用户名: 密码: 验证码:
热化学硫碘循环制氢中Bunsen反应与碘化氢分解的模拟与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当今世界,为了解决能源短缺、环境污染日益严重等问题,洁净的新能源开发已是迫在眉睫。氢能是一种洁净的能源载体,热化学循环制氢是通过一系列的化学反应在较低的温度下使水分解制取氢气的方法。本文研究了最接近工业化阶段的热化学循环——硫碘循环(SI循环)中的Bunsen反应和碘化氢分解反应。
     本文首先利用FactSage软件对Bunsen反应和碘化氢分解的热力学平衡进行了模拟。研究了反应物比例、温度、压力对bunsen反应的影响,温度、压力、膜反应器和水的存在对碘化氢分解热力学平衡状态的影响,对选择Bunsen反应和碘化氢分解的条件提供了一定的参考。
     其次,利用恒温型磁力搅拌器加热,使用全自动电位滴定仪滴定离子浓度,在自制的反应器上进行了HI、H_2SO_4、I_2的混合溶液的分层现象和副反应的实验,研究了不同温度、不同浓度的溶液中分层现象的出现,研究了水含量、温度和碘量对液液分离特性的影响和对副反应的影响。温度范围20-70℃。
     再次,提出了碘化氢均相反应的动力学机理,利用CHEMKIN软件包对碘化氢分解动力学进行了模拟,研究了反应时间、温度和压力对碘化氢分解动力学的影响,并与热力学平衡的结果进行了对照。温度范围300-900℃。
     最后,利用溶胶-凝胶法制备了5种Pt催化剂,使用XRO和氮吸附法对Pt催化剂和沸石的晶体结构和表面织构进行了表征。在管式反应器上通过电炉加热进行了碘化氢均相分解和催化分解实验,研究了不同温度下的HI分解率,比较了6种催化剂的催化效果。
Drawbacks to fossil fuel utilization include limited supply and pollution. Hydrogen is a environmentally attractive transportation fuel that has the potential to replace fossile fuels. Thermochemical water-splitting is the conversion of water into hydrogen and oxygen by a series of thermally driven chemical reactions. Bunsen reaction and hydrogen iodide decomposition in IS(iodine-sulfur) cycle, the most industrialized thermochemical cycle was studied.
    Firstly, the thermodynamic equilibrium of Bunsen reaction and hydrogen iodide decomposition were examined. The effect of reactant ratio、 temperature and pressure on the thermodynamic equilibrium of Bunsen reaction were discussed and the effect of temperature、 pressure、 membrane reactor and vapor on the thermodynamic equilibrium of hydrogen iodide decomposition were discussed too. The results are helpful to find the proper condition of Bunsen reaction and hydrogen iodide decomposition.
    Secondly, separation characteristics of 2 liquid phrase and side-reactions from HI、 H_2SO_4、I_2 were investigated experimentally in operating temperature range,from 20℃ to 70℃. The effects of solution temperature 、acid concentration and iodine concentration on separation characteristics of 2 liquid phrase and side-reactions were discussed. Iodine concentration at the point where the solution starts to separate were determined.
    Thirdly, a dynamic model of homogeneous decomposition of hydrogen iodine were put forward and kinetic simulation of hydrogen iodine homogeneous decomposition was made on different reactive time、 temperature(range from 300°C to 900°C) and pressure.
    At last, 5 Pt catalysts was successfully prepared by the Sol-Gel method. The composition, microgram and pore size distribution of 6 catalysts(including 5 Pt catalysts and zeolite) are studied by the XRD and Nitrogen adsorption method. The homogeneous and catalytic decomposition of hydrogen iodine were studied experimentally with a tube type electric furnace. The conversion of hydrogen iodine was examined on different temperature.
引文
[1] 王益鸿.遥望氢时代[J],科学通报,2004,10:7-13.
    [2] 毛宗强.氢能及其近期应用前景[J],科学导报,2005,23(2):34-38.
    [3] 孙艳,苏里,周伟.氢燃料[M],北京:化学工业出版社,2005.
    [4] 毛宗强.氢能-21世纪的绿色能源[M],北京:化学工业出版社,2005.
    [5] 武增华,邱新平.氢经济开创绿色能源新时代[J],环境保护,2004,9:52-55.
    [6] 方明强.21世纪新能源——氢能[J],陕西化工,2004,24(4):14-33.
    [7] 楚红岭,王桂芝,龚凡,等.制氢工艺技术经济与新技术,化工技术经济,2005,23(9):36-40.
    [8] 吕彭梅,生物质催化制氢特性研究(博士论文),2003.
    [9] 李鑫,李安定,李斌,等.太阳能制氢研究现状及展望[J],太阳能学报,2005,26(1):127-133.
    [10] Ford NC, Kane JW. Solar Power[J], Bull Ato Sci, 27-27, 1971.
    [11] L.C.Brown, G. E.Besenbmch,K.R.Schultz. High efficiency generation of hydrogen fuels using thermochemical cycles and Nuclear Power.GA-A24326,2002.
    [12] J.E.Funk and R.M.Reinstrom. Energy requirements in the production of hydrogen from water[J]. IEC Proc.Res.Dev.5: 335,1955.
    [13] CE Bamberger. Hydrogen Production from Water by Thermochemical Cycles; a 1977 update [ J]. Cryogenics, 3: 170-183. 1978.
    [14] De Beni G, Marchetti C. Hydrogen, key to the energy market [J], Eurospectra, 1970, 9 (2): 45.
    [15] F Sibieude, M Ducarroir, A Tofighi, et al. High Temperature Experiments with a Solar Furnace: the Decomposition of Fe_3O_4, Mn_3O_4, CdO [J]. Int J Hydrogen Energy, 1982, 7 (2): 79-88.
    [16] M Lundberg, Model Calculations on some Feasible Two-Step Water Splitting Processes [J], Int J Hydrogen Energy, 1993, 18: 369-376.
    [17] Kameyama H, et al, Br-Ca-Fe water-decomposition cycles for hydrogen production [J] Proceedings of the second World Hydrogen Energy Conference, Zurich, 1978, 829-850.
    [18] 张占涛,王黎,张睿.太阳能热化学反应循环制氢技术及其新进展[J],化工中间体,2005,1:1~5.
    [19] Y.Tadokoro,etc. Technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale .plant [J]. Int.J Hydrogen Energy, 1997,22(1):49~56.
    [20] L. C. Brown, et al.. High Efficiency Generation of Hydrogen Fuels Using Thermochemical Cycles and Nuclear Power [J]. AIChE 2002 Spring National Meeting,New Orleans, Louisiana .2002.
    [21] Norman JH, G. E.Besenbruch and D.O'Keefe. Thermochemical water-splitting for hydrogen production. GRI-80/0105,Gas Research Institute. 1981.
    [22]Knoche.K.F.,H.Scheper and K.Hesselmann.. Second law and cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle.Proc. of the 5~(th) World Hydrogen energy conf.,Toronto,Canada,1984; 487-502.Pergamon Press,New York,USA.
    
