用户名: 密码: 验证码:
大豆品种光合特性及其与产量关系的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从四个方面阐述了大豆的光合生理特性及其与产量间的关系。
     1、用12份不同年代育成的大豆品种,分析研究了不同年代育成推广的大豆品种随年代进展、产量的提高、光合生理特性方面所发生的变化,以及这些变化与产量之间的关系。结果表明:
     伴随着年代进展,大豆籽粒产量的年增产幅度为20公斤/公顷。产量提高56%,植株光合速率提高57.04%,不同生育时期的研究中,不同年代品种结荚期光合速率与产量的相关系数为0.9221,达极显著水平。植株光合速率的冠层分布研究表明当代品种植株光合速率的提高主要是增强了植株下部叶片的光合速率,当代品种比早期品种更具有抗倒耐密的特征。
     2、用20份大豆新品种(系),分析研究品种间光合速率、比叶重、光合叶面积及叶面积指数、光合势、叶绿素含量、RuBPCase酶活性及希尔反应活力等七个重要光合生理性状的差异及其与产量的关系,结果表明:
     (1)当代新品种(系)间的光合速率存在着较大差异,当代品种的产量主要来自于植株的中层叶片,单位叶片光合速率与产量的相关系数不显著,但植株光合速率与产量呈显著正相关,相关系数为0.828。
     (2)品种间比叶重(SLW)的变异幅度为46.45%~61.12%。比叶重与产量及光合速率呈明显的正相关,相关系数分别为0.9102和0.9280,达极显著水平。
     (3)品种间叶面积和叶面积动态有较大差异,高产品种的LAImax时期提早,下降缓慢,即LAImax持续时期长。生育后期的LAI与产量呈明显的正相关,LAImax在5.0~7.0之间与产量呈明显的正相关。
     (4)品种间光合势具有显著差异,总变异为171800~223100m~2·日/亩,20个品种的光合势与生物产量、经济产量间均呈明显的正相关,相关系数为0.9280和0.8957,达极显著水平。
     (5)不同品种间的叶绿素含量中,90年代品种较50年代品种的叶绿素含量平均提高39%,较70年代品种提高16%。栽培大豆的叶绿素总量较野生大豆低9.65%,但叶绿素b的含量有较大幅度的提高。鼓粒期叶绿素含量与产量密切相关,叶绿素a/b与产量呈显著负相关,其余项目与产量均呈显著正相关。
     (6)品种间的RuBPCase活性具有差异,鼓粒期差值为0.748μmol CO_2/g fw.h大于苗期的0.514μmol CO_2/g.fw.h;品种间差异小于生育阶段的差异;栽培大豆与野生大豆RuBPCase活性无显著差异。鼓粒期RuBPCase活性与产量关系较为密切,相关系数为0.5031,但未达到显著水平。
     (7)品种间希尔反应活性具有较大差异88.7~108.9μmol K_4Fe(CN)_6/mg chl.h,与
    
    ——
    光合速率和产量的相关系数分别为0.7504和0.7866,均达1%显著水平。
     3、用相同的品种在5种产量水平下研究大豆的光合生理特性及其与产量的关系,
    结果表明:
     同一品种在5种产量水平下单位叶片光合速率与产量水平无关,但植株光合速率和
    群体光合速率与产量呈明显的正相关关系,高产水平下的植株、群体的光合速率高,高
    光合速率时期长。生育前期的叶面积和叶面积系数与产量无关,结荚期以后与产量呈明
    显正相关。
     同一品种在5种产量水平下的比叶重与产量关系总体上为负相关,除在出苗60天
     (分枝期)时相关系数为不显著的正相【,其余各期相关系数均为负值。其中出苗30
    天(三片复叶期)和出苗 75天(盛花期)时负相关性较强,达 5%显著水平。
     同一品种在5种产量水平下的单位叶面积内的叶绿素含量在开花后与产量呈现负相
    关,结荚期(出苗90天)和鼓粒期(出苗105天)负相关系数分别达l%和5%显著水
    平。但植株叶绿素含量在结荚期(出苗90天)和鼓粒期(出苗105天)与产量的相关系
    数呈明显的正相关,均达5%显著水平。
     鼓粒期的RuBPCase d与产量呈显著正相关(d.9936)。
     4.测定了!0个品种的四种C4k的活性,结果表明,四种C4$j81!li在品种间具有
    较大差异,特别是PPDK在2个品种的各生育时期叶片中均未检到其活性,仅在荚皮中
    具有微弱活性。4个品种在新叶中未测得其活性。
     大豆嫩叶中C4酶活性很弱,壮叶中较强,荚皮中最强。
     大田试验和盆栽试验的 PEPCase活性与产量的相关系数分别为 0.6978和 0.672!,达
    1%显著水平,与植株光合速率呈显著上相关。苹果酸酶活性与产量具有负相关趋势,其
    它二种酶活性与产量无明显关联。
This paper has elaborated the photosynthetic physiological property of soybean and it's relationship with yields.
