用户名: 密码: 验证码:
水稻(Oryza sativa L.)光呼吸突变体线粒体丝氨酸羟甲基转移酶基因克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
水稻(Oryza sativa L.)作为世界上最重要的粮食作物之一,基因组全序列的获得和大规模突变体库的建立,为水稻功能基因组学开展创造了良好条件。目前,许多涉及重要农艺形状的突变体已被鉴定,并且基因也陆续被克隆,这为了解水稻农艺形状形成的遗传基础做出了贡献。叶绿素缺失突变由于和光合作用密切相关,因此对这一类型农艺性状形成机制的研究有重要意义。本研究在获得大量水稻叶绿素缺失突变体基础上,开展了基因克隆和突变体鉴定工作,得到了一个参与光呼吸途径的基因(OsmSHMT),现将主要研究内容概括如下:
     1突变体表型鉴定
     通过对生长于培养室内的突变体和野生型观察发现突变体表型一开始并不明显,播种后15天叶绿色缺失表型才逐渐得以区分。在20天之前,突变体生长较野生型快,幼苗纤细,由于无法支撑进一步伸展的叶片,植株逐渐弯曲。
     2突变基因克隆
     利用GUS染色初步确定了突变表型可能与T-DNA插入有关,经过PCR-walking分离了突变体基因组T-DNA插入位点侧翼序列,通过比对后发现T-DNA插入水稻线粒体丝氨酸羟甲基转移酶基因(OsmSHMT),经PCI共分离验证,确定了被标记基因与突变表型共分离。最后,经互补实验证实OsmSHMT基因突变造成叶绿素缺失表型。
     3 OsmSHMT基因表达模式
     利用增强子捕获载体功能,经GUS染色探讨了OsmSHMT基因在各组织器官表达模式,结果表明该基因主要在叶片等具有光合功能的器官和部位表达,除叶片外,在根部也有强烈表达,而花器官内表达很弱。
     4 OsmSHMT.突变体在高CO2浓度下回复为野生表型
     由基因生物信息学分析认为OsmSHMT基因可能参与光呼吸途径,而光呼吸突变体都能在高CO2浓度下正常生长,不表现突变表型,为验证这一点,观察了OsmSHMT突变体在高CO2浓度环境中生长状况,结果证实OsmSHMT突变体属于光呼吸突变体。
     5 OsmSHMT基因原核表达
     在构建OsmSHMT-pET28a基础上,将其转入寄主菌BL21中,实现了OsmSHMT基因原核表达。
     6 OsmSHMT基因突变对光合作用影响
     利用叶绿素荧光技术,通过对突变体和野生型荧光慢诱导曲线测定发现,突变体荧光淬灭能力明显下降,高光强下尤其明显。通过观察qP和qN变化发现,qN在低光强下即表现出与野生型明显差异,而qP则在高光强下差异明显。经分析后认为,突变体qN降低可能与类囊体膜透性增加有关,qP可能受卡尔文循环影响而降低。7叶绿体结构及类囊体蛋白复合物变化
     叶绿体电镜切片表明,与野生型相比,突变体叶肉细胞内叶绿体数量减少,体积变小,基粒分布明显不均,基质类囊体破坏明显,嗜锇体增多。叶绿体类囊体膜蛋白复合物温和胶电泳结果表明,相比野生型,突变体光系统主要大分子复合物带型上移,这可能是由于受到氧化伤害后大分子复合物结构松散体积增大所致。
     综上所述水稻线粒体丝氨酸羟甲基转移酶基因(OsmSHMT)突变导致光呼吸途径受损,进而突变体卡尔文循环受到影响,光能不能被有效利用,过剩光能导致叶绿体活性氧升高,造成叶绿素、叶绿体膜系统及类囊体蛋白复合物被光氧化,叶绿体数量减少体积变小,最终,表型上表现为突变体叶绿素缺失性状。
The sequencing of rice genome, a important crop, and constructing of T-DNA insertion mutant pools have provided good conditions for rice functional genomics. Many important agricultural character mutants have been isolated so far, in which some genes causing mutant phenotypes have also been cloned. These works are beneficial for learning the genetics of agricultural characters. For closely related to photosynthesis, the studying of chlorophyll deficient mutations is significance. In this study, after obtaining lots of chlorophyll deficient mutants, a gene relation to photorespiration was cloned and the functions were studied. The most studying contents are listed as follows: 1 Identification of mutant phenotype
     When planted in culture room, the mutant phenotype was difficult to discern from wild at first, but after 15 days since sowing, the mutant phenotype appeared gradually. Before dying, the mutants grew faster than wild, but the seedlings were so slender that it couldn't sustain the weight of leafs and began to be curved. 2 Cloning of the mutated gene
     It was supposed that the mutant phenotype was relation to T-DNA by GUS staining. Using PCR-walking technique, the flanking sequence of T-DNA left border was isolated easily. After BLAST, the T-DNA was proven to be inserted into a gene, predicted coding rice mitochondria serine hydroxymethyltransferase (SHMT). It was certain that the tagged gene co-segregated with mutant phenotype by PCR method. The normal gene in wild was amplified and transformed to mutant, and after regeneration, the mutant phenotype disappeared. The complementary experiment proven the cloned gene is responsible for the chlorophyll deficient mutant phenotype.
