-514
    [111]Austin, R.B., C.L. Morgan, M.A. Ford, and R.D. Biackweli. Contributions to grain yield from pre-anthesis assimilation in tall and dwarf barley phenotypes in two contrasting seasons. Annals of Botany, 1980, 45:309~319
    [112]Baker D.N. Musgrave K.B. The effects of two level moisture stresses on the rate of apparent photosynthesis in corn. Crop Science, 1964, 4:249-253
    [113]Barlow E.W.K. In Dale J.E. Milthorpe F.L. (eds), The growth and functioning of leaves. Cambridge University Press, Cambridge London, 1983
    [114]Beerling, D.J.W.G. Chaloner, The impact of atmospheric CO_2 and temperature changes on stomatal density: observations from Quercus robber lammas leaves, Annals of Botany, 1993, 71: 231-235
    [115]Benbellam, Paulsengm, Aulsengm, Efficacy of treatments for delaying senescence of wheat leaves, Senescence under controlled conditions, Agronomy Journal, 1998, 90:329-332
    [116]Biddingtonnl, Thomasth, Influence of different cytokinins on the transpiration and senescence of excised oat leaves , Physiol. Plant, 1978, 42:369-374
    [117]Bidinger F, Muscrave R.B, Fisher R.A. Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley. Nature, 1977, 270: 431-433.
    [118]Bidger F, Muscrave R.B, Fisher R.A, Contribution of stored pre-anthesis assimilate to grain yield in wheat and barley, Nature, 1977, 270:431-433
    [119]Blaeklow W.M, Darbyshire B, Pheloung D, Fructan polymerized and depolymerized in the intemodes of winter wheat as grain filling progressed, Plant Science, 1984, 36:213-218
    [120]BlankeM.M., Fruit photosynthesis, Plant, Cell andEnvironment, 1989, 12: 31-46
    [121]Blum A., Photosynthesis and transpiration in leaves and ears of wheat and barley varieties, J.Exp.Botany, 1985, 36, 432-440
    [122]Bradford M.M. A rapid and sensitive method for the quantitation of microgramquantities of protein utilizing the principle of protein-dye dinding, Anal.Bioehem., 1976, 72:248-254
    [123]Bort J., Brown R.H, Araus J.L. Refixation of respiratory CO_2 in the ears of C_3 cereals. J. Exp. Bot. 1996, 47: 1567-1575
    [124]Brown, J.H., G. Pal iyath, and J.E. Thompson. Physiological mechanisms of plant senescence, In F.C. Steward (ed.) Plant physiology, a Treatise, Vol X: Growth and deveiopmont. Academic
    
    Press, London and New York. 1991. p. 227-275.
    [125]Brownlee, C. The long and the short of stomatal density signals, Trends in Plant Science, 2001, 6:441-442
    [126]Chatterton N.J, Harrison P.A, Thornley W.R, Bennett-JH, Structures of fructan oligomers in orchard-grass (DactylisgiomerataL,), Journal of Plant Physiology, 1993, 142 (5): 552-556
    [127]Condon A.G. Broad sense beritability and genotype × environment interaction for carbon isotope discrimination in field-grown wheat [marker for water use efficiency]. Australian Journal of Agricultural Research, 1992, 43 (5): 921-934
    [128]Dahlin, C. Correlation between pigment composition and apparatus of the light-harvesting complex Ⅱ in wheat, Physiol. Plant, 1988, 74: 342-348
    [129]Daie, J. Mechanism of drought induced alternations in assimilation partitioning and transport in crops, CRC Crit Rev. Plant Sci., 1988, 7:117~137
    [130]Dalal R.C. Sustaining productivity of a Vertisol at Warra, Queensland, with fertilizers, no-tillage, or legumes 5.Wheat yields, nitrogen benefits and water-use efficiency of chickpea-wheat rotation. CSIRO Australia. 1998, 38 (5): 489-501
    [131]Dana E. Martinez, Virginia M.Luquez, Carlos G.Bartoli et al. Persistence of photosynthetic components and photochemical efficiency in ears of water-stressed wheat (Triticum aestivum ), Physiologia Plantarum, 2003, 119:519-525
    [132]Downton WJS, Loveys BR, Grant WJR. Non-uniform stomatal closure induced by water stress causes putative non-stomatal inhibition of photosynthesis. New Physiol. 1988, 110:503-508
    [133]Dvidson D.J, Chevallier EM, Storage and remobilization of water-soluble carbohydrates in stems of spring wheat , Crop Sci., 1992, 32:186-190