    1. We study the changes of photosynthetic physiological property with the years changing and the yields growing up with 12 varieties, which were bred at different eras. The results show that:
    Accompany years progressing, the output of soybean seed increases 20 kg / hectares each year. Yields raising 56%, and piant photosynthetic rate raise 57.04%. The photosynthetic rate shows significant positive correlation with yields at the period of pod bearing(r = 0.9221), reaches the notable level of 1%. Tne study of plant layer distribution shows that the increase of photosynthetic rate of the varieties at the present years is because that the photosynthetic rate of under layer leaves increases. The varieties at the present years are more anti-lodging than the varieties at the early years.
    2. We study the changing of photosynthetic rate, leaf specific weight, leaf area for photosynthesis, leaf area index, photosynthetic potential, chlorophyll content, Rubisco-ase activity, and Hill reaction activity among varieties, and their relationship with yields.
    (1) The photosynthetic rate varies among the varieties at the present years. The yields of varieties are mainly contributed by the leaves in the middle of the plants. The photosynthetic rate of unit area of leaf doesn't show correlation with yields, but that of plant and population show significant positive correlation(r = 0.828).
    (2) The leaf specific weight varies from 46.45% to 61.12% among varieties. Leaf specific weight shows significant positive correlation with yields and photosynthetic rate, and the correlation coefficient reaches very notable level for 0.9102 and 7.9280, respectively.
    (3)The leaf area and the leaf area changing vary among varieties. The
    
    varieties with higher yields get the max leaf area earlier, and decrease slowly. That is, the period of keeping max leaf area is longer. The leaf area index shows significant positive correlation with yields at the later stage. The max leaf area between 5.0 and 7.0 shows significant positive correlation with yields.
    (4) The photosynthetic potential varies from 171800 to 223100 m2day / mu among varieties. The photosynthetic potential from 20 varieties all shows significant positive correlation with biological yields and economic yields, and the correlation coefficient reaches very notable level for 0.9280 and 0.8957, respectively.
    (5) The chlorophyll content in the varieties of 1990's raises 39% in average than that of 1950's, and raises 16% than that of 1970's. The chlorophyll amount of culture soybean is lower 9.65% than that of wild soybean, but the content of chlorophyll b raises greatly. The chlorophyll content shows significant correlation with yields. The value of chlorophyll a/b shows significant negative correlation with yields, and others show significant positive correlation with yields.
    (6) The activity of Rubisco-ase varies among varieties. The range 0.748 ?mol/mg-fw-h at the period of pod filing is more than that 0.514 ?mol/mg-fw-h at the period of seedling. The difference came from varieties is lower than that from the growth stage. Culture soybean shows non-significant difference with wild soybean. The activity of Rubisco-ase shows some correlation with yields at the periods of pod filing, and the correlation coefficient 0.5031, doesn't reach noble level.
    (7) The activity of Hill reaction activity varies from 88.7 -mol/mg-chl-h to108.9 -mol/mg-chl-h among varieties. The activity of Hill reaction activity shows significant negative correlation with yields and photosynthetic rate, and the correlation coefficient reaches very notable level for 0.7504 and 0.7866, respectively.
    3. We study the photosynthetic physiological property with the same varieties under 5 kinds of output levels, and it's relationship with yields. The results show that:
    The photosynthetic rate of unit area of leaf doesn't show correlation with yields, but that of plant
引文
1. 常耀中:大豆高产栽培的叶面积问题,中国农业科学,1981(2):22~26.
    2. 常耀中:大豆群体合理摆布与产量关系的研究,大豆科学,1983(2):132~139.
    3. 常耀中等:大豆高产规律及栽培技术研究,作物学报,1982(1):41~48.
    4. 陈宗权等:C_3-C_4中间植物,植物生理通讯,1988(2):72~76.
    5. 楚奎锡,高产大豆叶面积消长规律和光合势、净同化率与产量相关模型的研究,大豆科学,1988,7(3):215~222.
    6. 董 钻:大豆的器官平衡与产量,辽宁农业科学,1981(3):14~21.
    7. 董龙英等,Ti质粒介导的磷酸烯醇式丙酮酸cDNA转化烟草植株,植物生理学报,1995,21:281~288.
    8. 董钻等,大豆亩产450斤的生理参数及栽培措施初探险,大豆科学1982,1(2):131~139.
    9. 董钻等,大豆叶—粒关系的研究,大豆科学,1993,12(1):1~7
    10. 董钻等,叶绿素含量及比叶重与大豆单株生物产量的相关性,沈阳农学院学报,1979,(2).
    11. 董钻等:大豆品种生产力的比较研究,沈阳农学院学报,1979(3):37~47.
    12. 董树亭等,玉米品种更替过程中群体光合特性的变化,作物学报2000(26):200~204
    13. 杜维广等,大豆高光效品种(种质)选育及高光效育种再探讨,大豆科学,2001,20(2):110~115.
    14. 杜维广等,大豆光合作用与产量关系的研究,大豆科学,1999,18(2):154~159.
    15. 杜维广等:大豆品种(系)间光合活性的差异及其与产量的关系.作物学报,1982(2)131—135.
    16. 冯春生等,耐密型玉米光合速率与产量的关系,植物学报,1994,8(2):80~86.
    17. 冯丽洁,植物生物化学技术和方法,张志良,吴光耀 主编 农业出版社,北京,1986,pp215.
    18. 傅金民等,大豆产量形成期光合速率和库源调节效应,中国油料作物学报,1998,20(1):51~56.