     3 The expression patterns of OsmSHMT Using enhancer trap vector which can indicate expression patterns of tagged gene, the different parts were examined with GUS assay. The leaf blade and root were stained strongly, but the flower was barely.
     4 The mutant phenotype was restored in high CO2 concentration
     From bioinformatic analysis, the OsmSHMT gene takes part in photorespiration process. For proving the result, the OsmSHMT mutant was cultured in high CO2 concentration, after 2 weeks, no any observable mutant phenotype could be discerned from wild.
     5 OsmSHMT gene prokaryotic expression
     After transformation of OsmSHMT-pET28a expression vector into E.coli strain BL21(DE3), high yield of recombinant protein was achieved.
     6 The changes of photosynthesis in mutant
     For determining the changes of photosynthesis, the chlorophyll fluorescence curve was examined, and it observed that the chlorophyll fluorescence quenching was influenced greatly in mutant, especially in high light intensity. In low light intensity, comparing qP with qN, it was evident that the qN was declined more seriously. It might be caused by the enhanced membrane permeability. In high light intensity, the qP was also declined serious, it might be caused by damaged Calvin cycle.
     7 The changes of chloroplast ultrastructure and protein complexes on thylakoid
     Compared with wild type, the quantity and volume of chloroplasts in mutant mesophyll were decrease. In chloroplast of wild, the granum thylakoids were distributed more regular than mutant. It might be caused by the stroma thylakoid damage. As for the changes of protein complexes on thylakoid, from BN-gel, it was observed that most strips of mutant moved slower than wild. It might be caused by the loose structure of injured protein complexes.
     In conclusion, the mutation of OsmSHMT damages photorespiration, and because the Calvin cycle needs photorespiration to sustain, the injured Calvin cycle leads to declined light energy converting and the excess light energy promotes reactive oxygen species(ROS) producing, then the membrane, the protein complexes and the chlorophyll were all injured by ROS, at last, the chlorophyll deficient mutant phenotype appears.
引文
晁无疾,管仲新,肖爽.(2008).光呼吸抑制剂对世纪无核葡萄果实生长及品质的影响.中国果树2,35-37.
    付伟伟,席彦军,黄重,李秀芬,肖飞,王建利,蒋建华.(2009).光呼吸抑制剂对柑桔果实品质的影响.陕西农业科学55,86-87.
    姜超强,李杰,刘兆普,李洪燕.(2010).盐胁迫对转AtNHX1基因杨树光合特性与叶绿体超微结构的影响.西北植物学报,301-308.
    匡廷云,卢从明,李良壁.(2004a).作物光能利用效率与调控.山东科学技术出版社,271-281.
    匡廷云,卢从明,李良壁.(2004b).作物光能利用效率与调控.山东科学技术出版社,90-115.
    匡廷云,卢从明,李良壁.(2004c).作物光能利用效率与调控.山东科学技术出版社,1-28.
    李朝霞,赵世杰,孟庆伟.(2003).光呼吸途径及其功能.植物学通报20,190-197.
    李颖畅,马勇,郝建军,张丽华.(2009).提高作物光合作用途径的研究现状.长江蔬菜,6-8.
    刘昌平,闵运江,汪马成.(2007).亚硫酸氢钠对蚕豆光合生产和蛋白含量的影响.中国林副特产6,8-11.
    马莉,陈丽梅.(2008).植物丝氨酸羟甲基转移酶基因研究进展.生物技术通报2,15-19.
    马莉,陈丽梅,刘迪秋,李昆志.(2008).植物丝氨酸羟甲基转移酶及其生理作用研究进展.安徽农业科学36,1357-1359.
    王强,温晓刚,张其德.(2003).光合作用光抑制的研究进展.植物学通报20,539-548.
