用户名: 密码: 验证码:
活性炭及其改性催化剂应用于碘化氢分解的性能及机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Research on the Catalytic Activity and Mechanism of HI Decomposition Via Original and Modified Activated Carbon
  • 作者:陈云
  • 论文级别:博士
  • 学科专业名称:工程热物理
  • 学位年度:2010
  • 导师:岑可法 ; 周俊虎 ; 王智化
  • 学科代码:080701
  • 学位授予单位:浙江大学
  • 论文提交日期:2010-10-01
  • 答辩委员会主席:张鹤声
摘要
氢气由于具有资源丰富,来源多样性,环保再生,安全可储存等优点被认为是一种理想的能源载体,正在越来越引起社会各界的关注。利用氢能首先需要制取氢气,因此大规模低成本制氢是发展氢能经济的基础。热化学循环水分解制氢技术是一种较理想的清洁可持续制氢技术,其利用一系列热化学反应,最终将水分解为氢气和氧气。热化学分解水制氢的方法诸多,已见报道的就有100多种,热化学硫碘循环由于其高热效率,低成本等优势而较易实现工业大规模生产被作为制氢的理想循环。
     热化学硫碘循环系统主要包括三个反应过程:
     Bunsen反应过程:x12+SO2+2H20=2HIx+H2SO4
     HI分解过程:2HIx=xI2+H2
     H2SO4分解过程:H2SO4=SO2+H2O+O2
     结合中国国情,(1)作为SO2来源的硫铁矿资源丰富、价格便宜;(2)除氢气以外的产品硫酸有很好的经济和市场价值,我们提出了热化学硫碘开路循环联产氢气和硫酸的多联产系统。该系统主要包含以下两个主要反应过程:
     Bunsen反应过程:x12+SO2+2H2O=2HIx+H2SO4
     HI分解过程:2HIx=xI2+H2
     以上两个系统中,HI的分解过程均作为唯一的产氢步骤,其分解率直接影响到系统的热效率和产氢速率。通过模拟和实验研究发现,HI的均相分解率极低,这意味着在实际的工业应用中,需要通过催化剂来促进HI的分解。我们小组在之前的HI催化分解研究中,制备了一系列CeO2,Pt/Ce-Zr和Ni/Ce-Zr催化剂,并对这些催化剂做了详细的活性评价和表征研究,提出了相应的催化反应机理。为了得到更加高效而廉价的催化剂,本文以活性炭为基础,对其进行酸处理,氧化处理,热处理及金属负载处理等一系列改性处理,得到高效的HI分解催化剂。
     将不同原料水蒸气制备活性炭催化剂的活性进行对比,同时通过一系列催化剂表征发现:高碳、低灰分且孔隙结构发达的AC-CS和AC-STONE催化活性最高,孔隙结构不够发达的AC-BAMBOO和灰分含量较高AC-COAL催化活性相对较差,含碳量最低且灰分含量较高AC-WOOD催化活性最差。将不同制备方法木质活性炭催化剂的活性进行对比,同时通过一系列催化剂表征发现:含碳量最高的AC-WH,其催化活性也最高。因此推测高的含碳量,低的灰分,合适的孔隙结构对HI催化分解活性有利。
     对煤质活性炭进行了非氧化性酸(HCL和HF)处理后,对比其活性及表征结果后发现:灰分最低的COAL-CLF具有最高的催化活性。因此降低灰分可以有效提高活性炭催化活性。对COAL-CLF进行了氧化性酸(HNO3)处理后,对比其催化活性及表征结果后发现:表面含氧基团最少的COAL-CLF具有最高的催化活性。因此氧化处理会降低活性炭的催化活性。对AC-WH分别在氮气和氢气气氛下进行了不同温度的热处理后,对比其活性及表征结果后发现:随着热处理温度的上升,表面含氧基团数量下降,碱性增强,催化活性增加。因此热处理提高了活性炭的催化活性。在以上实验结果及分析的基础上,首次提出了活性炭催化分解HI机理。
     对五种物化特性各异的活性炭进行Pd改性,对比其活性变化及表征结果后发现:与改性前的活性炭相比,Pd/AC催化剂的催化分解HI的活性大幅度提高了。Pd分散度的变化对H1分解催化活性的影响比活性炭自身物化特性的变化带来的影响大。对经过非氧化性酸(HCL和HF)的煤质活性炭进行Pd改性,对比其活性变化及表征结果后发现:Pd分散度的变化对H1分解催化活性的影响比灰分的影响要大。对不同温度HN03处理的煤质活性炭进行Pd改性,对比其活性变化及表征结果后发现:Pd的分散度变化缩小了改性前活性炭之间催化活性的差距。在以上实验结果及分析的基础上,首次提出了Pd/AC催化分解HI机理。
     对五种物化特性各异的活性炭进行Ru改性,对比其活性变化及表征结果后发现:与改性前的活性炭相比,Ru/AC催化剂的催化分解HI的活性有了一定的提高。Ru在五种活性炭上都有较高的分散度,显示了很好的抗烧结性能。对HCL, HF和HNO3处理后的煤质活性炭进行Ru改性,对比其活性变化及表征结果后发现:经过不同的预处理,Ru分散度并未发生很大的改变,Ru的分散度变化对H1分解催化活性的影响不如活性炭自身物化特性改变造成的影响大。对五种物化特性各异的活性炭进行Ni改性,对比其活性变化及表征结果后发现:在高温下,Ni在活性炭表面烧结团聚现象很严重,这些团聚的大颗粒堵塞了一部分孔。因此Ni/AC的催化活性并未增加活性炭的催化活性,低温段甚至还略低未负载Ni的活性炭。在以上实验结果及分析的基础上,首次提出了Ru/AC催化分解HI机理。
Hydrogen is considered as an ideal energy vector owing to abundant resource, various source, environmental protection, regeneration, safety and advantageous storage. Therefore, it has greatly attracted worldwide attention. Hydrogen production is the fundamental step for hydrogen utilization. Consequently, developing hydrogen economy depends on large-scale and low-cost hydrogen production. Thermochemical water splitting cycle is a promising technique for hydrogen production featuring cleanness and sustainability. Hydrogen can be achieved by the decomposition of water through a series of related thermal reactions. Over one hundred kinds of thermochemical water splitting cycle have been reported to this day. Iodine sulfur thermochemical cycle is the most promising one due to its superiority with high thermal efficiency, low cost and easy large-scale industrialization.
     Iodine sulfur thermochemical cycle mainly consists of following three reactions:
     Bunsen reaction:xI2+SO2+2H2O=2HIx+H2SO4
     HI decomposition reaction:2HIx=xI2+H2
     H2SO4 decomposition reaction:H2SO4=SO2+H2O+1/2O2
     With regard to China, two key factors must be focused on. Pyrites as SO2 source are abundant and inexpensive. On the other hand, byproduct sulfuric acid is valuable and marketable. Therefore, the open-loop iodine sulfur cycle for hydrogen and sulfuric acid production has been proposed. The whole process is composed of following two reactions:
     Bunsen reaction:xI2+SO2+2H2O=2HIx+H2SO4
     HI decomposition reaction:2HIx=xI2+H2
     HI decomposition process is the unique procedure for generating hydrogen in the foregoing two cycles. And its conversion ratio directly influences systemic thermal efficiency and hydrogen production rate. Simulant and experimental results indicate the conversion of HI homogeneous decomposition is extremely low. Hence, the catalyst for improving HI decomposition is intensively applied. The catalysts of CeO2, Pt/Ce-Zr and Ni/Ce-Zr were investigated in the prior study on HI catalytic decomposition. Moreover, the catalytic reaction mechanism has been proposed by the detailed activity estimation and characterization study. The modified treatment including acid, oxidation, heat and metal loaded on activated carbon as HI decomposition catalysts are investigated to get more efficient and inexpensive.