    19. 高辉远,大豆生长发育过程中光合作用及光合效率的调节,1999.(博士学位论文).
    20. 戈巧英等,高光效大豆光台特性的研究大豆科学,1994,13:48-53.
    21. 韩庚辰,玉米主要光合性状与产量的关系及遗传效应分析,作物学报1982(4):237~244.
    
    
    22. 游明安等,大豆产量空间分布特性的初步研究,大豆科学,1993,12(1):64~69.
    23. 郝乃斌,戈巧英,杜维广,大豆高光效育种光合生理研究进展,植物学通报,1991b,8(2):237~244.
    24. 郝乃斌等,C_3植物绿色器官PEPC羧化酶活性的比较研究植物学报.1991,33(9):692~697.
    25. 郝乃斌等,高光效大豆光合特性的研究,大豆科学,1989,8(3):283~287.
    26. 郝乃斌等,高光效大豆品系”哈79-9440”的光合作用特性研究中国农业科学,1983,142-147.
    27. 郝乃斌等,中国农业科学,1983(1)42~49.
    28. 胡昌浩等,高产夏玉米群体光合速率与产量关系研究,作物学报1993,19(1):63~69.
    29. 胡明祥等:大豆高产株型育种研究,吉林农业科学,1980(3):1~14.
    30. 华德生(Wstdon):产量变异的生理基础《作物产量变异的生理基础》译文集,科学出版社1960,51~88.
    31. 贾思鳃:齐民要术,中华书局,1956年版,217.
    32. 焦德茂等,光氧化条件下两个水稻品种光合电子传递和光合酶活性的变化.作物学报,1996,22(1):43~49.
    33. 焦德茂等,水稻高光效的基因工程合生理育种途径,“21世纪水稻遗传育种展望”,中国农业科技出版社,1999,239~241.
    34. 李卫华等,大豆C4途径与光系统Ⅱ光化学功能的相互关系,植物学报.2000,42(7):689~692.
    35. 李卫华等,大豆C_4途径与光系统Ⅱ光化学功能的相互关系,植物学报,2000a,42(6):162~169.
    36. 李卫华等,高产大豆品种的高光效特性,生物物理学报,2000,16(2)421~426.
    37. 李永孝等,每个生育阶段的光温对夏大豆产量的影响,大豆科学,1984,3(1):20~26.
    38. 李永孝等,夏大豆光合速率与叶龄及水肥条件的关系,大豆科学,1992,11(1):36~42.
    39. 林世青等,叶绿素荧光动力学在植物抗性生理学、生态学和农业现代化中的应用,1992,9:1~16.
    40. 林蔚刚等,大豆不同群体叶面积与光强垂直分布初步分析,大豆科学,1996,15(1):56~60.
    41. 刘金印等,大豆种植密度和群体结构指标的研究,大豆科学,1987,6(1):1~10.
    42. 刘振业,刘贞畸,1983光合作用的遗传与育种,贵州人民出版社,266~273.
    43. 苗以农等,大豆光合生理生态的研究,第1报大豆比叶重的变异性,大豆科学,1982,1(1):61~68.
    
    
    44.苗以农等,大豆光合重量生态的研究,第17报大豆叶结构的多相关性及其生理意义,大豆科学,1995,14(3):251~254.
    45.苗以农等:大豆叶片某些有机物质含量的日变化.东北师大学报自然科学版,1982(1)59~64.
    46.潘瑞炽等:不同生育期间内大豆植株主要有机物的变化.吉林师大学报(自然科学).1963(1)11~119.
    47.气象研究报告选编(第二集),吉林省农业科学院,1979.
    48.沈允钢,动态光合作用,第一版,科学出版社,北京,1998,1.
    49.沈允钢,光合作用与作物生产译丛,1980(1)1~10.
    50.孙广玉,两个大豆[Glycine Max (L.)Merril]品种光合作用日变化的研究,大豆科学,1989,8(1):33~37.
    51.唐树延等,大豆光合生理生态的研究,第5报 大豆光合作用中叶绿素a、b间的能量传递,大豆科学,1985,4(3):185~192.
    52.王焕忠等,不同熟期小麦品种光合性能的初步研究,河北农业大学学报,1998,21(2):1~5.
    53.王肃威 不同基因型小麦(Triticum aestivm)京411与小堰54抗光氧化特性及其机理的比较研究.1999,pp81(博士学位论文).
    54.吴学明,莜麦叶面积系数和光合势的研究,青海师范大学学报,1996(1):53~55.
    55.徐克章等,大豆光合生理生态的研究,第4报 在豆不同节位叶片形态解剖的研究,大豆科学,1984,3(1):15~19.
    56.徐增富 方志伟,张荣铣,小麦二磷酸核酮糖羧化酶和叶片导度与光合速率的关系,南京农业大学学报:1990,13(4):5~11.
    57.许守民等,大豆光合生理生态的研究,第8报 大豆叶征结构及其发育的研究,大豆科学,1988,7(1):35~40.
    58.阎秀峰等,大豆光合生理生态的研究,大豆科学,1990,10(3):221~227.
    59.杨善元,叶绿索C_3聚集体和它的能化态的性质,植物生理学报,1989,15:83~87.