    王关林,方宏筠.(2004).植物基因工程.科学出版社,623-649.
    武维华.(2003).植物生理学.科学出版社,117-176.
    郑敏娜,李向林,万里强,何峰,席翠玲.(2009).水分胁迫对6种禾草叶绿体、线粒体超微结构及光合作用的影响.草地学报5,643-649.
    Allakhverdiev, S.I., Nishiyama, Y., Takahashi, S., Miyairi, S., Suzuki, I., and Murata, N. (2005). Systematic Analysis of the Relation of Electron Transport and ATP Synthesis to the Photodamage and Repair of Photosystem Ⅱ in Synechocystis. Plant Physiol.137,263-273.
    An, G., Lee, S., Kim, S.-H., and Kim, S.-R. (2005). Molecular Genetics Using T-DNA in Rice. Plant Cell Physiol.46,14-22.
    Bauwe, H., and kolukisaoglu, u. (2003). Genetic manipulation of glycine decarboxylation. J Exp Bot 54,1523-1535.
    Blackwell, R., Murray, A., Lea, P., Kendall, A., Hall, N., Turner, J., and Wallsgrove, R. (1988). The value of mutants unable to carry out photorespiration. Photosynthesis Research 16,155-176.
    Boldt, R., Edner, C., Kolukisaoglu, U., Hagemann, M., Weckwerth, W., Wienkoop, S., Morgenthal, K., and Bauwe, H. (2005). D-GLYCERATE 3-KINASE, the Last Unknown Enzyme in the Photorespiratory Cycle in Arabidopsis, Belongs to a Novel Kinase Family. Plant Cell 17,2413-2420.
    Coschigano, K.T., Melo-Oliveira, R., Lim, J., and Coruzzi, G.M. (1998). Arabidopsis gls Mutants and Distinct Fd-GOGAT Genes:Implications for Photorespiration and Primar y Nitrogen Assimilation. Plant Cell 10,741-752.
    Eckardt, N.A. (2005). Photorespiration Revisited. Plant Cell 17,2139-2141.
    Engel, N., van den Daele, K., Kolukisaoglu, U., Morgenthal, K., Weckwerth, W., Parnik, T., Keerberg, O., and Bauwe, H. (2007). Deletion of Glycine Decarboxylase in Arabidopsis Is Lethal under Nonphotorespiratory Conditions. Plant Physiol.144,1328-1335.
    Fambrini, M., Castagna, A., Vecchia, F.D., Degl'Innocenti, E., Ranieri, A., Vernieri, P., Pardossi, A., Guidi, L., Rascio, N., and Pugliesi, C. (2004). Characterization of a pigment-deficient mutant of sunflower (Helianthus annuus L.) with abnormal chloroplast biogenesis, reduced. PS Ⅱ activity and low endogenous level of abscisic acid. Plant Science 167,79-89.
    Foyer, C.H., Bloom, A.J., Queval, G., and Noctor, G. (2009). Photorespiratory Metabolism:Genes, Mutants, Energetics, and Redox Signaling. Annual Review of Plant Biology 60,455-484.
    Garrow, T.A., Brenner, A.A., Whitehead, V.M., Chen, X.N., Duncan, R.G., Korenberg, J.R., and Shane, B. (1993). Cloning of human cDNAs encoding mitochondrial and cytosolic serine hydroxymethyltransferases and chromosomal localization. J. Biol. Chem.268,11910-11916.
    Graham Noctor. (1997). The role of glycine in determining the rate of glutathione synthesis in poplar. Possible implications for glutathione production during stress. Physiologia Plantarum 100,255-263.
    Hakala, M., Rantamaki, S., Puputti, E.-M., Tyystjarvi, T., and Tyystjarvi, E. (2006). Photoinhibition of manganese enzymes:insights into the mechanism of photosystem II photoinhibition. J. Exp. Bot.57,1809-1816.
    Humg-Yu, H., Tena, W., and Karen, C. (1986). Enzymatic production of L-serine. Biotechnology and Bioengineering 28,857-867.
    Ikeda, A., Ueguchi-Tanaka, M., Sonoda, Y., Kitano, H., Koshioka, M., Futsuhara, Y., Matsuoka, M., and Yamaguchi, J. (2001). slender Rice, a Constitutive Gibberellin Response Mutant, Is Caused by a Null Mutation of the SLR1 Gene, an Ortholog of the Height-Regulating Gene GAI/RGA/RHT/D8. Plant Cell 13, 999-1010.