     The activated carbon catalysts with different raw materials and vapor treatment have been tested to evaluate their effect on HI decomposition. AC-CS and AC-STONE showed the best catalytic performance. And AC-WOOD had the worst catalytic performance. AC-BAMBOO and AC-COAL represented the intermediate catalytic performance comparing with prior activated carbon catalysts. Catalytic characterization results indicated AC-CS and AC-STONE were similarly composed of high carbon content and low ash content. Meanwhile, their pore structures were both advanced. Regarding AC-BAMBOO and AC-COAL, the chemical composition contained high carbon content. Whereas, AC-BAMBOO's pore structure was less advanced, and ash content of AC-COAL was rather high. AC-WOOD contained the lowest carbon content and relatively high ash content.
     The wooden activated carbon catalysts with different preparation methods have been tested to evaluate their influence on HI decomposition. The results implied that AC-WH the highest catalytic performance, AC-WOOD the worst catalytic performance, and AC-WZ the intermediate catalytic performance. The characterization results showed AC-WH contained more carbon content and less oxygen-containing groups in comparison with AC-WZ. Both of them contained relatively low ash content and similar pore structure. AC-WOOD consisted of lowest carbon content and rather high ash content. Consequently, high carbon content, low ash content, appropriate pore structure and less oxygen-containing groups were in favor of HI catalytic decomposition.
     The coal based activated carbon catalysts with non-oxidative acid (HCl and HF) treatment have been tested to evaluate their influence on HI decomposition. It was found that COAL-CLF had the best catalytic performance. Characterization results demonstrated that crystallization, pore structure and superficial oxygen-containing groups didn't change significantly. Whereas, the sample ash content decreased obviously. Therefore, decreasing ash content could effectively improve the catalytic performance of activated carbon. The COAL-CLF catalyst with oxidative acid (HNO3) treatment has been tested to evaluate its catalytic performance. The results showed that COAL-CLF had the supreme catalytic performance. Characterization results indicated that superficial oxygen-containing groups and acidity increased by continuous oxidization. High temperature treatment easily resulted in specific surface area and pore volume decrease. Hence, oxidation treatment could depress the catalytic performance of activated carbon. Phosphoric acid activation wooden activated carbons with heat treatment at nitrogen or hydrogen atmosphere have been tested. Then samples with and without treatment were characterized and evaluated. The catalytic activity results showed that the catalytic performance improved as the heat treatment temperature increase. The characterization results demonstrated that crystallization and pore structure didn't change obviously due to high thermal stability. While superficial oxygen-containing groups decreased and alkalinity increased. Therefore, heat treatment enhanced the catalytic performance. Moreover, HI catalytic decomposition mechanism via activated carbon has been proposed.
     Five kinds of different physicochemical activated carbons as vector with Pd modified load have been tested. Activity and characterization results showed that Pd/C catalyst manifested the higher catalytic performance in HI decomposition reaction in comparison with activated carbon without Pd load. The influence of Pd dispersion on HI catalytic decomposition was greater than physicochemical characterization of activated carbon. The coal based activated carbons as vector with Pd load by HCl or HF non-oxidative acid treatment have been tested. Activity and characterization results demonstrated that Pd dispersion had the greater effect on HI catalytic decomposition in comparison with ash content. The coal based activated carbons as vector with Pd load by different temperatures and HNO3 oxidative acid treatment have been tested. The results indicated that the catalytic performance difference of activated carbons without Pd load was reduced by Pd dispersion variety. Moreover, HI catalytic decomposition mechanism via Pd/C catalyst has been proposed.
     Five kinds of different physicochemical activated carbons as vector with Ru modified load have been tested. Activity and characterization results showed that Ru/C catalyst manifested the higher catalytic performance in HI decomposition reaction in comparison with activated carbon without Ru load. Ru load manifested relatively high dispersion on each activated carbon. Therefore, activated carbons with Ru modified load had the outstanding anti-sintering property. The coal based activated carbons as vector with Ru load by HCl, HF or HNO3 treatment have been tested. Activity and characterization results demonstrated that Ru dispersion didn't change greatly by different treatments. Meanwhile, the influence of Ru dispersion on HI catalytic decomposition was less than physicochemical characterization variety of activated carbon. Five kinds of different physicochemical activated carbons as vector with Ni modified load have been tested. The results indicated that Ni sintering and agglomeration on activated carbon surface was extremely serious at high temperature. Then the agglomerated large particles blocked up partial pores. Therefore, Ni/C catalytic performance was not advanced than activated carbon's one. Catalytic performance of activated carbon with Ni load even slightly worse at low temperature comparing with activated carbon without Ni load. Moreover, HI catalytic decomposition mechanism via Ru/C catalyst has been proposed.
引文
1. 毛宗强.氢能--21世纪的绿色能源。化学工业出版社.2005.
    2.T.Nejat.Veziroglu, Hydrogen Energy Technologies. UNIDO Emerging Technologies Series, UNIDO, Vienna,.1998.
    3.3.Steinberg M, Cheng H. Modern and prospective technologiesfor hydrogen production from fossil fuels. Int J HydrogenEnergy 1989;14(11):797-820.
    4. 汤桂兰,孙振钧.生物制氢技术的研究现状与发展.生物技术,2007;17(1):93-97.
    5.周汝雁,尤希凤,张全国.光合微生物制氢技术的研究进展.中国沼气,2006;24(2):31-34.
    6. 李冬敏,陈洪章,李佐虎.生物制氢技术的研究进展.生物技术通报,2003;4:1-5.
    7.任南琪,李建政.生物制氢技术.太阳能,2003;2:4-6.
    8.解东来,叶根银,李自卫,乔伟艳.生物质气化制氢中的流化床工艺选择.中外能源,2007;12(6):20-24.
    9.林鹏,虞亚辉,罗永浩,陈祎.生物质热化学制氢的研究进展.化学反应工程与工艺,2007;23(3):267-272.
    10.闫桂焕,孙立,许敏,孙荣峰.生物质热化学转化制氢技术.可再生能源,2004;4:33-36.
    11.汤桂兰,孙振钧,李玉英.微生物发酵法制氢与产氢微生物的研究进展.农业工程学报,2007;23(12):285-290.
    12.张续春,黄兵,曹东福.微生物厌氧发酵制氢技术现状和展望.云南化工,2007;34(2):67-70.
    13.庞志成,罗震宁.电解制氢电极材料的研究进展.贵州化工,2006;31(3):33-35.
    14.汪家铭.水电解制氢技术进展及应用.技术与市场,2006;11A:6-6.
    15.周文利,牛振杰.水电解制氢设备简介.青海气象,2006;4:35-36.
    16.钱丽苹,刘奎仁.半导体光解水制氢的研究.材料与冶金学报,2003;2(1):10-15.
    17.田蒙奎,上官文峰,欧阳自远,王世杰.光解水制氢半导体光催化材料的研究进展.功能材料,2005;36(10):1489-1492,1500.
    18.冉锐,吴晓东,翁端.光解水制氢的可见光催化材料的研究进展.材料导报,2004;18(F10):39-42.
    19.许家胜,薛冬峰.利用可见光催化分解水制氢的研究进展.材料导报,2006;20(10):1-4.
    20.上官文峰.太阳能光解水制氢的研究进展.无机化学学报,2001;17(5):619-626.
    21.J.E.Funk,R.M.Reinstrom. Energy requirements in the production of hydrogen from water. IEC Proc.Res.Dev.1966,5:336.