    60.杨文杰等,大豆光合生理生态的研究,第2报 野生大豆和栽培大豆光合作用特性的比较研究,1983,2(2)83~92.
    61.张其德,测定色素的几种方法,植物学通报,1985,3(5)60-64.
    62.张其德,郭宗华,2,3-环氧丙酸钾对大豆光合功能的影响,作物学报,1990,16(11):50~55.
    63.张其德,卢从明,刘丽娜等,CO_2浓度倍增对垂柳和杜仲叶绿体吸收光能和激发能分配的影响,植物学报,1997,39(9):845~848.
    64.张其德等,2,3-环氧丙酸钾对水稻光合功能的改善,植物学报,1988,30:(1):54-61.
    
    
    65. 张其德等,CO_2加富对紫花苜蓿光合作用原初光能转换的影响,植物学报,1996,38(1):77-82.
    66. 张其德等,光强度对小麦幼苗光合特性的影响,植物学报,1988a,30(5):508~514.
    67. 张其德等,几种不同产量水平水稻品种光合特性的比较,中山大学学报,自然科学论丛,1989,8(5):24~29.
    68. 张其德等,生长期间的光强度对小麦光谱特性的影响,植物生理学报,1988,14(2):182~187.
    69. 张其德等,水稻德荧光动力学参数与产量潜力的关系 熊振民等主编,水稻育种技术基础研究论文集,中国科学技术出版社,北京,1991,pp193~205.
    70. 张其德等,运用叶绿素a荧光诱导动力学技术检测水稻生产潜力,生物物理学报,1990,60(2)152~158.
    71. 张荣贵等,大豆叶面积、净光合生产率与产量的相关性,中国农业科学,1979,(1):40~47.
    72. 张贤泽等,大豆群体的光合速率——测定方法及其与产量的关系,大豆科学,1984,3(2):127~131.
    73. 章迪等,夏大豆58—161亩产350斤的生育指标及栽培技术,江苏农业科学,1981(4):41~43.
    74. 赵福洪译自Candia Journal of plant Science.光合作用.科学出版社,1979,72~75.
    75. 赵仁容编著:大田作物田间试验统计方法,辽宁人民出版社,1964,93~95,110~125.
    76. 郑惠玉等,吉林省野生大豆资源研究初报.中国农业科学,1980(4)26~32.
    77. 邹冬生等,大豆叶片光合、蒸腾等生理特性的品种间比较研究,大豆科学,1990,9(1):25~31.
    78. 威廉斯:植物生长的生理学与专论净同化率概念.《作物产量变异的生理学基础》译文集.科学出版社1960,91~122.
    79. 尼奇波罗维奇,斯特罗戈诺娃:光合作用与产量问题.《作物产量变异的生理基础》译文集.科学出版社.1960,29~48.
    80. Buttery.P.R.等,大豆光合作用速率和叶绿素含量之间的关系.canopies,Agnon.J.1977,(64)26~29
    81. Agarie S et al, Expression of C_3 and C_4 photosynthetic characteristics in the amphibious plant Eleocharis viviparra: structure and analysis of the expression of isogenes for pyruvate, orthophosphate dikinase .Plant Molecular Biology, 1997,34:363~369.
    82. Akoyunoglou ed), Balaban International Science Services Philadelphia, p. 127~134.
    83. Alaus JL et al, Ear photosynthesis, Carbon isotope discrimination and the contribution of respiratory CO_2 to different in grain mass in dunlm wheat, plant Cell and Environment 1993, 16, 383~392.
    
    
    84. Alexander R R, Griffiths JM, Wilkinson ML, Basic Biochemical Methods, Jone Wiley & Sons, New York US, 1985.18~19.
    85. Aoyagi K Bassham JA, Pyruvate orthophosphate dikinase of C_3 seeds and the leaves as compared to the enzyme from maize. Plant physiol 1984a, 75: 387-392.
    86. Aoyagi K, Bassham JA, Appearance and Accul nulation of C_4 cabon pathway enzymes in developing wheat leaves, Plant Phvsio, 1986 80: 334~340.
    87. Amon, D. I., Copper enzymes in isolated chloplasts, polyphenoloxidase in Beta Vulgeris. Plant physiol. 1949, 24: 1~15.
    88. Backhausen JE et al, Transgenic potato plants with altered expression levels of chloroplast NADP-maltase dehydrogenase interactions between photosynthetic electron transport and malate metabolism in leaves and isolated intact chloroplast Plant, 1998.207: 105~114.
    89. Badger M R, Price G D, The CO_2 concentrating mechanism in cyanobacteria and microalgae Physiologic plantarum, 1992, 84: 606~615.
    90. Badger M R, Price G D, The role of cabonic anhydrase in photosynthesis, Annu Rev Plant Physiology Mol Biol, 1994. 45: 369~392.
    91. Bertholkd et al, A highly resolved, oxygen-evolving photosynthem Ⅱ preparation from spinach thylakoid membrance: EPR and electron transport, properties, FEBS lett, 1981, 134~231.
    92. Bjorkman O, Demig-Adams B. Regulation of photosynthetic light energy capture, conversion and dissipation in leaves of higher plant. In: Schulze E.D. Caldwel M.W (ed.): Ecophysiology of photosynthesis, Berlin: Springer Verlag, 1994, 1714.