    [134]Dubois D, Winzeler M, Noberger J, Fructan accumulation and sucrose: sucrose fructosyitransferase activity in stem of spring wheat genotypes , Crop Science, 1990, 30:315-319
    [135]Edwards G., Turning up crop photosynthesis, Nature Biotech. 1999, 17:22-23
    [136]Ehdaie, B., and J.G. Waines. Genetic variation for contribution of pre-anthesis assimilates to grain yield in spring wheat. J. Genetics and Breeding, 1996, 50 (1): 47-55
    [137]Evans L.T. and H.M. Rawson, Photosynthesis and respiration by the flag and components of the ear during grain development in wheat, Aust. J. Biol. Sci., 1970, 23:725-741
    [138]Evans L.T.I.F. Wardlaw, R.Ficher, Wheat. In crop physiology: some case histories (eds), Cambridge University Press, 1972
    [139]Farquhar G.D, Sharkey T.D, Stomata conductance and photosynthesis, Annual Review of Plant Physiology, 1982, 33:317-345
    [140]Fischer R.A, D.Rees, K.D.Sayre. Wheat yield progress associated with high stomatal conductance and photosynthetic rate, and cooler canopies, Crop Science, 1998, 38: 1467-1475
    [141]Gallagher, J.N., P.V. Biscoe, and B. Hunter. Effects of drought on grain growth. Nature, 1976, 264:541~542
    [142]Gebbing, T, and H. Schnyder. Pre-anthesis reserve utilization for protein and carbohydrate
    
    synthesis in grains of wheat, Plant Physiol. 1999, 121:871-878
    [143]Govindjee W.J. , S. Downton, D.C. Fork et al. Chlorophyll fluorescence transient as an indicator of water potential of leaves, Plant Sci. lett., 1981, 20:191-194
    [144]Guido Aschan, Hardy Pfanz, Non-foliar photosynthesis — a strategy of additional carbon acquisition, Flora, 2003, 198 (2): 81-97
    [145]Hatfield J.L. Yield and Water Use of Winter Wheat in Relation to Latitude, Nitrogen and Water. Agricultural and Forest Meteorology, 1988, 44 (2): 187-195
    [146]Hola D., Koova, M. et al. Genetically based difference in photochemical activities of isolated maize (zea mays L.) mesophyli chloroplast. Photosynthetica, 1999, 36 (1): 187-197
    [147]Holbrook G.P. Biochemistry. of photosynthesis in species of triticum of different ploidy, Plant physiol., 1984, 74:12-15
    [148]Hou Y. L, O'Brien L, Growing season distribution of tissue fructan in wheat, Acta Agronomica Sinica, 2000, 26 (5): 549-556
    [149]Hui-lian Xu, Tohru Yamagishi and Atsuhiko Kumura, Effect of water deficit on photosynthesis in wheat plants. Ⅰ.Effects of a water deficit treatment on photosynthesis and transpiration in various part of plant, Japan Journal of Crop Science, 1987a, 56: 455-460
    [150]Hui-lian Xu, Tohru Yamagishi and Atsuhiko Kumura, Effect of water deficit on photosynthesis in wheat plants. Ⅱ .The physiological basis for the difference in photosynthetic sensitivity to water stress among plant parts. Japan Journal of Crop Science, 1987b, 56: 461-466
    [151]Johnson R.., Moss DN. Effect of water stress on ~(14)CO_2 fixation and translocation in wheat during grain filling. Crop Sci., 1976, 16: 697-701
    [152]Judel G.K, Mengl K, Effect of shading on nonstructural carbonhydrates and their turnover in culms and leaves during the grain filling period of spring wheat, Crop Science, 1982, 22:958-962
    [153]Kang, S.Z., Zhang, L., Liang, Y.L. et al Effects of limited irrigation on yield and water use efficiency of winter wheat in the Loess Plateau of China, Agric. Water management, 2002, 55: 203-216
    [154]Kiniry J.R, Nonstructural carbohydrate utililization by wheat shaded during grain growth. Agron. J., 1993, 85:844-849
    [155]Kitaya, Y. Yabuki, K. Kiyota, M. et al. Gas exchange and oxygen concentration in pneumatophores and prop roots of four mangrove species, Trees, 2002, 16:155-158
    [156]Knoppik D, Selinger H, Ziegler-Jons A. Differences between the flag leaf and the ear of a spring wheat cultivar with respect to the CO2 response of assimilation, respiration and stomatal conductance, Physiolagia Plantarum, 1986, 68, 451-457
    [157]Kobata, T., J.A. Palta, and N.C. Turner. Rate of development of post-anthesis water deficits and grain filling of spring wheat. Crop Sci. 1992, 32: 1238-1242