    [23]Brown LC,Lentsch RD,Besenbruch GE,etc.Alternative flowsheets foe the sulfur-iodine thermochemical hydrogen cycle.Proceeding of AIChe 2003 spring National Meeting,New Orleans USA,2003.
    
    [24]Knoche K F, H. Scheper and K.Hesselmann. Second law snd cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle.Proc. of the 5~(th) World Hydrogen energy conf., Toronto, Canada, 1984;487-502. Pergamon Press, New York,USA.
    
    [25]Roth.M.and K.F.Knoche. Thermochemical water splitting through direct Hi-decomposition from H_2O/HI/I_2 solution. Int J Hydrogen Energy [ J ] 14:545-549.1989.
    
    [26]Nakajima H,M.Sakurai,K.Lkenoya,etc. A study on a closed-cycle hydrogen production by thermochemical water-splitting IS process.7~(th) International Conference on Nuclear Engineering [M] ,Tokyo,Japan,1999.ICONE-7104.
    
    [27]Onuki.K.,GJ.Hwang,Arifal and S.Shimizu. Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature. J.Membr.Sci.[ J]. 192:193-199, 2001.
    
    [28]GJ Hwang,Kaoru Onuki,Mikihiro Nomura,etc . Improvement of the thermochemical water-splitting IS(iodine-sulfur)process by electro-electrodialysis. J.Membr. Sci. .220:129-136.2003.
    
    [29]Seiji Kasahara,Shinji Kubo,Kaoru Onuki,etc . Thermochemical efficiency evaluation of HI systhesis/concentration procedures in the thermochemical water-splitting IS cycle.Int. J. Hydrogen Energy. 29:579-587,2004.
    
    [30]Hwang.G.J. and K.Onuki. Simulation study on the catalytic decomposition of hydrogen iodine in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process. J.Membr.Sci. [J] 2001; 194: 207-215.
    
    [31]Hwang.G.J.,K.Onuki and S.Shimizu. Separation of hydrogen from a H2-H2O-HI gaseous mixture using a silica membrane.AICHE J. [J], 2000; 46(l):92-98.
    
    [32]Kasahara.S.,GJ.Hwang,H.Nakajima,etc. Effect of process parameter of the IS process on total thermal efficiency to produce hydrogen from water.. Journal of Chemical Engineering of Japan. [J] 2003;36(7):887-899.
    