    93. Blanke MM and Lenz F, Fruit photosynthesis, Plant Cell Environ, 1989, 12: 31-46.
    94. Boote, K. J, Effect of foliar fertilization on photosynthesis, leaf nutrition and yield of soybean. J. 1978,70: 787~791.
    95. Bort J et al, Refixation of respiratory CO_2 in the ears of C_3 cereals, Journal of Experimental Botany, 1996, 47(303):1567~1575.
    96. Bowes G, Salvucci M E, Photosynthesis in Flaveria browniia C_4-like species. Plant Physiol, 1989, 87:867~873.
    97. Brad BA, et al., Changing ribulose diphosphate carboxylase/oxygeuase activity in ripening tomato fruit. Plant Physiol, 1977, 60:309~312.
    98. Briantais J. M., Uernotte C, Moya I, Intersystem exciton transfer in isolated chloroplasts, Biochim Biophys Acta,1973, 325: 530~538.
    99. Brun, W. A,, Soybean physiology, Agronomy and Utilization, 1978, 45~76.
    100. Buttery, B. R, Relationship among photosynthetic rate, bean yield and other characters in field-grown cultivars of soybean. Can. J. Plant Sci, 1981,61:191-198.
    101. Chen, S. L, The action spectruin for the photochemical evolution of oxygen by isolated chloroplasts, Plant physiol. 1952, 27:35~48.
    
    
    102. Cheng SH, et al, Photosynthesis in Flavefia brownii, a C-like species, Plant Physiol., 1988, 87, 867~873.
    103. Cooper, C. S,, Morphology and chlorophyll content of shade and sun leaves of two legumes. Crop Sci. 1967,7:672~673.
    104. Criswell,P, and R·H·Hageman Crop Sci., 1971,9:323~327.
    105. D. J. Watson, The physiological basis of variation in yield, Advances in Agronomy, 1952: 101~145.
    106. Denunig-Adams B., Adams W W Ⅲ. The role of xanthophylls cycle arytenoids in the protenction of photosynthesis, Trends plant Sci, 1996,121~126.
    107. Dornhoff, G. M, Variety difference in net photosynthesis of soybean leaves. Crop Sci, 1970, 10:42~46.
    108. Dreger, Brun ,Cooper, Crop Sci, 1969.,.9: 429~431.
    109. Duffus CM and Rosie R, Some enzyme activities associated with the chlorophyll containing layers of immature barley pericarp. Planta, 1973, 1 14219~14226.
    110. Duncan WG et al, Net photosynthetic rate relative leaf growth rates, and leaf numbers of 22 races of maize grown at eight temperature, Crop Sci. 1968,8670~8674.
    111. Edwards G E, Nakamoto H, Burnell J N, Hatch M D. Pyruvate, Pi dikinase and NADP-malate dehydrogenase in C. photosynthesis, properties and mechanism Of ligh/dark regulation, Ann Rev Plant Physiol. 1985, 36.255~286.
    112. Edwards G et al, In C_3 C_4 mechanisms, and cellular and entironniental regulation of photosynthesis. Oxford UK. Blackwell Scientific Publications, 1983,.480~486.
    113. Edwards GE and Walker D, Comparative studies or C_3、C_4 metabolism in other plant tissue, hi: Edwards GE and Environmental Regulation of Photosynthesis, Blackwell Scientific Publications, Oxford/Lodort, 1983, 479~495.
    114. Evans LT and Xiwson HM, Photosynthesis and respiration by the flag leaf and components of the ear during grain development in wheat. Aust J. Biol Sci, 1972.23,245~254.
    115. Frey-Wyssling A and Buttrose MS, Photosynthesis in the ear of barly Nature, 1959. 184:2031~2032.
    116. Gailardo F et al, Monocotyledonous C4 NADP(+)-malate dehydrogenase is efficiently synthesized, targeted to chloroplasts and processed to an active form in transgenic plants of the C3 dicotyledon tobacco., Planta, 1995, 197324~197332.
    117. Geeden J, Pansmiga R, Smets H, et al. Effeet of altered phosphoenolpyruvate carboxylase activities on transgenic C_3 plant Solanum Tuberosum Plant Molecular Biology, 1996, 32831~32848.
    118. Genty B., Bnantais J M, Baker N. R The relationship between the quantum yield of non-photochemical quenching of chlorophyll fluorescence and the rate of photosystem 2 photochemistry in leaves, Biochim Biophys Acta, 1989, 1990:87~92.
    
    
    119. Gupta S K et al, Light/dark modulation of phosphenolpyruvate carboxylase genes in Flaveria Trinereia(C_4) and F.Pringlei (C_3). Photosynthesis Research, 1994, 42, 133~143.
    120. Guralnick KJ et al, Crassulacean acid metabolism activity in the family Pormlacaceae. Plant Physiol. 1993, 102~139.
    121. Hanson WD, Selection for differential productivity among Juvenile Maize plants: accociate net photosynthetic rate and leaf area changes. Crop Sci., 1971,11334~11339.