    [158]Koji Yamane, Koji Hayakawa, Michio Kawasaki et al. Bundle sheath chloroplasts of rice are more sensitive to drought stress than mesophyll chloroplasts, J. Plant Physiol.,2003,160: 1319-1327
    
    
    [159] Krebs D. et al. Chlorophyll fluorescence measurements for genetic analysis of maize cultivars. Photosynthetica, 1996, 32(4): 595-608
    [160] Kriedemann P. The photosynthetic activity of wheat ear. Ann. Bot., 1966, 30: 349-363
    [161] Ku M.S.B, Cho D, Ranade U et al. Photosynthetic performance of transgenic rice plants overexpressing maize C4 photosynthesis enzymes. In: Sheehy J, ed. Redesign Rice Photosynthesis, Los Banos, IRRI, 2000
    [162] Kuhbauch W, Thome U, Nonstructural carbohydrates of wheat stems as influenced by sink-source manipulations, Journal of Plant Physiology, 1989, 134: 243-250
    [163] Mccaig T.N, Clark J.M, Seasonal changes in nonstructural carbonhydrate levels of wheat and oats grown in semiarid environment, Crop Science, 1982, 22: 963-970
    [164] Morgan JM., Osmotic adjustment in the spikelet and leaves of wheat, J. Exp. Bot., 1980, 31: 655-665
    [165] Nicolas, M.E, H. Lambers, R.J. Simpson, and M. J. Dalling. Effect of drought on metabolism and partitioning of carbon in two wheat varieties differing in drought-tolerance, Ann. Bot. 1985, 55: 727-747
    [166] Nilsen E.T. Stem photosynthesis extent, patterns and role in plant carbon economy In: Gartner, B. (ed.): Plant Stem—physiology and functional morphology, 223-240, Academic Press, San Diego
    [167] Nooden, L.D. Whole plant senescence, In L.D. Nooden and A.C. Leopold (ed.) Senescence and aging in plants. Academic Press, San Diego. 1988a. p.281-327.
    [168] Nooden, L.D., J.J. Guiamet, and I. John. Senescence mechanisms. Physiol. Plant. 1997, 101: 746~753
    [169] Nutbeam AR, Duffus CM. Evidence of C4 photosynthesis in barley pericarp tissue. Biochemical and Biophysical Research Communications, 1976, 70, 1198-1203
    [170] Caviglia, Effect of nitrogen supply on crop conductance, water-and radiation-use efficiency of wheat, Field Crops Research, 2001, 69: 259-266
    [171] Pal S.K., Water requirement of wheat (Triticum aestivum) as affected by different levels of irrigation, seeding date and fertilizer, Indian Journal of Agricultural Sciences, 1996, 66(6): 328-332
    [172] Palta, J.A., T. Kobata, N.C. Turner, and I.R. Fillery. Remobilization of carbon and nitrogen in wheat as influenced by post-anthesis water deficits. Crop Sci., 1994, 34: 118-124
    [173] Pheloung P.C, Siddique K.H.M, Contribution of stem dry matter to grain yield in wheat cultivars, Aust. Journal of Plant Physiology, 1991, 18: 53-64
    [174] Pheloung P.C, Siddique K.H.M, Gibberllins and reproductive development in seed plants, Annual Review of Plant Physiology, 1985, 36: 517-568
    [175] Puekridge. Photosynthesis of wheat under field conditions. Aust.J.Agric.Res. 1971, 20: 623-634
    [176] Racker E. Ribulose diphosphate carboxylase from spinach leaves. In: Colowick S.P Kaplan N.O. (eds) Methods in Enzymology. Academic Press, 1962, 266-278
    
    
    [177] Rahman S.M. Yield-water relations and nitrogen utilization by wheat in salt-affected soils of Bangladesh, Agric. Water Manage., 1995, 28(1): 49-56
    [178] Rahman, M.S, and S. Yoshida. Effect of water stress on grain filling in rice. Soil Science and Plant Nutrition, 1985, 31: 497-511
    [179] Sadeh, A., Ravina, I., Relationships between yield and irrigation with low-quantity water—a system approach, Agric. Syst., 2000, 64: 99-113
    [180] Smillie R.M. and Hetherington S.E. In: Advance in photosynthesis Research (Sybesma C. ed), 1984, 4: 471-474
    [181] Singal HR, Sheoran IS, Singh R. In vitro enzyme activities and product of ~(14)CO_2 assimilation in flage leaf and ear parts of wheat. Photosynthesis Research, 1986, 8: 113-133