    [33]M Sakurai,H Nakajima,R Amir,etc.Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process [J] .Int. J. Hydrogen Energy,25:613-619,2000.
    [34] M Sakurai,H Nakajima ,K.Onuki.Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process, [J] Int. J. Hydrogen Energy,25:605-611,2000.
    [35] S.Kubo,H.Nakajima, S.Kasaha,etc. A demenstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process [J]. Nuclear Engineering and design.233:347-354,2004.
    [36] Shinji Kubo,Seiji Kasaha,H,Okuda. A pilot test plan of the thermochemical water-splitting iodine-sulfur process[J]. 233,355-362,2004.
    [1] Charistopher Perkins,Alan W Wermer. Likely near-term solar-thermal water splitting technologies[J]. Int. J.Hydrogen Energy, 29:1587-1599,2004.
    [2] Charles Forberg,Brian Bischoff Lois K.Mansur. A Lower-temperature Iodine-Westinghouse-Ispra sulfur process for thermochemical production of hydrogen. American Nuclear Society 2003 Winter Meeting,New Orleans USA,2003.
    [3] L. C. Brown, et al.. High Efficiency Generation of Hydrogen Fuels Using Thermochemical Cycles and Nuclear Power [J] AIChE 2002 Spring National Meeting,New Orleans, Louisiana .2002.
    [4] Hwang.G.J. and K.Onuki. Simulation study on the catalyticdecomposition of hydrogen iodine in a membrane reactor with a silicamembrane for the thermochemical water-splitting IS process. J.Membr.Sci [J] .2001; 194:207-215.
    [5] Hwang.G.J.,K.Onuki and S.Shimizu. Separation of hydrogen from a H_2-H_2O-HI gaseous mixture using a silica membrane.AICHE J. [J].46(1):92-98,2000.
    [6] Hwang G J,Kim J W, Choi H S,etal.Stability of a silica membrane prepared by CVD using γ- alumina and α- alumina tube as the support tube in the HI-H2O gaseous mixture[J]. J.Membr.Sci.2003,215:293-302.
    [7] K.R.Schultz.Use of the modular helium reactor for hydrogen production.GA-A24428.2003.
    [8] L.C.Brown,G. E.Besenbruch,K.R.Schultz. High efficiency generation of hydrogen fuels using thermochemical cycles and Nuclear Power.GA-A24326,2002.
    [9] Cunping Hwang,Ali T-Raissi.Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production Partl :decomposition of sulfur acid[J].Solar Energy,78:632-646,2005.
    [10] Conger W C.Open-loop water-splitting cycle for hydrogen produetion[J].Int.J.Hydrogen Energy,4,517-520,1979.
    [1] S.Sato,S.Shimizu,H.Nakajima,etc. A nickel-iodine-sulfur process for hydrogen production [J]. Int.J.HydrogenEnergy, 8(1):15-22,1983.
    [2] S.Kubo,H.Nakajima,S.Kasaha,etc.A demenstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process [J]. Nuclear Engineering and design, 233:347-354,2004.
    [3] M.Momura,S Fujiwara,K.Ikenoya,etc. Application of an electrochemical membrane reactor to the thermochemical water splitting IS process for hydrogen production [J]. J.Membr.Sci.240:221-226,2004.
    [4] M Sakurai,H Nakajima ,K.Onuki. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process [J]. Int. J. Hydrogen Energy,25:605-611,2000.