    122. Hanway, J. J., N. P. and K Percentages in soybean plant parts. Agron. J, 1971, 63:286~290.
    123. Hanway, J. J., Accumulation of N. P. and K by soybean plants. Agron. J. 1971, 63:406~408.
    124. Harper, J. E., Canopy and seasonal profiles of nitrate reductase in soybean. Plant physiol, 1972, 49:146~154.
    125. Harper, J. E, Seasonal and canopy variation in nitrate reductase activity of soybean varieties. Crop Sci. 1972, 12:382~386.
    126. Hartsock TL, et al., Watering converts a CAM plant to a daytime CO_2, uptake nature 1976, 262:574~576.
    127. Hata S, Matsuoka M. Immunological studies on pyruvate orthophosphate dikinase in C, plants. Plant Cell Physiol, 1987, 28(4): 635~641.
    128. Hatch M D, 1976. In: Bums R H and Black C C (eds), CO, Metabolism and Plant Productivity Balitimore. University Park Press, pp 59~81.
    129. Hatch M D,Buniell J N, Carbonic anhydrase activity in leaves and its role in the first step of C. photosynthesis. Plant Physiol, 1990, 93:825~828.
    130. Hatch M D,Slack C R, Photosynthesis by sugarcane leaves Anew carboxylation reaction and the pathway of sugar formation. Biochem J, 1966, 101:103~111.
    131. Hedley CL, et al. Role of PEPcarboxylase during seed development in Pisum sotivum. Nature 1975,258352~354.
    132. Hermans J, Relationships of phosphoenolpyruvate carboxylase genes in Flaveria Trinervia (C_4) and Fpringlei (C_3). Mol Gen Genet, 1990, 224.459~468.
    133. Holbrook GP. Biochemistry of photosynthesis in species of triticum of differing ploidy. Plant Physiol., 1984, 7412~7417.
    134. Holdays AS, et al., Ca-C. intermidiate species in the genus Flaveria: Leaf anatomy ultrastructure, and the effect of O_2 on the CO_2 compensation concentration. Planta 1984, 16025~16032.
    135. Imaizumi N et al, .Characterization of the gene for pyruvate, or thophosphate dikinase from rice, a C, plant i and a comparison of structure and expression between Cs and C. genes for this protein. 1997a. Plant Mol Biol, 34:701~716.
    
    
    136. Imaizumi N, et al. Changes in the rate of photosynthesis during grain filling and ensymtatic activities associated with the photosynthetic carbon metabolism in rice panicles. Plant Cell Physiol, 1990, 31:835~843.
    137. Imaizumi N, Samejima M, Ishiham K Characteristics of photosynthetic carbon metabolism of spikelets in rice. Phoiosynthesis Research, 1997,52:75~82.
    138. Ishihara N et ed. Structure and expression of pyruvate orthophosphate dikinase gene in Cs plant. In: Murata N(ed) Research in Photosynthesis. Proceedings of the Ixth intemation Congress on Photosynthesis., Kluwer Academic Publishers. Dordrecht.. Vol Ⅲ, 1991, 875~878
    139. Ishii, R., Samejima, M. and Murara, Y, Photosynthetic 14CO_2 fixation in the leaves of rice and some other species. Japan. J.Crop Sci. 1978, 46:97~102.
    140. J. J. Hanway et. Al, Dry matter accumulation in eight soybean varieties, Agron. J. 1971: (63) 227~230.
    141. Jeiikins C L D, Effect phosphoenlipyruvate carboxylase idriibitor 3,3-Dichioro-2-(Dihyoboxyphosphinoylmethyl) propenoate on photosynthesis, plant Physiol, 1989. 89:1231~1237.
    142. Johnson H S, Hatch M D. Properties and regulation of leaf NADP malate dehydrogenase and malice enzyme in plants with C_4-clicarboxylic pathway of photosynthesis. Biochem J, 1970, 119:273~280.
    143. Johnton T. Jet al,. Contribution of leaves at different canopy levels to seed production oil right and lodged soybeans (Glycine max (L)Merrill), Crop Science. 1963, 8: 291—292.
    144. Jonnston, T.T etc, Influence of supplemental light on apparent photosynthesis, yield and components of soybean. Crop Sci, 1969, (9) 577~581.
    145. Kelly G.L, Latzko E, Chloroplast phosphognictokinase. Plant Physiol, 1977, 60:290~294.
    146. Kent SS, Tomany MJ. The differential ofthe ribulose 1,5-bisphosphate carboxylase/oxygenase specificity factor among higher plants and the protential for biomass enhancement. Plant Physiol. Biochem., 1995, 33(1). 71~80.
    147. Khanna R et al, Change in the predominance from C_3 to C_4 pathway following anthesis in sorghum Biochemical and Biophysical Research Communications, 1973. 52:121~124.
    148. Khoo G. H., He J, Hew C. S. Photosynthetic utilization of radiant energy by CAM Dendrobium flowers, Photosynthetica, 1997, 34(3): 367~376.
    149. Kisaki T, Hirabayashi S,Yano N, Effect of age of tobacco leaves on photosynthesis and photorespiration. Plant Cell Physiol, 1973, 14.505~514.