    Igarashi, D., Tsuchida, H., Miyao, M., and Ohsumi, C. (2006). Glutamate:Glyoxylate Aminotransferase Modulates Amino Acid Content during Photorespiration. Plant Physiol.142,901-910.
    Juan, I.M.,., Raquel, M., and Carmen, C. (2005). Arabidopsis SHMT1, a serine hydroxymethyltransferase that functions in the photorespiratory pathway influences resistance to biotic and abiotic stress. The Plant Journal 41, 451-463.
    Jung, K.-H., Hur, J., Ryu, C.-H., Choi, Y., Chung, Y.-Y., Miyao, A., Hirochika, H., and An, G. (2003). Characterization of a Rice Chlorophyll-Deficient Mutant Using the T-DNA Gene-Trap System. Plant Cell Physiol.44,463-472.
    Karpinski, S., Gabrys, H., Mateo, A., Karpinska, B., and Mullineaux, P.M. (2003). Light perception in plant disease defence signalling. Current Opinion
    in Plant Biology 6,390-396.
    Kebeish, R., Niessen, M., Thiruveedhi, K., Bari, R., Hirsch, H.-J., Rosenkranz, R., Stabler, N., Schonfeld, B., Kreuzaler, F., and Peterhansel, C. (2007). Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotech 25,593-599.
    Kendall, A.C., Keys, A.J., Turner, J.C., Lea, P.J., and Miflin, B.J. (1983). The isolation and characterisation of a catalase-deficient mutant of barley (Hordeum vulgare L.). Planta 159,505-511.
    Kim, S.-R., Lee, J., Jun, S.-H., Park, S., Kang, H.-G., Kwon, S., and An, G. (2003). Transgene structures in T-DNA-inserted rice plants. Plant Molecular Biology 52,761-773.
    Kozaki, A., and Takeba, G. (1996). Photorespiration protects C3 plants from photooxidation. Nature 384,557-560.
    Kumar, A.M., and Soll, D. (2000). Antisense HEMA1 RNA Expression Inhibits Heme and Chlorophyll Biosynthesis in Arabidopsis. Plant Physiol.122,49-56.
    Kunkel, B.N., and Brooks, D.M. (2002). Cross talk between signaling pathways in pathogen defense. Current Opinion in Plant Biology 5,325-331.
    Kushnir, S., Babiychuk, E., Storozhenko, S., Davey, M.W., Papenbrock, J., De Rycke, R., Engler, G., Stephan, U.W., Lange, H., Kispal, G., Lill, R., and Van Montagu, M. (2001). A Mutation of the Mitochondrial ABC Transporter Stal Leads to Dwarfism and Chlorosis in the Arabidopsis Mutant starik. Plant Cell 13,89-100.
    Leegood, R.C., Lea, P.J., Adcock, M.D., and Husler, R.E. (1995). The regulation and control of photorespiration.
    M. J, T. (1997). Phytochrome chromophore-deficient mutants. Plant, Cell and Environment 20,740-745.
    M. Lacuesta, L.V.D.A.M.-R.P.J.L. (1997). A study of photorespiratory ammonia production in the C4 plant Amaranthus edulis, using mutants with altered photosynthetic capacities. Physiologia Plantarum 99,447-455.
    Ma, J., Peng, L., Guo, J., Lu, Q., Lu, C., and Zhang, L. (2007). LPA2 Is Required for Efficient Assembly of Photosystem Ⅱ in Arabidopsis thaliana. Plant Cell 19,1980-1993.
    McClung, C.R., Hsu, M., Painter, J.E., Gagne, J.M., Karlsberg, S.D., and Salome, P.A. (2000). Integrated Temporal Regulation of the Photorespiratory Pathway. Circadian Regulation of Two Arabidopsis Genes Encoding Serine Hydroxymethyltransferase. Plant Physiol.123,381-392.
    Nishiyama, Y., Allakhverdiev, S.I., and Murata, N. (2006). A new paradigm for the action of reactive oxygen species in the photoinhibition of photosystem II. Biochimica et Biophysica Acta (BBA)-Bioenergetics 1757,742-749.
    Nogu, eacute, s, S., and Alegre, L. (2002). An increase in water deficit has no impact on the photosynthetic capacity of field-grown Mediterranean plants. Functional Plant Biology 29,621-630.
    Muller, P., Li, X.-P., and Niyogi, K.K. (2001). Non-Photochemical Quenching. A Response to Excess Light Energy. Plant Physiol.125,1558-1566.