    [182] Singh K.P. Water Use and Water-Use Efficiency of Wheat and Barley in Relation to Seeding Dates, Levels of Irrigation and Nitrogen Fertilization, Agricultural Water Management, 1981, 3(4): 305-316
    [183] Spiertz J.H.J, Grain growth and distribution of dry matter in the wheat land as influenced by temperature, light energy and ear size, Netherlands J. Agr. Sci, 1974, 22: 207-220
    [184] Teare I.D, Law A.G., Simmons G.F. Stomatal frequency and distribution on the inflorescence of Triticum aestivum L. Can J Plant Sci, 1992, 52: 89-94
    [185] Teare I D and Peterson. C J. Surface area of chlorophyll containing tissue on the florescence of Triticum aestivum L. Crop Science, 1971, 11: 627-628
    [186] Terashima I. Wong S.C. Osmond C.B. et al. Characterization of non-uniform photosynthesis induced by abscisic acid in leaves having different mesophyll anatomies. Plant Cell Physiol., 1988, 29: 385-391
    [187] Thomas, H.S, Toddart, J.L. Leaf senescence, Ann.Review Plant Physiol., 1980, 31: 83-111
    [188] Ticha, I. Photosynthetic characteristics during ontogenesis of leaves 7 stomatal density and size, Photosynthetica, 16: 375-471
    [189] Turner N.C. Crop water deficits: A decade of progress. Advances in Agronomy, 1989, 39: 1-51
    [190] Ved Pal Singhi et al. Source control of photosynthesis in wheat after spike emergence, Agric.Sci.Dieg.1984, 4(1): 48-50
    [191] Wang Zhi-Min, Wei Ai-Li. Photosynthetic characteristics of non-leaf organs of winter cultivars differing in ear type and their relationship with grain weight per ear. Photosynthetica, 2001, 39(2): 239-244.
    [192] Wardlaw I.F, The early stages of grain development in wheat: Response to water stress in a single variety, Aust. J. Biol. Sci, 1971, 24: 1047-1055
    [193] Weiss, D. Schonfeld, M. Halevy, A.H., Photosynthetic activities in the Petunia corolla, Plant Physiol.1988, 87: 666-670
    [194] Winter K. Effect of water stress on PEPC activity in Mesembryanthemum crystallinum (L.), Planta, 1974, 121: 147-153
    [195] Winzeler M, Dubois D, Nosberger J, Absence of fructan degradation during fructan accumulation
    
    in wheat stems, Journal of Plant Physiology, 1990, 136: 324-329
    [196] Wirth E, Kelly GJ, Fischbeck G, et al. Enzyme activities and products of CO_2 fixation in various photosynthetic organs of wheat and oat. Zeitschrift fur pflanzenphysiolgie, 1977, 82: 78-87
    [197] Woodward, F.I. and C.K. Kelly, The influence of CO_2 concentration on stomatal density, New Phytology, 1995, 131: 311-327
    [198] Xu X L, Wang ZM. Effect of heat stress on photosynthetic characteristics of different green organs of winter wheat during grain-fillings stage. Acta Botanica Sinica, 2001, 43: 571-577
    [199] Yang J., J. Zhang, Z. Huang, Q. Zhu, and L. Wang. Remobilization of carbon reserves is improved by controlled soil-drying during grain filling of wheat. Crop Sci. 2000, 40(6): 1645-1655
    [200] Yang J., J. Zhang, Z. Wang, Q. Zhu, and L. Liu. Water deficit-induced senescence and its relationship to remobilization of pre-stored carbon in wheat during grain filling. Agronomy J. 2001, 93: 196-206
    [201] Yang, J., J. Zhang, Z. Wang, and Q. Zhu, L. Liu. Activities of enzymes involved in sucrose-to-starch metabolism in rice grains subjected to water stress during filling. Field Crops Research, 2003, 81: 69-81
    [202] Yoshida, S. Physiological aspects of grain yield. Annual Review of Plant Physiology, 1972, 23: 437-464
    [203] Zhang, H., Wang, X., You M.Z. et al. Water-yield relations and water use efficiency of winter wheat in the North China Plain, Irrigation Science, 1999, 19: 37-45
    [204] Zhang, J., X. Sui, B. Li, B. Su, J. Li, and D. Zhou. An improved water-use efficiency for winter wheat grown under reduced irrigation. Field Crop Res. 1998, 59: 91-98
    [205] Ziegler-Jons A. Gas exchange of ears of cereals in response to carbon dioxide and light. I. Relative contributions of parts of ears of wheat, oat and barley to the gas exchange of the whole organ. Planta, 1989, 178: 84-91

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700