    150. Koller. H.R, Leaf area-leaf weight relationships in the soybean canopy, Crop Sience. 1972,.12: 180~183.
    
    
    151. Kortschack H P,Hartt C E,Burr G O, Carbon dioxide fixation in sugarcane leaves Plant Physiol, 1965, 40: 209~213.
    152. Kramer P. J., 生理学在作物改良中的作用,华南农学院科技情报室编印,1980,(4).
    153. Ku M S B, Wu J K Dai Z y, Scott R A, Chu C, Edwards G E. Photosynthctic and photorespiratory characteristics of Flaveria species. Plant Physiol, 1991, 96:518~528.
    154. Ku M S B et al, High-level expression of maize phosphonenolpyruvate carboxylase in transgenic rice plants, N&ure Bioteclinology, 1999, 17:76~80.
    155. Kuinar R et al., Some ofthe metabolic activies ofimmature pericaxp in develping wheat grains, Nat Acad Sci Lett(India), 1982, 5:153~155.
    156. Latzko E, Kelly G J, The many-faced fixation of PEPC in C, plants. Physiol veg, 1983, 21:805~815.
    157. Lawn, R. J., Symbiotic nitrogen fixation in soybean. 1. Effect of photosynthetic Source-Sink manipulations. Crop Sci 1974, 14:11~16.
    158. Lilley R M, Walker D A. An improved spectrophotometric assay for ribulose diphosphate carboxylase. Biochem BiophysAcia 1974,358226~229.
    159. Marx X, Photorespiration ley to increasing plant productivity, Science, 1973, 179(4071). 365~367.
    160. Men KM,et al. Screeliing for photosynthetic efficiency Crop Sci. 1969,9692~9694.
    161. Meyer A O,Kelly G J,Latzko E, Pyruvate orthophosphate dikinase from the immature grain of cereal grasses. Plant Physiol, 1982, 697~710.
    162. Morales A et al. Importance of Rubpisco activase in maize productivity based on mass selection procedure, Journal of Experimental BotaJly, 1999, 50(335): 823~829.
    163. Morgan JM. Osmotic allusttnent in the spikelet and leaves ofwheat. Exp Bio., 1980. 31655~31665.
    164. Moss DN,Musgrave PB. Photosynthesis and crop production., Advances in Agronomy, edited by Brady NC, Academic Press. New york and London, 1971.23:317~336.
    165. Nasyrov, Y. S, Annual Review of plant physiology, 1978, 215~237.
    166. Nutbeam AR et al., Evidence for a C. photosynthesis in barly pericarp tissue. Biochim Biophys Res comniim, 1976, 701198~1203.
    167. O'Brien TP, et al., The vascular system of the wheat spikelet. Aust. J Plant Physiol, 1985, 12:487~511.
    168. P.E.Curtis et. al. Variety effects in soybean photosynthesis and photorespiration, Crop Sci, 1969: (9)323~327.
    169. Pal, U. R., Relationship between nitrogen analysis of soybean tissues and soybean yield. Agron, J, 1976, 68;927~932.
    170. Papageorgiou G., Chlorophyll fluorescence, An intrinsic probe of photosynthesis. In GovindJee(ed) Bioenergetics of photosynthesis. Academic Press, New York, 1975, pp319~321.
    
    
    171. Peng S., Cirma FS. Leaf photcsynthetic rate is correlated with biomass and grain Production in grain Sorghum Lines, Photosynthesis., 1991,pp281.
    172. Reiskind J B et al, Evidence that inducible C'-ype photosynthesis is a chloroplasfic CO,-concentrating mechanism in H,idrilla, a submersed monocoat. Plant Cell and Environment, 1997, 20 211~220.
    173. Reisklnd J B, lmii, unogold localization of primary carboxylases in leaves of aquatic and a Ca-C. intermediate species. Plant Science, 1989, 61:43~52.
    174. RfJgersberg CP et al., Quenching of chlorophyll fluorescence and photochemical activity ofchloroplasts at low temperature in Chiorophyll Organization and Energy Transfer in Photosynthesis (Ciba For indation symposium 61, New Series].Excerpta Medica. Amsterdam 1979., pp305~318.
    175. Roscbe E, et al, Primary structure of the photosynthetic pyruvate orthophosphate diklnase of the C_3 plant Flaveria pnnglei and expression analysis of pyruvate orthophosphate dikinase sequences in C_3, C_4-C_3. and C_4 Flaveria species. Plant Molecular Biology, 1994. 26763~769.
    176. Salvetat R., et al. Measurement of chlorophyll fluorescence by synchronous detection in integrating sphere: a modified analytical approach for the acid rate determination of photosynthesis parameters for whole plants, Environ Sci Techilol, 1998,32:2640~2644.
    177. Salvusci M E, et al, Induction of reduced photorespiratory activity in submersed and amphibious aquatic macrophytes. Plant Physiology, 1981, 67335~67340.
    178. Saxi,ejima M, et al, Photosynthetic and light enhanced dark fixation of ~(14)CO_2 bundles in maize leaves. Plant Physiol. 1978, 19, 907~916.
    179. Sayre R T, el al. Photosynthetic enzyme activities and localization in Mollugo Verticillata population differing on the leaves of C_3 and C_4. cycle operations. Plant Physio, 1979, 64293~64299.