    22. Ohta T. Solar-hydrogen energy systems. Oxford:Pergamon Press,1979.
    23. Beghi GE. A decade of research on thermochemical hydrogen at the joint research center, Ispra. Int J Hydrogen Energy 1986;11(12):761-71.
    24. Russell Jr JL, Porter JT. A search for thermochemical water-splitting cycles. Hydrogen Economy Miami Energy Conference, Miami,1974.
    25. Williams L. Hydrogen power. New York:Pergamon Press,1980.
    26. Yalcin S. A review of nuclear hydrogen production. Int J Hydrogen Energy 1989;14(8):551-61.
    27. Casper MS, editor. Hydrogen manufacture by electrolysis, thermal decomposition, and unusual techniques. Park Ridge, NJ:Noyes Data Corp,1978.
    28. Bamberger CE. Hydrogen production from water by thermochemical cycles; a 1977 update. Cryogenics 1978;18(3):170-83.
    29. Bockris JO'M. Energy. The solar-hydrogen alternative. Australia:Wiley,1975.
    30. Pretzel CW, Funk JE. The development status of solar thermochemical hydrogen production. Sandia Report 86-8056,1987.
    31. Funk JE. A technoeconomic analysis of large scale thermochemical production of hydrogen. EPRI EM-287, Project 467 Final Report,1976.
    32. Funk JE.Thermochemical hydrogen production:past and present. Int J Hydrogen Energy 2001;26:185-190.
    33. Yoshioka H, Nakayama T, Kameyama H,Yoshida K. Operation of a bench-scale plant for hydrogen production by the UT-3 cycle. Hydrogen energy progress V:proceedings of the fifth World hydrogen energy conference. Toronto, Canada,15-20 July 1984. p.413-20.
    34. Kameyama H, Tomino Y, Sato T, Amir R, Orihara A, Aihara M, Yoshida K. Process simulation of mascot plant using the UT-3 thermochemical cycle for hydrogen production. Int J Hydrogen Energy 1988;14(5):323-330.
    35. Aihara M, Umida H, Tsutsumi A, Yoshida K. Kinetic study of UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 1990;15(1):7-11.
    36. Yoshida K, Kameyama H, Aochi T, Nobue M, Aihara M, Amir R, Kondo H, Sato T, Tadokoro Y, Yamaguchi T, Sakai N. A simulation study of the UT-3 thermochemical hydrogen production process. Int J Hydrogen Energy 1990; 15(3):171-178.
    37. Sakurai M, Tsutsumi A, Yoshida K. Improvement of Ca-pellet reactivity in the UT-3 thermochemical hydrogen production cycle. Int J Hydrogen Energy 1995;20(4):297-301.
    38. Sakurai M, Bilgen E, Tsutsumi A, Yoshida K. Solar UT-3 thermochemical cycle for hydrogen production. Solar Energy 1996;57(1):51-58.
    39. Teo ED, Brandon NP, Vos E, Kramer GJ. A critical pathway energy efficiency analysis of the thermochemical UT-3 cycle. Int J Hydrogen Energy 2005;30(5):559-564.
    40. F. Lemort,C. Lafon, R. Dedryvere, D. Gonbeaub.Physicochemical and thermodynamic investigation of theUT-3 hydrogen production cycle:Anewtechnological assessment. Int J Hydrogen Energy 2006;31:906-918.
    41.张龙,高伟民,李海东.S-I-Ni开路循环水分解制氢的反应条件及动力学研究.吉林工学院学报,1994;15(1):54-58.
    42.吴莘馨,方甬,厉日竹,小贯薰.高温堆的热利用—热化学循环制氢的研究.高技术通讯,2002.9.
    43. WU Xinxin, ONUKI Kaoru. Thermochemical Water Splitting for Hydrogen Production Utilizing Nuclear Heat from an HTGR TSINGHUA SCIENCE AND TECHNOLOGY, 2005; 10 (2):270-276.
    44. J.H.Zhou, Y.W.Zhang, Zh.H.Wang, W.J.Yang, Zh.J.Zhou, J.Zh.Liu, K.F.Cen. Thermal efficiency evaluation of open-loop SI thermochemical cycle for the production of hydrogen, sulfuric acid and electric power. Int.J.Hydrogen Energy,2007;32:567-575.
    45. Y.WZhang, J.H.Zhou, Zh.H.Wang, K.F.Cen. Detailed kinetic modeling and sensitivity analysis of hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. Int J Hydrogen Energy,2008;33:627-632.
    46. Y.W. Zhang, Zh.H. Wang, J.H. Zhou, J.Zh. Liu, K.F. Cen. Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle, Int J Hydrogen Energy,2008;33:602-607.
    47. Y.WZhang, J.H.Zhou, Zh.H.Wang, J.Zh. Liu, K.F.Cen. Catalytic Thermal Decomposition of Hydrogen Iodide in Sulfur-Iodine Cycle for Hydrogen Production, Energy & Fuels, 2008;22:1227-1232.
    48. Y.W.Zhang, J.H.Zhou, Zh.H.Wang, J.Zh. Liu, K.F.Cen. Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur-iodine cycle,Int J Hydrogen Energy,2008;33:2211-2217.
    49.刘广义.热化学硫碘循环制氢中Bunsen反应与碘化氢分解的模拟与实验研究.浙江大学硕士学位论文.
    50. L.C. BROWN, J.F. FUNK, and S.K. SHOWALTER.INITIAL SCREENING OF THERMOCHEMICAL WATER-SPLITTING CYCLES FOR HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER.GA-A23373,2000.
    51. L. C. Brown, et al.. High Efficiency Generation of Hydrogen Fuels Using Thermochemical Cycles and Nuclear Power. AIChE 2002 Spring National Meeting,New Orleans, Louisiana.2002.
    52. L.C. BROWN, G.E. BESENBRUCH, K.R. SCHULTZ, S.K. SHOWALTER, A.C. MARSHALL, P.S. PICKARD, and J.F. FUNK.HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING THERMOCHEMICAL CYCLES AND NUCLEAR POWER.GA-A24326,2002.
    53. L.C. BROWN, R.D. LENTSCH, GE. BESENBRUCH, K.R. SCHULTZ, AND J.E. FUNK.ALTERNATIVE FLOWSHEETS FOR THE SULFUR-IODINE THERMOCHEMICAL HYDROGEN CYCLE.GA-A24266,2003.
    54. Norman JH, GE.Besenbruch and D.O' Keefe. Thermochemical water-splitting for hydrogen production. GRI-80/0105,Gas Research Institute.1981.
    55. Knoche.K.F.,H.Scheper and K.Hesselmann.. Second law and cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle.Proc. of the 5th World Hydrogen energy conf.,Toronto,Canada,1984; 487-502.Pergamon Press,New York,USA.
    56. Brown LC,Lentsch RD,Besenbruch GE,etc.Alternative flowsheets for the sulfur-iodine thermochemical hydrogen cycle.Proceeding of AIChe 2003 spring National Meeting,New Orleans USA,2003.
    57. Norman.J.H.,G.E.Besenbruch,L.C.Brown,D.R.O'Keefe and C.L.Allen. Thermochemical water-splitting cycle, Bench-scale investigations and process engineering. Int J Hydrogen Energy 1982;GA-A16713.
    58. Vitart, X., P. Carles, and P. Anzieu. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat Progress in Nuclear Energy 2008; 50(2-6):402-410.
    59. Besenbruch, G.E., L.C. Brown, J.F. Funk, and S.K. Showalter. High efficiency generation of hydrogen fuels using nuclear power. Nuclear Production of Hydrogen 2001:205-218.
    60. Engels, H., K.F. Knoche, and M. Roth. DIRECT DISSOCIATION OF HYDROGEN IODIDE-AN ALTERNATIVE TO THE GENERAL ATOMIC PROPOSAL. International Journal of Hydrogen Energy 1987; 12(10):675-678.