    Peng, H., Huang, H., Yang, Y., Zhai, Y., Wu, J., Huang, D., and Lu, T. (2005). Functional analysis of GUS expression patterns and T-DNA integration characteristics in rice enhancer trap lines. Plant Science 168,1571-1579.
    Peng, L., Ma, J., Chi, W., Guo, J., Zhu, S., Lu, Q., Lu, C., and Zhang, L. (2006). LOW PSII ACCUMULATION1 Is Involved in Efficient Assembly of Photosystem II in Arabidopsis thaliana. Plant Cell 18,955-969.
    Petra, R., Uta, D., Ulrike, H., Diana, H., Ulf-Ingo, F., Peter, W., and Andreas, P. (2003). The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. The Plant Journal 35,316-331.
    Schirch, L.V., and Mason, M. (1962). Serine Transhydroxymethylase:Spectral Properties of the Enzyme-bound Pyridoxal-5-phosphate. J. Biol. Chem.237, 2578-2581.
    Schwarte, S., and Bauwe, H. (2007). Identification of the Photorespiratory 2-Phosphoglycolate Phosphatase, PGLP1, in Arabidopsis. Plant Physiol.144, 1580-1586.
    Somerville, C.R. (2001). An Early Arabidopsis Demonstration. Resolving a Few Issues Concerning Photorespiration. Plant Physiol.125,20-24.
    Somerville, C.R., and Ogren, W.L. (1980a). Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proceedings of the National Academy of Sciences of the United States of America 77,2684-2687.
    Somerville, C.R., and Ogren, W.L. (1980b). Inhibition of photosynthesis in Arabidopsis mutants lacking leaf glutamate synthase activity. Nature 286, 257-259.
    Somerville, C.R., and Ogren, W.L. (1981). Photorespiration-deficient Mutants of Arabidopsis thaliana Lacking Mitochondrial Serine Transhydroxymethylase Activity. Plant Physiol.67,666-671.
    Somerville, C.R., and Ogren, W.L. (1982). Genetic modification of photorespiration. Trends in Biochemical Sciences 7,171-174.
    Stauffer, G.V., Plamann, M.D., and Stauffer, L.T. (1981). Construction and expression of hybrid plasmids containing the Escherichia coli glyA gene. Gene 14,63-72.
    Sticher, L., Mauch-Mani, B., and Metraux, J. (1997). SYSTEMIC ACQUIRED RESISTANCE. Annual Review of Phytopathology 35,235-270.
    Swaminathan, K., Yang, Y., Grotz, N., Campisi, L., and Jack, T. (2000). An Enhancer Trap Line Associated with a D-Class Cyclin Gene in Arabidopsis. Plant Physiol.124,1658-1667.
    Taira, M., Valtersson, U., Burkhardt, B., and Ludwig, R.A. (2004). Arabidopsis thaliana GLN2-Encoded Glutamine Synthetase Is Dual Targeted to Leaf Mitochondria and Chloroplasts. Plant Cell 16,2048-2058.
    Takahashi, S., Bauwe, H., and Badger, M. (2007). Impairment of the Photorespiratory Pathway Accelerates Photoinhibition of Photosystem Ⅱ by Suppression of Repair But Not Acceleration of Damage Processes in Arabidopsis. Plant Physiol.144,487-494.
    Taler, D., Galperin, M., Benjamin, I., Cohen, Y., and Kenigsbuch, D. (2004). Plant eR Genes That Encode Photorespiratory Enzymes Confer Resistance against Disease. Plant Cell 16,172-184.
    Tolbert, N.E., and Essner, E. (1981). Microbodies:peroxisomes and glyoxysomes. J. Cell Biol.91,271s-283.
    Voll, L.M., Jamai, A., Renne, P., Voll, H., McClung, C.R., and Weber, A.P.M. (2006). The Photorespiratory Arabidopsis shml Mutant Is Deficient in SHM1. Plant Physiol.140,59-66.
    Wingler, A., Lea, P.J., Quick, W.P., and Leegood, R.C. (2000a). Photorespiration: metabolic pathways and their role in stress protection.
    Wingler, A., Lea, P.J., Quick, W.P., and Leegood, R.C. (2000b). Photorespiration: metabolic pathways and their role in stress protection. Philosophical Transactions of the Royal Society of London. Series B:Biological Sciences 355,1517-1529.
    Zelitch, I. (1966). Increased Rate of Net Photosynthetic Carbon Dioxide Uptake Caused by the Inhibition of Glycolate Oxidase. Plant Physiol.41,1623-1631.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700