用户名: 密码: 验证码:
热化学硫碘制氢中Bunsen反应特性基础研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氢气作为一种清洁高效的二次能源载体,不仅能满足现阶段的低碳发展需求,也能在未来能源格局中发挥关键性的作用。大规模、高效和低成本的制氢技术是发展氢能经济的基础,从水中制取氢气则被认为是最理想的选择。其中,热化学硫碘循环水分解制氢由于具有热效率高、匹配热源广泛、反应条件温和、易于实现工业化应用等优点获得了集中的关注,进而展开了广泛深入的研究。硫碘循环系统主要包括以下三个化学反应:
     Bunsen反应:SO2+I2+2H2O→2HI+H2SO4
     H2SO4分解反应H2SO4→H2O+SO2+1/2O2
     HI分解反应2HI→I2+H2
     Bunsen反应是硫碘循环系统的起始和关键步骤,主要涉及液相分层特性、副反应发生、液相溶液净化和气液固多相反应等若干研究内容,这些研究工作与闭路循环运行技术、系统热效率、产氢规模等关键科学问题息息相关。
     利用FactSage软件从热力学角度探讨了反应物比例、温度和压力等参数对Bunsen反应及两相溶液副反应的影响。在过量碘和水时,Bunsen反应能自发放热进行,增加碘量和水量有利于Bunsen反应的正向进行,增加压力有利于Bunsen反应在液相中进行。增加碘量、水量和压力都能明显抑制两相溶液副反应的发生,T≤360K时,常压下控制反应物比例能保证副反应基本不发生。H2SO4相溶液主要发生S和SO2形成副反应,HIx相溶液主要发生SO2、S和H2S形成副反应,但SO2和S形成副反应相比H2S形成副反应是占据主导地位的副反应。
     通过过量碘法研究了碘量、水量和温度对于H2SO4-HI-I2-H2O四元混合溶液分层特性的影响。形成液相分层允许加入的碘量范围随着温度升高而变大。增加碘量和温度能改善液相溶液的分层特性,而增加水量却不利于两相溶液的纯化。当H2SO4/HI/H2O摩尔比为1/2/12时,在2.45≤I2/H2SO4摩尔比<3.99结合T≥345K时,HI恒沸比率大于0.156,此操作条件范围能获得HI超恒沸溶液。
     探讨了碘量、水量和温度对于H2SO4和HI,两相溶液Bunsen副反应发生的影响。H2SO4相溶液发生的副反应相比HIx相溶液更为剧烈和快速。较低温度和较多水量促进了Bunsen逆反应的发生,较高温度和较多碘量促进了S和H2S形成副反应的发生。增加碘量和水量能同时抑制两相溶液中Bunsen副反应的发生,而提高反应温度,促进了两相溶液中Bunsen副反应的发生。
     利用釜式反应装置,研究了S02流量、S02浓度、反应温度、碘量和水量等操作条件对于Bunsen反应的影响。S02流量和浓度基本上不影响SO2在Bunsen反应中转化为H2SO4,提高反应温度减少了S02平衡转化率,增加碘量或者水量都能促进Bunsen反应的正向进行,从而得到了更高的S02转化率。增加S02流量能提高表观反应速率,但基本不影响平衡组分浓度。初始S02浓度变化对整个反应的动力学过程和热力学平衡结果基本不产生影响。增加反应温度提高了表观反应速率,但不利于反应正向进行。初始碘量越大,表观反应速率越大,分层现象出现的越早,反应平衡时溶液分层特性越好。过量水的引入不利于反应的动力学过程,也不利于液相平衡分层特性。增加碘量或者减少水量能抑制H2S形成副反应的发生。综合考虑Bunsen反应热力学平衡特性、动力学过程和抑制副反应发生,进口S02摩尔分数≥0.120结合初始12/H20摩尔比>_0.284是优化的工况范围。最后基于实验结果和合理假设,建立了Bunsen反应动力学模型。复合Bunsen反应主要由基元反应SO2+I2+2H2O→SO42-+2I-+4H+和12+I-(?)I3-控制,其活化能分别为9.212kJ mol-1和23.513kJ mol-1,频率因子分别为2.620mol-1kg min-1和43.904mol-1kg min-1.