    61. L.C. BROWN, J.F. FUNK and A.C. MARSHALL.HIGH EFFICIENCY GENERATION OF HYDROGEN FUELS USING NUCLEAR POWER. GA-A24326,2002.
    62. Nakajima, H., K. Ikenoya, K. Onuki, and S. Shimizu. Closed-cycle continuous hydrogen production test by thermochemical IS process. Kagaku Kogaku Ronbunshu 1998; 24(2): 352-355.
    63. Kubo, S., H. Nakajima, S. Kasahara, S. Higashi, T. Masaki, H. Abe, and K. Onuki. A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process. Nuclear Engineering and Design 2004; 233(1-3): 347-354.
    64. Kasahara, S., G.J. Hwang, H. Nakajima, H.S. Choi, K. Onuki, and M. Nomura. Effects of process parameters of the IS process on total thermal efficiency to produce hydrogen from water. Journal of Chemical Engineering of Japan 2003; 36(7):887-899.
    65. Kubo, S., S. Kasahara, H. Okuda, A. Terada, N. Tanaka, Y. Inaba, H. Ohashi, Y. Inagaki, K. Onuki, and R. Hino. A pilot test plan of the thermochemical water-splitting iodine-sulfur process. Nuclear Engineering and Design 2004; 233(1-3):355-362.
    66. Sakaba, N., S. Kasahara, K. Onuki, and K. Kunitomi. Conceptual design of hydrogen production system with thermochemical water-splitting iodine-sulphur process utilizing heat from the high-temperature gas-cooled reactor HTTR. International Journal of Hydrogen Energy 2007; 32(17):4160-4169.
    67. Leybros, J., P. Carles, and J.-M. Borgard. Countercurrent reactor design and flowsheet for iodine-sulfur thermochemical water splitting process. International Journal of Hydrogen Energy 2009; 34(22):9060-9075.
    68. Hong SD, Kim CH, Kim JG, Lee SH, Bae KK, Hwang GJ. HI concentration from HIx (HI-H2O-I2) solution for the thermochemical water-splitting IS process by electro-electrodialysis. J Ind Eng Chem 2006;14(2):566.
    69. Seong-Dae Hong, Jeong-Keun Kim, Byeong-Kwon Kim, Sang-Il Choi,Ki-Kwang Bae, Gab-Jin Hwang.Evaluation on the electro-electrodialysis to concentrate HI from HIx solution by using two types of the electrode.International Journal of Hydrogen Energy 32 (2007)2005-2009.
    70. Chan Soo Kim, Sung-Deok Hong, Yong-Wan Kim, Jong-Ho Kim, Won Jae Lee, Jonghwa Chang.Thermal design of a laboratory—scale SO3 decomposer for nuclear hydrogen production. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,in press.
    71. Lee, B.J., H.C. No, H.J. Yoon, H.G. Jin, Y.S. Kim, and J.I. Lee. Development of a flowsheet for iodine-sulfur thermo-chemical cycle based on optimized Bunsen reaction International Journal of Hydrogen Energy 2009; 34(5):2133-2143.
    72. Lee, B.J., H.C. No, H.J. Yoon, S.J. Kim, and E.S. Kim. An optimal operating window for the Bunsen process in the I-S thermochemical cycle. International Journal of Hydrogen Energy 2008; 33(9):2200-2210.
    73.屈一新.化工过程数值模拟及软件.化学工业出版社2006.
    74. Huang, C.P. and A. T-Raissi. Analysis of sulfur-iodine thermochemical cycle for solar hydrogen production. Part I:decomposition of sulfuric acid. Solar Energy 2005; 78(5): 632-646.
    75. Kane, C. and S.T. Revankar. Sulfur-iodine thermochemical cycle:HI decomposition flow sheet analysis. International Journal of Hydrogen Energy 2008; 33(21):5996-6005.
    76. Kovalenko, G.A., N.A. Rudina, T.V. Chuenko, D.Y. Ermakov, and L.V. Perminova. Synthesis of catalytic filamentous carbon by the pyrolysis of alkanes on alumina-silica foam supporting nickel nanoparticles. Carbon 2009; 47(2):428-435.
    77. Kubo S, Futakawa M, Ioka I, Onuki K, Shimizu S, Ohsaka K, et al. Corrosion test on structural materials for iodine-sulfur thermochemical water splitting cycle. Proceedings of AIChE 2003 spring national meeting, New Orleans, LA, USA; March 30-April 3,2003. 153b.
    78. Nishiyama N, Futakawa M, Ioka I, Onuki K, Shimizu S, Eto M. et al. Corrosion resistance evaluation of brittle materials in boiling sulfuric acid. J Soc Mat Sci Jpn 1999;48(7):746-52 [in Japanese].
    79. Trester PW, Staley H. Gas research Institute Report 80/00981,1981.
    80. B.Wong, R.T. Buckingham, L.C. Brown, B.E. Russ, GE. Besenbruch,A. Kaiparambil,R. Santhanakrishnan, Ajit Roy.Construction materials development in sulfur-iodine thermochemical water-splitting process for hydrogen production.International Journal of Hydrogen Energy 32 (2007) 497-504.
    81. Shinji Kubo, Hayato Nakajima, Seiji Kasahara, Syunichi Higashi, Tomoo Masaki, Hiroyoshi Abe and Kaoru Onuki. A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process. Nucl Eng Des. 2004;233:347-354.
    82. Nomura, M., Fujiwara, S., Okuda, H., Kasahara, S., Ikenoya, K., Kubo, S., Hwang, G..J., Choi, H. S., Onuki, K.,. Application of an electrochemical membrane reactor to the thermochemical water splitting IS process for hydrogen production. J. Membr. Sci, 2004;240(1-2):221-226.
    83. Mikihiro Nomura,Hiroyuki Okuda, Seiji Kasahara, Shin-ichi Nakao.Optimization of the process parameters of an electrochemical cell in the IS process.Chemical Engineering Science.2005;60:7160-7167.
    84. Mikihiro Nomura,Seiji Kasahara, Hiroyuki Okuda, Shin-ichi Nakao.Evaluation of the IS process featuring membrane techniques by total thermal efficiency.Int.J.Hydrogen Energy, 2005;30:1465-1473.
    85. Hadj-Kali, M.K., V. Gerbaud, P. Lovera, O. Baudouin, P. Floquet, X. Joulia, J.-M. Borgard, and P. Carles. Bunsen section thermodynamic model for hydrogen production by the sulfur-iodine cycle. International Journal of Hydrogen Energy 2009; 34(16):6625-6635.
    86. Yoon, H.J., H.C. No, Y.S. Kim, H.G. Jin, J.I. Lee, and B.J. Lee. Demonstration of the I-S thermochemical cycle feasibility by experimentally validating the over-azeotropic condition in the hydroiodic acid phase of the Bunsen process. International Journal of Hydrogen Energy 2009; 34(19):7939-7948.
    87. Guo, H.F., P. Zhang, Y. Bai, L.J. Wang, S.Z. Chen, and J.M. Xu. Continuous purification of H2SO4 and HI phases by packed column in IS process. International Journal of Hydrogen Energy 2010; 35(7):2836-2839.
    88. S.Sato,S.Shimizu,H.Nakajima,etc. A nickel-iodine-sulfur process for hydrogen production. Int.J.Hydrogen Energy,1983;8(1):15-22.
    89. Shimizu.S,Onuki.K,Nakajima.H,etc. The nickel-iodine-sulfur process for hydrogen production Ⅳ.Bunsen Reaction. DENKI KAGAKU,1985;53(2):114-118.