    180. Scheibe R., NADP+-malate dehydrogneasejin C_3 plants regulation and role of a light-activated enzyme. Physiol. Plant 1987,71:393~400.
    181. Shibles RAA et al. In Crop Physiology (L.TEvans.ed), Cambridge Univ. Press. London and New York. 1972. 151~181.
    182. Shibles,R.M. etc, Leaf area, solar radiation interception and dry matter production by soybean, Crop Sci, 1965, (5) 575~77.
    183. Shiozava, J. A., R. S. Alberte and J.P.Thornber. 1974, The P700-chlorophylla-Protein,.Arch. Biochem. Biophys, 1965: 388~397.
    184. Sinclair, T. R., Analysis of the carbon and nitrogen limitation to soybean. Agron. J, 1976, 68:319~324.
    185. Singal HR et al., Pod photosynthesis and seed daxk COz fixation support oil synthesis in developing Brassica seeds, J.Biosci., 1995,20(1)49~58.
    
    
    186. Singal HR, et al. In vitro enzyme activities and products of ~(14)CO_2, assimilation in flag and ear parts of wheat (Triticum aestivum L.). Phoiosynth Res, 1986, 8:113~122.
    187. Srinivasan PS., Chandra B.R., Natarajaratnam N. et al. Leaf photosynthesis, and yield potential in green gram [Vigna radiata (L.) witczek]. Trop Agric., 1985, 62: pp222.
    188. Teese P, Intraspecigic variation for CO_2 compensation point and differential growth among vanants in a C_3-C_4. intermediate plant. Oecologia, 1995, 102:371~376.
    189. Ting I P, Osmond C B, Photosynthetic phosphoenolpyruvate carboxylase charactertics of alloeiizymes from leaves of C3and C4 plants. Plant Physiol, 1973.51:439~447.
    190. Ueno O et ai, Photosynthetic characteristics of an amphibious plant Eleocharis vivpara: Expression of C_3 and C4 modes in contrasting environment. Proc Nati Acad Sci USA, 1988, 85.6733~6737.
    191. Usuda H et al., Companion of Carbon dioxide fixation and the fine structure in vanous assimilatory tissues of Amaramthus rebofiexus L, Plant Cell physiol. 1971. 12:917~930.
    192. Usuda H, et al, Distribution of radioactivity in carbon atoms of malic acid formed during light-enhanced dark ~(14)CO_2fixation in maize leaves 1973. Plant Ceil Physiol.14: 423~426.
    193. Von Kooten., et al. The use of chlorophyll fluorescence nomenclature in plant stress physiology, Photosyn Res, 1990, 25:147~150.
    194. Watson PA, et al. Carbon dioxide fixation by detached cereal caryopses Plant Physiol, 1988,87:504~509.
    195. Weiss D et al., Photosynthetic activities in the Petunia corolla, Plant Physiol, 1988.87: 666~670.
    196. Wells R., Schulze L.L., Ashiey D.A., et al.. Cultivars difference in canopy apparent photosynthesis and their relationship to seed yield in soybeans, Crop SCi, 1982,22(14):886~890.
    197. Winter K, Effecl of water stress on PEPC activity in Mesembryanthemum crystallinum (L). Planta, 1974, 121:147~153.
    198. Winter K, et al, Seasonal shift from C_4 photosynthesis to Crassulacean acaid metabolism in Mesembryanthemum cristallinum growing in its mature environment. Oecologia, 1978,34 225~237.
    199. Wirth E et al., Enzyme activities and products of CO_2 fixation in various photosynthesis organs of wheat and oat. Z P fiaxizenphysiol, 1977, 82: pp7887.
    200. Wittenbach, V. A., Changes in photosynthesis, ribulose bisphate carboxylase, protelytic activity, and ultrastructure of soybean leaves during senescence. Crop Sci 1980, 20: 225~231.
    201. Young, J. K., Soybean leaf N as influenced by seedbed preparation methods and stages of growth. Agron, J, 1979, 71:568~573.
    
    
    202. Zhao Duli et al., Photosynthesis capacity, and carbon contribution of leaves and bracts to developing floral buds in cotton, Photosynthetic, 1999, 36(12)279~290.
    203. 1979: (6) 683~694.
    204.(殷宏章译):见作物产量变异生理基础,科学出版社,1960.
    205.大豆品种间的光合作用与产量,国外农学(大豆),1981,(1)
    206.(论文集),30.
    207.秋田重诚等:作物的光合作用与物质生产,户义次主编薛德榕译.科学出版社,1973,41~142.
    208.山村田吉男,1957.转引自《作物的光合作用与物质生产》,科学出版社,1969,237~241
    209.武田友四郎 1969,农业气象 25:127~131.
    210.小岛,川岛(苗以农等译):国外大豆生理研究,1974.(1):25~28
    211.小岛等,1966,转引自《农业园艺》,1979,54(3):374~380.
    212.小岛睦男,1975,农业技术第30卷第10号:443~447.
    213.小岛睦男,关于提高大豆品种光合作用能力的研究(苗以农等译),国外大豆生理研究(译文选编),吉林省农科院,1972.65~69
    214.小岛睦男:大豆光合成能力品种间差异安定性,日本作物学会纪事,1968(37)667~674.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700