     利用电化学Bunsen反应实验研究了电流密度和温度对两极溶液浓度的影响,记录了电池电压随时间的变化,对反应前后的质子交换膜进行了扫描电镜(SEM)微观表征,通过质子传递数t+和水渗透系数β等参数描述了阴极液HI的浓缩程度,最终计算得到了不同条件的电流效率。增大电流密度,促进了两极溶液电解反应的进行,不利于质子的传递,却能抑制水的渗透。提高反应温度不利于两极溶液电解反应的进行,却能促进质子的传递,还能抑制水的渗透。当电流密度为5A/dm2时,质子传递数t+大于0.9,阳极和阴极电流效率ηa和ηc均大于90%。
Hydrogen is a promising secondary energy carrier due to its clean and high-efficient characteristics. It not only meets the demand of the present low-carbon development, but also plays an important role in the energy pattern of the future. The large-scale, high-efficient and low-cost hydrogen production technology is expected to develop a hydrogen energy system. The production of hydrogen from water is considered the best choice. Among these methods, the sulfur-iodine (SI or IS) thermochemical water-splitting cycle has attracted the much interest in terms of its efficiency, heat source and cost. The SI cycle is based on integration of the following three main reactions in a loop.
     Bunsen reaction:SO2+I2+2H2O→290-390K2HI+H2SO4
     H2SO4decomposition reaction:H2SO4→970-1270KH2O+SO2+1/2O2
     HI decomposition reaction:2HI→570-770KI2+H2
     Bunsen reaction is an initial and crucial step in the SI cycle, which involves the liquid-liquid phase separation characteristics, occurrence of side reaction, purification of the aqueous acid phases and gas-liquid-solid multiphase reaction. These are highly sensitive to the establishment of a closed-cycle operation technology, improvement of the process thermal efficiency, and scale up of hydrogen production.
     The effects of the reactant composition, temperature and pressure on the Bunsen reaction and side reaction of both liquid phases were evaluated according to the thermodynamic property using the simulation software FactSage. The excess of iodine and water makes the Bunsen reaction thermodynamically favorable. The reaction equilibrium shifts toward the right hand by increasing the iodine or water content. An increase in the pressure keeps the reaction in the state of liquid. The occurrence of side reaction in both liquid phases is obviously stopped by increasing the iodine or water content or pressure. There is no side reaction existence within an appropriate range of the reactant composition at an atmospheric pressure when the reaction temperature is less than360K. The sulfur and sulfur dioxide formation side reactions occur obviously in the H2SO4phase, whereas the occurrence of the sulfur, sulfur dioxide and hydrogen sulfide formation side reactions is predominant in the HIx phase.
     A series of experiments were conducted to investigate the separation characteristics of liquid-liquid phase in the H2SO4/HI/I2/H2O quaternary solution produced by Bunsen reaction. The effects of solution composition in the feed and operating temperature on the separation characteristics were analyzed to determine the preferable operating conditions in the Bunsen section. The allowable bound of iodine content for liquid-liquid phase separation is widened in the temperature range of291-358K. The increases in both of the iodine content and the operating temperature improve the separation characteristics of liquid-liquid phase when the occurrence of secondary reactions is neglected. The separation characteristics are worsened with the increase in the water content. Over-azeotropic HI concentration is obtained in the optimal operating conditions of temperature range (345-358K) and I2/H2SO4molar ratio (2.45~3.99).
     A series of experimental studies were performed to investigate the occurrence of side reactions in both the H2SO4and HIx phases from the H2SO4/HI/I2/H2O quaternary system within a constant temperature range of323-363K. The effects of iodine content, water content and reaction temperature on the side reactions were evaluated. An increase in the reaction temperature promotes the side reactions. However, they are prevented as the iodine or water content increases. The occurrence of side reactions is faster in kinetics and more intense in the H2SO4phase than that in the HIx phase. The sulfur or hydrogen sulfide formation reaction or the reverse Bunsen reaction is validated under certain conditions.
     A series of experimental runs were performed by feeding the gas mixture SO2/N2in an iodine/water medium in the temperature range of336-358K. The effects of SO2flow rate, SO2mole fraction, reaction temperature, iodine content and water content were studied. The SO2flow rate and SO2mole fraction have little influence on the SO2conversion ratio. The efficiency of SO2conversion into H2SO4increases with the amount of I2or H2O increase. The increasing reaction temperature impedes SO2conversion into H2SO4. The SO2mole fraction little influences the variations of the composition of the H2SO4phase. Increasing the reaction temperature enhances the reaction rate, whereas the reaction equilibrium shifts toward the left hand. An increasing amount of iodine and a decreasing amount of water in the medium both promote the resulting solution splitting and reaction kinetic rate, and then improve the separation characteristics of iodine and sulfur species in each of the two liquid phases produced from Bunsen reaction. H2S formation side reaction is prevented by increasing the initial iodine content and lowering the initial water content. Inlet SO2mole fraction exceeding0.12coupled with I2/H2O molar ratio exceeding0.284is chosen as the optimal operating parameters for Bunsen reaction. A kinetic model has been developed to fit to the experimental data obtained in a semi-batch reactor. A good fitting can be observed for each experiment, which discloses the overall kinetic mechanism of the complex Bunsen reaction. The complex Bunsen reaction is controlled by the elementary reactions SO2+I2+2H2O→k1SO42-+2I-+4H+and I2+I-→k2I3-with apparent activation energies of9.212kJ mol-1and23.513kJ mol"1and frequency factors of2.620mol-1kg min-1and43.904mol-1kg min-1, respectively.