    90. M Sakurai,H Nakajima,K.Onuki. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int. J. Hydrogen Energy,2000;25:605-611.
    91. M Sakurai,H Nakajima,R Amir,etc. Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process.Int. J. Hydrogen Energy,2000;25:613-619.
    92. Lee TC. The Study on the separation characteristics of Bunsen reaction for thermochemical hydrogen production, University of Science and Technology (Korea), Master's Thesis, 2006.
    93. A. Giaconia, G. Caputo, A. Ceroli, M. Diamanti, V. Barbarossa, P. Tarquini, S. Sau.Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle.International Journal of Hydrogen Energy.2007;32(5):531-536.
    94. G.J.Hwang,Y.H.Kim,C.S.Park,etc. Bunsen reaction in IS(Iodine-sulfur) process for thermochemical hydrogen production. Proceedings International Hydrogen Energy Congress and Exibition IHEC Istabul,Turkey,2005.
    95. Sakurai M, Nakajima H, Onuki K, Ikenoya K, Shimizu S.Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 1999;24:603-612.
    96. Sakurai M, Nakajima H, Onuki K, Shimizu S. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process. Int J Hydrogen Energy 2000;25:605-611.
    97. Colette S, Brijou-Mokrani N, Carles P, Fauvet P, Tabarant M,Dutruc-Rosset C, et al. Experimental study of Bunsen reaction in the framework of massive hydrogen production by the sulfur-iodine thermochemical cycle. WHEC 16/13-16 June 2006, Lyon, France.
    98. Kang YH, Ryu JC, Park CS, Hwang GJ, Lee SH, Bae KK, et al. The study on Bunsen reaction process for iodine-sulfurthermochemical hydrogen production. Korean Chem Eng Res 2006;44(4):410-416.
    99. Lee DH, Lee KJ, Kang YH, Kim YH, Park CS, Hwang GJ, et al. High temperature phase separation of H2SO4-HI-H2O-I2 system in iodine-sulfur hydrogen production process. Trans Korean Hydrogen and New Energy Soc 2006;17(4):395-402.
    100. Byung Jin Lee, Hee Cheon NO, Ho Joon Yoon, Seung Jun Kim, Eung Soo Kim.An optimal operating window for the Bunsen process in the I-S thermochemical cycle. International Journal of Hydrogen Energy.2008;33(9):2200-2210.
    101. Colette Maatouk, S., N. Brijou Mokrani, M. Tabarant, J.-L. Fleche, and P. Carles. Study of the miscibility gap in H2SO4/HI/I2/H2O mixtures produced by the Bunsen reaction-Part I: Preliminary results at 308K. International Journal of Hydrogen Energy 2009; 34(17): 7155-7161.
    102.Dokiya, M., K. Fukuda, T. Kameyama, Y. Kotera, and S. Asakura. STUDY OF THERMOCHEMICAL HYDROGEN PREPARATION.2. ELECTROCHEMICAL HYBRID CYCLE USING SULFUR-IODINE SYSTEM. Denki Kagaku 1977; 45(3): 139-143.
    103.Shimizu, S., K. Onuki, and H. Nakajima. The Nickel-Iodine-Sulfur Process for Thermochemical Hydrogen-Production.5. Reduction of Solvent Amount in Bunsen Reaction. Denki Kagaku 1985; 53(5):330-332.
    104. Shimizu, S., K. Onuki, H. Nakajima, and S. Sato. The Nickel-Iodine-Sulfur Process for Thermochemical Hydrogen-Production.4. Bunsen Reaction. Denki Kagaku 1985; 53(2): 114-118.
    105. Shimizu, S., K. Onuki, H. Nakjima, Y. Ikezoe, and S. Sato. The Nickel-Iodine-Sulfur Process for Thermochemical Hydrogen-Production.3. Equilibrium Vapor-Pressure over Nickel (Ii) Iodide Hydrates. Denki Kagaku 1982; 50(11):904-908.
    106. Shimizu, S., S. Sato, H. Nakajima, and K. Onuki. The Nickel-Iodine-Sulfur Process for Thermochemical Hydrogen-Production.2. Separation of Nickel (Ii) Iodide from Nickel (Ii) Sulfate. Denki Kagaku 1982; 50(11):898-903.
    107. Shimizu, S., S. Sato, Y. Ikezoe, and H. Nakajima. The Nickel-Iodine-Sulfur Process for Thermochemical Hydrogen-Production.1. Proposal. Denki Kagaku 1981; 49(11):699-704.
    108.Cocuzza, G.; Pierini, G. Procede pour la production d'hydrogene. Belgian Patent no. 852674,1977.
    109.De Beni, G.; Pierini, G.; Spelta, B. Process for the separation of hydrogen iodide and sulphuric acid. European Patent no.78200029.3,1978.
    110. Giaconia, A., G. Caputo, S. Sau, P.P. Prosini, A. Pozio, M. De Francesco, P. Tarquini, and L. Nardi. Survey of Bunsen reaction routes to improve the sulfur-iodine thermochemical water-splitting cycle. in AIChE Annual Meeting 2007.2007. Salt Lake City, UT: Pergamon-Elsevier Science Ltd.
    111.Barbarossa, V., G Vanga, M. Diamanti, M. Cali, and G Doddi. Chemically Enhanced Separation of H2SO4/HI Mixtures from the Bunsen Reaction in the Sulfur-Iodine Thermochemical Cycle. Industrial & Engineering Chemistry Research 2009; 48(19): 9040-9044.
    112. Giampaolo Caputo, Claudio Felici, Pietro Tarquini, Alberto Giaconia, Salvatore Sau.Membrane distillation of HI/H2OandH2SO4/H2Omixtures for the sulfur-iodine thermochemical process.International Journal of Hydrogen Energy 32 (2007) 4736-4743.
    113. J.H. Norman, K.J. Mysels, D.R. O'Keefe, S.A. Stowell, D.G.Williamson, in:Proceedings of the 2nd World Hydrogen Energy Conference, vol.2,1978, p.513.
    114. J.H. Norman, K.J. Mysels, R. Sharp, D. Williamson, Int. J. Hydrogen Energ.7 (1982) 545.
    115. H. Tagawa, T. Endo, Int. J. Hydrogen Energ.14 (1989) 11.
    116. L.N. Yannopoulos, J.F. Pierre, Int. J. Hydrogen Energ.9 (1984) 383.
    117.Dokiya M, Kameyama T, Fukuda K, Kotera Y. The study of thermochemical hydrogen preparation. III. An oxygen-evolving step through the thermal splitting of sulfuric acid at high temperature. Bull Chem Soc Jpn 1977;50(10):2657.
    118. O'Keefe DR, Norman JH, Williamson DG. Catalysis research in thermochemical water-splitting processes. Catal Rev Sci Eng 1980; 22(3):325-69.
    119.Brittan RD, Hildenbrand DL. Catalytic decomposition of gaseous SO3. J Phys Chem 1983;87:3713-7.
    120. Tagawa H, Endo T. Catalytic decomposition of sulfuric acid using metal oxides as the oxygen generating reaction in thermochemical water splitting process. Int J Hydrogen Energy 1989;14(1):11-7.
    121. Schwartz D, Gadiou R, Brilhac J-F, Prado G, Martinez GA. Kinetic study of the decomposition of spent sulfuric acid at high-temperature. Ind Eng Chem Res 2000;39:2183-9.
    122.Kolb CE, Jayne JT, Worshop DR, Molina MJ, Meads RF, Viggiaro AA. Gas phase reaction of sulphur trioxide with water vapor. J Am Chem Soc 1994; 116:10314-5.
    123. Larson LJ, Kuno M, Tao FM. Hydrolysis of sulfur trioxide to form sulfuric acid in small water clusters. J Chem Phys 2000;112:8830-8.