    [5] Shimizu.S,Onuki.K,Nakajima.H,etc. The nickel-iodine-sulfur process for hydrogen production Ⅳ.Bunsen Reaction [J]. DENKI KAGAKU, 53(2):114-118,1985.
    [6] M Sakurai,H Nakajima,R Amir, etc. Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process [J] .Int. J. Hydrogen Energy,25:613-619,2000.
    [7] G.J.Hwang,Y.H.Kim,C.S.Park,etc. Bunsen reaction in IS(Iodine-sulfur) process for thermoehemical hydrogen production. Proceedings International Hydrogen Energy Congress and Exibition IHEC Istabul,Turkey, 2005.
    [8] 钟佩珩.分析化学[M].化工出版社,2001.
    [1] Y.Oosawa,Toshiya Kumagai,Susumu Mizuta,etc. Kinetics of the Catalytic Decomposition of Hydrogen Iodide in the Magnesium-Iodine Thermochemical Cycle[J]. Bull.Chem.Soc.Jpn,54,742-748,1981.
    [2] Brown LC,Lentsch RD,Besenbruch GE,etc. Alternative flowsheets foe the sulfur-iodine thermochemical hydrogen cycle. Proceeding of AIChe 2003 spring National Meeting,New Orleans USA,2003.
    [3] Onuki.K.,G.J.Hwang,Arifal and S.Shimizu. Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature [J]. J.Membr.Sci., 2001; 192:193-199.
    [4] Roth.M.and K.F.Knoche . Thermochemical water splitting through direct HI-decomposition from H_2O/HI/I_2 solution [J]. Int J Hydrogen Energy, 14:545-549.1989.
    [5] C.Berndhauser and K.F.Knoche . Experimental investigations of thermal HI decomposition from H2O-HI-I2 solutions [J]. Int.J.Hydrogen Energy, 19(3):239-244,1994.
    [6] H.Engels and K.F.Knoche. Vapor pressures of the system HI/H2O/I2 and H2 [J]. Int.J.Hydrogen Energy, 11(11):703-707,1986.
    [7] Y.Shindo,N.Ito,K.Haraya, etc. Kinetics of the Catalytic Decomposition of Hydrogen Iodide in the Thermochemical Hydrogen Production [J] ,Int.J.Hydrogen Energy, 9, 695-700, 1984.
    [8] G.J.Hwang, Kaoru Onuki, Saburo Shimizu, etc. Hydrogen Sepration in H2-H2O-HI Mixture Using the Silica Membrane Prepared by Chemical Vapor Deposition [J], J.Membr.Sci., 162: 83-89, 1999.
    [9] Hwang.G.J. and K.Onuki. Simulation study on the catalytic decomposition of hydrogen iodine in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process [J]. J.Membr.Sci. , 2001; 194: 207-215.
    [1] Roth.M.and K.F.Knoche. Thermochemical water splitting through direct HI-decomposition from H2O/HI/I_2 solution [J]. Int J Hydrogen Energy 14:545-549.1989.
    [2] D.R.O'Keefe,J.H.Norman. Catalytic in thermochemical water-splitting processes [J]. AIChe.14:244-288,1985.
    [3] Y.Oosawa,Toshiya Kumagai,Susumu Mizuta,etc,Kinetics of the Catalytic Decomposition of Hydrogen Iodide in the Magnesium-Iodine Thermochemical Cycle[J]. Bull.Chem.Soc.Jpn,54,742-748,1981.
    [4] Y.Shindo,N.Ito,K.Haraya,etc,Kinetics of the Catalytic Decomposition of Hydrogen Iodide in the Thermochemical Hydrogen Production [J]. Int.J.Hydrogen Energy,9,695-700,1984.
    [5] 韩慧茹.利用天然沸石处理含胺废水的工艺研究[J].工业水处理,1997,17(5):33-34.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700