    124.Barbarossa V, Bruttib S, Diamantia M, Saua S, De Mariab G Catalyticthermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production. Int J Hydrogen Energy 2006;31:883.
    125.A.M. Banerjee, M.R. Pai, K. Bhattacharya, A.K. Tripathi, V.S. Kamble,S.R. Bharadwaj*, S.K. Kulshreshtha.Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur-iodine cycle for hydrogen production.International Journal of Hydrogen Energy 33 (2008) 319-326.
    126. Kanagawa A, Kasahara S, Terada A, Kubo S, Hino R, Kawahara Y, et al. Conceptual design of SO3 decomposer for thermochemical Iodine-Sulfur process pilot plant. In:International conference on nuclear engineering, Beijing, China, May 16-20,2005, ICONE-50451.
    127. Rodriguez G, Robin JC, Billot P, Berjon A, Cachon L, Carles P, et al. Development program of a key component of the iodine sulfur thermochemical cycle:the SO3 decomposer. In: 16th world hydrogen energy conference, Lyon France, June 13-16,2006.
    128. Kim CS, Hong SD, Kim YW, Kim JH, Lee WJ, Chang JH. Thermal sizing of a lab-scale SO3 decomposer for nuclear hydrogen generation. In:ANS embedded topical meeting: ST-NH2, Boston, MA, USA, June 24-28,2007. p.207-14.
    129. Karasawa H, Sasahira A, Hoshino K. Thermal decomposition of SO3. Int J Nucl Hydrogen Prod Appl 2006; 1(2):134-43.
    130.D.M. Ginosar, L.M. Petkovic, A.W. Glenn, K.C. Burch, Int. J. Hydrogen Energ.32 (2007) 482.
    131.D.M. Ginosar, L.M. Petkovic, K.C. Burch, Paper 258d, AIChE 2005National Meeting Overall Conference Proceedings, AIChE, New York,NY,2005.
    132. L.M. Petkovic*, D.M. Ginosar, H.W. Rollins, K.C. Burch, P.J. Pinhero, H.H. Farrell.Pt/TiO2 (rutile) catalysts for sulfuric acid decomposition in sulfur-based thermochemical water-splitting cycles.Applied Catalysis A:General 338 (2008) 27-36.
    133.Rashkeev, S.N., D.M. Ginosar, L.M. Petkovic, and H.H. Farrell. Catalytic activity of supported metal particles for sulfuric acid decomposition reaction. Catalysis Today 2009; 130(4):291-298.
    134.Barbarossa, V., S. Brutti, B. Brunetti, M. Diamanti, and G Ricci. Study of I-/I-2 Poisoning of Fe2O3-Based Catalysts for the H2SO4 Decomposition in the Sulfur-iodine Cycle for Hydrogen Production. Industrial & Engineering Chemistry Research 2009; 48(2):625-631.
    135.Hechenova A. High temperature heat exchanger annual report, DE-FC-07-04ID14566. Lasvegas, NV, USA,2005.
    136. Rodriguez G, Robin JC, Billot P, Berjon A, Cachon L, Carles P, et al.Development program of a key component of the iodine sulfurthermochemical cycle:the SO3 decomposer. In: 16th world hydrogen energy conference, Lyon France, June 13-16,2006.
    137. Kim YW, Park JW, Kim MH, Hong SD, Lee WJ, Chang JH. High temperature and high pressure corrosion resistant process heat exchanger for a nuclear hydrogen production system. Republic of Korea Patent submitted,2006, assigned to Korea Atomic Energy Research Institute,10-2006-0124716.
    138. Hong SD, Kim JH, Kim CS, Kim YW, Lee WJ, Change, JH. Development of a compact nuclear hydrogen coupled components (CNHCC) test loop. In:ANS Embedded Topical Meeting:ST-NH2, Boston, MA, USA, June 24-28,2007. p.215-21.
    139. Valery Ponyavin, Yitung Chen, Taha Mohamed, Mohamed Trabia,Anthony E. Hechanova, Merrill Wilson.Parametric study of sulfuric acid decomposer for hydrogen production. Progress in Nuclear Energy 50 (2008) 427e433.
    140. Chan Soo Kim, Sung-Deok Hong, Yong-Wan Kim, Jong-Ho Kim, Won Jae Lee, Jonghwa Chang.Thermal design of a laboratory—scale SO3 decomposer for nuclear hydrogen production.INTERNATIONAL JOURNAL OF HYDROGEN ENERGY,in press.
    141.Noglik, A., M. Roeb, T. Rzepczyk, J. Hinkley, C. Sattler, and R. Pitz-Paal. Solar Thermochemical Generation of Hydrogen:Development of a Receiver Reactor for the Decomposition of Sulfuric Acid. Journal of Solar Energy Engineering-Transactions of the Asme 2009; 131(1):-
    142. Charles Forsberg, Brian Bischoff, Louis K. Mansur, Lee Trowbridge, and P. Tortorelli.A Lower-Temperature Iodine-Westinghouse-Ispra Sulfur Process for Thermochemical Production of Hydrogen.Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725,2003.
    143.Knoche.K.F.,H.Schepers and K.Hesselmann. Second law snd cost analysis of the oxygen generation step of the General Atomic sulfur-iodine cycle.Proc. of the 5thWorld Hydrogen energy conf.,Toronto,Canada,1984;487-502.
    144.Roth.M.and K.F.Knoche. Thermochemical water splitting through direct HI-decomposition from H2O/HI/I2 solutions. Int J Hydrogen Energy 1989; 14(8):545-549.
    145. Onuki.K.,G.J.Hwang,Arifal and S.Shimizu. Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature. J.Membr.Sci.2001; 192:193-199.
    146. Hwang, G. J., Onuki, K., Nomura, M., Kasahara, S,. Choi, H. S., Kim, J. W.,. Improvement of the thermochemical water-splitting IS process by electroelectrodialysis. J. Membr. Sci., 2003;220:129-136.
    147. Kasahara, S., Kubo, S., Onuki, K., Nomura, M.,. Thermal efficiency evaluation of HI synthesis/concentration procedures in the thermochemical water splitting IS process. Int. J. Hydrogen Energy,2004;29:579-587.
    148. Nomura, M., Fujiwara, S., Ikenoya, K., Kasahara, S., Nakajima, H., Kubo, S., Onuki, K., Nakao, S.,. Development of an electrochemical cell using a cation exchange membrane for efficient hydrogen production through the IS process. AIChE J.2004;50(8):1991-1998.
    149. Onuki, K., Hwang, G.. J., Shimizu, S.,. Electrodialysis of hydriodic acid in the presence of iodine. J. Membr. Sci.,2000;175:171-179.
    150. Christopher J. Orme, Frederick F. Stewart.Pervaporation of water from aqueous hydriodic acid and iodine mixtures using Nafion(?) membranes.Journal of Membrane Science 304 (2007) 156-162.
    151.Tanaka, N. and K. Onuki. Equilibrium potential across cation exchange membrane in HI-I2-H2O solution. Journal of Membrane Science 2010; 357(1-2):73-79.
    152.Lanchi, M., G. Caputo, R. Liberatore, L. Marrelli, S. Sau, A. Spadoni, and P. Tarquini. Use of metallic Ni for H-2 production in S-I thermochemical cycle:Experimental and theoretical analysis. International Journal of Hydrogen Energy 2009; 34(3):1200-1207.
    153. Zhang, Y.W., J.H. Zhou, Z.H. Wang, and K.F. Cen. Detailed kinetic modeling and sensitivity analysis of hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. International Journal of Hydrogen Energy 2008; 33(2):627-632.
    154.Okeefe, D.R., J.H. Norman, and D.G Williamson. Catalysis Research in Thermochemical Water-Splitting Processes. Catalysis Reviews-Science and Engineering 1980; 22(3): 325-369.
    155.Iida, I. KINETIC-BEHAVIOR OF THE DECOMPOSITION OF HYDROGEN IODIDE ON THE SURFACE OF PLATINUM. Zeitschrift Fur Physikalische Chemie-Frankfurt 1978; 109(2):221-232.
    156. Oosawa, Y., Y. Takemori, and K. Fujii. Catalytic Decomposition of Hydrogen Iodide in the Magnesium-Iodine Thermochemical Cycle-Catalyst Search Nippon Kagaku Kaishi 1980(7):1081-1087.
    157. Oosawa, Y The Decomposition of Hydrogen Iodide and Separation of the Products by the Combination of an Adsorbent with Catalytic Activity and a Temperature-Swing Method. Bulletin of the Chemical Society of Japan 1981; 54(10):2908-2912.
    158. Oosawa, Y., T. Kumagai, S. Mizuta, W. Kondo, Y Takemori, and K. Fujii. Kinetics of the Catalytic Decomposition of Hydrogen Iodide in the Magnesium-Iodine Thermochemical Cycle. Bulletin of the Chemical Society of Japan 1981; 54(3):742-748.
    159.Shindo, Y, N. Ito, K. Haraya, T. Hakuta, and H. Yoshitome. Kinetics of the Catalytic Decomposition of Hydrogen Iodide in the Thermochemical Hydrogen-Production. International Journal of Hydrogen Energy 1984; 9(8):695-700.
    160.Okeefe, D., C. Allen, G Besenbruch, L. Brown, J. Norman, R. Sharp, and K. Mccorkle. Preliminary-Results from Bench-Scale Testing of a Sulfur-Iodine Thermochemical Water-Splitting Cycle. International Journal of Hydrogen Energy 1982; 7(5):381-392.
    161. P. Favuzzaa, C.F., M. Lanchia, R. Liberatorea, C.V. Mazzocchiab, A. Spadonia,,, P. Tarquinia and A.C. Titob. Decomposition of hydrogen iodide in the S-I thermochemical cycle over Ni catalyst systems 2009.
    162. Zhang, Y, Z.H. Wang, J.H. Zhou, J.Z. Liu, and K.F. Cen. Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle. International Journal of Hydrogen Energy 2008; 33(2):602-607.
    163.Zhang, Y.W., J.H. Zhou, Y Chen, Z.H. Wang, J.Z. Liu, and K.F. Cen. Hydrogen iodide decomposition over nickel-ceria catalysts for hydrogen production in the sulfur-iodine cycle. International Journal of Hydrogen Energy 2008; 33(20):5477-5483.
    164. Zhang, Y.W., J.H. Zhou, Z.H. Wang, J.Z. Liu, and K.F. Cen. Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur-iodine cycle. International Journal of Hydrogen Energy 2008; 33(9):2211-2217.
    165. Zhang, Y.W., J.H. Zhou, Z.H. Wang, J.Z. Liu, and K.F. Cen. Catalytic thermal decomposition of hydrogen iodide in sulfur-iodine cycle for hydrogen production. Energy & Fuels 2008; 22(2):1227-1232.
    166. Zhang, Y., Z. Wang, J. Zhou, J. Liu, and K. Cen. Catalytic decomposition of hydrogen iodide over pre-treated Ni/CeO2 catalysts for hydrogen production in the sulfur-iodine cycle. International Journal of Hydrogen Energy 2009; 34(21):8792-8798.
    167. Zhang, Y., Z. Wang, J. Zhou, J. Liu, and K. Cen. Experimental study of Ni/CeO2 catalytic properties and performance for hydrogen production in sulfur-iodine cycle. International Journal of Hydrogen Energy 2009; 34(14):5637-5644.
    168. Zhang, Y.W., Z.H. Wang, J.H. Zhou, and K.F. Cen. Ceria as a catalyst for hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production. International Journal of Hydrogen Energy 2009; 34(4):1688-1695.
    169. Chen, Y, Z.H. Wang, Y.W. Zhang, J.H. Zhou, and K.F. Cen. Platinum-ceria-zirconia catalysts for hydrogen production in sulfur-iodine cycle. International Journal of Hydrogen Energy 2010; 35(2):445-451.
    170. Kim, J.M., J.E. Park, Y.H. Kim, K.S. Kang, C.H. Kim, C.S. Park, and K.K. Bae. Decomposition of hydrogen iodide on Pt/C-based catalysts for hydrogen production. International Journal of Hydrogen Energy 2008; 33(19):4974-4980.
    171. Lucia M. Petkovica, D.M.G., Harry W. Rollinsa, Kyle C. Burcha, Cristina Deianab, Hugo S. Silvab, Maria F. Sardellab and Dolly Granadosb. Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle 2008.
    172.G.J. Hwang, K. Onuki, S. Shimizu, H. Ohya, Hydrogenseparation in H2-H2O-HI gaseous mixture using the silicamembranes prepared by chemical vapor deposition, J. Membr.Sci. 162 (1999) 83.
    173.G.J. Hwang, K. Onuki, S. Shimizu, Studies on hydrogen separation membrane for IS process, Membrane preparation with porous-alumina tube, JAERI, Research Report 98-002, JAERI, Ibaraki, Japan,1998.
    174.G.J. Hwang, K. Onuki, S. Shimizu, Separation of hydrogen from H2-H2O-HI gaseous mixture using a silica membrane, AIChE J.46 (1) (2000) 92.
    175.G.J. Hwang, K. Onuki, Simulation study on the catalyticdecomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process, J. Membr. Sci.194 (2001) 207.
    176. GabJin Hwang, Jong-Won Kim, Ho-Sang Choi, Kaoru Onuki.Stability of a silica membrane prepared by CVD using and alumina tube as the support tube in the HI-H2O gaseous mixture. Journal of Membrane Science 215 (2003) 293-302.
    177. Chen, W.H., P.C. Hsu, and B.J. Lin. Hydrogen permeation dynamics across a palladium membrane in a varying pressure environment International Journal of Hydrogen Energy; 35(11):5410-5418.
    178. Figueiredo, J.L. and M.F.R. Pereira. The role of surface chemistry in catalysis with carbons. Catalysis Today 2010; 150(1-2):2-7.
    179.孟冠华.活性炭的表面含氧官能团及其对吸附影响的研究进展.离子交换与吸附2007;23(1).
    180. Figueiredo, J.L., M.F.R. Pereira, M.M.A. Freitas, and J.J.M. Orfao. Modification of the surface chemistry of activated carbons. Carbon 1999; 37(9):1379-1389.
    181.Szymanski, G.S., Z. Karpinski, S. Biniak, and A. Swiatkowski. The effect of the gradual thermal decomposition of surface oxygen species on the chemical and catalytic properties of oxidized activated carbon. Carbon 2002; 40(14):2627-2639.
    182.Valente, A., C. Palma, I.M. Fonseca, A.M. Ramos, and J. Vital. Oxidation of pinane over phthalocyanine complexes supported on activated carbon:Effect of the support surface treatment Carbon 2003; 41(14):2793-2803.
    183.Moreno-castilla, C., F. Carrasco-marin, F.J. Maldonado-hodar, and J. Rivera-utrilla. Effects of non-oxidant and oxidant acid treatments on the surface properties of an activated carbon with very low ash content Carbon 1998; 36(1-2):145-151.
    184. Santiago, M., F. Stuber, A. Fortuny, A. Fabregat, and J. Font. Modified activated carbons for catalytic wet air oxidation of phenol. Carbon 2005; 43(10):2134-2145.
    185.Blazewicz, S., A. Swiatkowski, and B.J. Trznadel. The influence of heat treatment on activated carbon structure and porosity. Carbon 1999; 37(4):693-700.
    186.田菊梅.以浓硫酸改性煤基活性炭为固体酸催化合成苯甲醛乙二醇缩醛.化学世界2007;48(11).
    187.Vinke, P., M. Vandereijk, M. Verbree, A.F. Voskamp, and H. Vanbekkum. Modification of the Surfaces of a Gas-Activated Carbon and a Chemically Activated Carbon with Nitric-Acid, Hypochlorite, and Ammonia. Carbon 1994; 32(4):675-686.
    188. Garcia, T., R. Murillo, D. Cazorla-Amoros, A.M. Mastral, and A. Linares-Solano. Role of the activated carbon surface chemistry in the adsorption of phenanthrene. Carbon 2004; 42(8-9):1683-1689.
    189. Gil, A., G delaPuente, and P. Grange. Evidence of textural modifications of an activated carbon on liquid-phase oxidation treatments. Microporous Materials 1997; 12(1-3):51-61.
    190.Lisovskii, A., R. Semiat, and C. Aharoni. Adsorption of sulfur dioxide by active carbon treated by nitric acid:I. Effect of the treatment on adsorption of SO2 and extractability of the acid formed Carbon 1997; 35(10-11):1639-1643.
    191.Moreno-Castilla, C., M.V. Lopez-Ramon, and F. Carrasco-Marin. Changes in surface chemistry of activated carbons by wet oxidation. Carbon 2000; 38(14):1995-2001.
    192.Takaoka, M., H. Yokokawa, and N. Takeda. The effect of treatment of activated carbon by H2O2 or HN03 on the decomposition of pentachlorobenzene. Applied Catalysis B-Environmental 2007; 74(3-4):179-186.
    193.Tsutsumi, K., Y. Matsushima, and A. Matsumoto. Surface Heterogeneity of Modified Active Carbons. Langmuir 1993; 9(10):2665-2669.
    194.Brazhnyk, D.V., Y.P. Zaitsev, I.V. Bacherikova, V.A. Zazhigalov, J. Stoch, and A. Kowal. Oxidation of H2S on activated carbon KAU and influence of the surface state. Applied Catalysis B-Environmental 2007; 70(1-4):557-566.
    195.Chingombe, P., B. Saha, and R.J. Wakeman. Surface modification and characterisation of a coal-based activated carbon. Carbon 2005; 43(15):3132-3143.
    196.El-Hendawy, A.N.A. Influence of HNO3 oxidation on the structure and adsorptive properties of corncob-based activated carbon. Carbon 2003; 41(4):713-722.
    197.Haydar, S., M.A. Ferro-Garcia, J. Rivera-Utrilla, and J.P. Joly. Adsorption of p-nitrophenol on an activated carbon with different oxidations. Carbon 2003; 41(3):387-395.
    198.Lisovskii, A., GE. Shter, R. Semiat, and C. Aharoni. Adsorption of sulfur dioxide by active carbon treated by nitric acid:II. Effect of preheating on the adsorption properties. Carbon 1997; 35(10-11):1645-1648.
    199.Menendez, J.A., E.M. Menendez, M.J. Iglesias, A. Garcia, and J.J. Pis. Modification of the surface chemistry of active carbons by means of microwave-induced treatments. Carbon 1999; 37(7):1115-1121.
    200. Xie, F., J. Phillips, I.F. Silva, M.C. Palma, and J.A. Menendez. Microcalorimetric study of acid sites on acid-pretreated activated carbon. Carbon 2000; 38(5):691-700.
    201. Lee, Y.W., J.W. Park, S.J. Jun, D.K. Choi, and J.E. Yie. NOx adsorption-temperature programmed desorption and surface molecular ions distribution by activated carbon with chemical modification. Carbon 2004; 42(1):59-69.
    202. Lee, Y.W., D.K. Choi, and J.W. Park. Performance of fixed-bed KOH impregnated activated carbon adsorber for NO and NO2 removal in the presence of oxygen. Carbon 2002; 40(9):1409-1417.
    203.Boudou, J.P., M. Chehimi, E. Broniek, T. Siemieniewska, and J. Bimer. Adsorption of H2S or SO2 on an activated carbon cloth modified by ammonia treatment Carbon 2003; 41(10): 1999-2007.
    204. Franz, M., H.A. Arafat, and N.G. Pinto. Effect of chemical surface heterogeneity on the adsorption mechanism of dissolved aromatics on activated carbon. Carbon 2000; 38(13): 1807-1819.
    205. Velasquez, J.D.D., L.A.C. Suarez, and J.L. Figueiredo. Oxidative dehydrogenation of isobutane over activated carbon catalysts. Applied Catalysis a-General 2006; 311:51-57.
    206.于化江.高锰酸钾改性活性炭对Au3+的吸附性能研究.河北师范大学学报(自然科学 版);34(3).
    207.田晓燕.高锰酸钾改性煤基活性炭催化合成环己酮乙二醇缩酮.宁夏大学学报(自然科学版)2006;27(4).
    208.Oliveira, L.C.A., C.N. Silva, M.I. Yoshida, and R.M. Lago. The effect of H-2 treatment on the activity of activated carbon for the oxidation of organic contaminants in water and the H2O2 decomposition. Carbon 2004; 42(11):2279-2284.
    209.Calo, J.M., D. CazorlaAmoros, A. LinaresSolano, M.C. RomanMartinez, and C.S.M. DeLecea. The effects of hydrogen on thermal desorption of oxygen surface complexes. Carbon 1997; 35(4):543-554.
    210.Menendez, J.A., J. Phillips, B. Xia, and L.R. Radovic. On the modification and characterization of chemical surface properties of activated carbon:In the search of carbons with stable basic properties. Langmuir 1996; 12(18):4404-4410.
    211.Menendez, J.A., L.R. Radovic, B. Xia, and J. Phillips. Low-temperature generation of basic carbon surfaces by hydrogen spillover. Journal of Physical Chemistry 1996; 100(43): 17243-17248.
    212.Kowalczyk, Z., J. Sentek, S. Jodzis, R. Diduszko, A. Presz, A. Terzyk, Z. Kucharski, and J. Suwalski. Thermally modified active carbon as a support for catalysts for NH3 synthesis. Carbon 1996; 34(3):403-409.
    213.Liu, Q.S., T. Zheng, N. Li, P. Wang, and G. Abulikemu. Modification of bamboo-based activated carbon using microwave radiation and its effects on the adsorption of methylene blue. Applied Surface Science 2010; 256(10):3309-3315.
    214.叶平伟.微波加热对活性炭表面性质的影响.炭素技术2004;23(2).
    215.蒋文举.微波加热对活性炭表面基团及吸附性能的影响.林产化学与工业2003;23(1).
    216.蒋文举.微波处理对活性炭孔隙结构的影响.林产化学与工业2004;24(1).
    217.杨斌武.微波改性活性炭及其脱硫性能研究.兰州交通大学学报2006;25(4).
    218.陈仁辉.活性炭灰分的化学去除.山西化工1997(02).
    219.陈仁辉.煤基活性炭的化学去灰.炭素技术1999(4).
    220.张军.煤质活性炭脱灰工艺的研究进展.煤化工2007;35(2).
    221.单晓梅.氧化法改性煤基活性炭和椰壳活性炭的研究.中国矿业大学学报2003;32(6).
    222.白宗庆.酸处理对活性炭性质及其催化裂解甲烷制氢性能的影响.中国矿业大学学报2006;35(2).
    223.高冬梅.负载型钌催化剂在化工中的应用.浙江化工2004;35(1).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700