     An alternative way for carrying out Bunsen reaction in an electrochemical cell with the potential to reduce the excesses of both iodine and water has been proposed to replace the traditional direct contact mode. The effects of the current density and reaction temperature on the performance of the electrochemical cell were investigated. The proton exchange membrane was analyzed by the scanning electron microscope (SEM). HI concentration in catholyte is characterized by the transport number of proton (t+) and ratio of permeated quantities of water to proton (β). The current efficiency is calculated under the different operating conditions. Increasing the current density drives the electrolysis reaction in both of the anolyte and catholyte. The transport number of proton and ratio of permeated quantities of water to proton are reduced with the increase in the current density. Increasing the reaction temperature prevents the electrolysis reaction in both of the anolyte and catholyte. The transport number of proton is increased, whereas ratio of permeated quantities of water to proton is reduced with the reaction temperature increase. When the current density is5A/dm2, the transport number of proton and the current efficiency in both of the anolyte and catholyte (ηa and ηc) are more than0.9and90%, respectively.
引文
[I]SHERIF S A, BARBIR F, VEZIROGLU T N. Wind energy and the hydrogen economy—review of the technology [J]. Solar Energy,2005,78 (5):647-660.
    [2]Prospects for Hydrogen and Fuel Cells. International Energy Agency. December 2005.
    [3]A National Vision of America's Transition to a Hydrogen Economy-to 2030 and beyond. U.S. Department of Energy. February 2002.
    [4]National Hydrogen Energy Roadmap. U.S. Department of Energy. November 2002.
    [5]Hydrogen Posture Plan-An Integrated Research, Development and Demonstration Plan. U.S. Department of Energy. February 2004.
    [6]ANONYMOUS. Canada commits C$215m to extend H2 leadership [J]. Fuel Cells Bulletin,2003,2003 (11):1.
    [7]SOLOMON B D, BANERJEE A. A global survey of hydrogen energy research, development and policy [J]. Energy Policy,2006,34 (7):781-792.
    [8]SAKINTUNA B, LAMARI-DARKRIM F, HIRSCHER M. Metal hydride materials for solid hydrogen storage:A review [J]. International Journal of Hydrogen Energy,2007,32 (9):1121-1140.
    [9]ROSS D K. Hydrogen storage:The major technological barrier to the development of hydrogen fuel cell cars [J]. Vacuum,2006,80 (10):1084-1089.
    [10]DELANGHE H, MULDUR U. Ex-ante impact assessment of research programmes:The experience of the European Union's 7th Framework Programme [J]. Science and Public Policy,2007,34 (3):169-183.
    [11]SILVA J S D. Future internet research:The EU framework [J]. SIGCOMM Comput Commun Rev,2007,37 (2):85-88.
    [12]SAKATA K, MIZUTANI E, FUKUDA K. A review of topics in hydrogen-related innovative materials in Japan [J]. Journal of Power Sources,2006,159 (1):100-106.
    [13]MITSUGI C, HARUMI A, KENZO F. WE-NET:Japanese hydrogen program [J]. International Journal of Hydrogen Energy,1998,23 (3):159-165.
    [14]HIJIKATA T. Research and development of international clean energy network using hydrogen energy (WE-NET) [J]. International Journal of Hydrogen Energy, 2002,27(2):115-129.
    [15]PULSE A. Korea planning to develop hydrogen energy technology [J]. Fuel Cell Today,2004.
    [16]KIM D, CHO E A, HONG S-A, et al. Recent progress in passive direct methanol fuel cells at KIST [J]. Journal of Power Sources,2004,130 (1-2):172-177.
    [17]毛宗强.氢能将成低碳时代“新能源宠儿”[J].WTO经济导刊,2010,(02):40-42.
    [18]张轲,刘述丽,刘明明,等.氢能的研究进展[J].材料导报,2011,25(5):116-119.
    [19]毛宗强.我国发展氢能的战略建议—从“浅绿”到“深绿”(上)[J].太阳能,2009,(01):6-8.
    [20]毛宗强.我国发展氢能的战略建议—从“浅绿”到“深绿”(下)[J].太阳能,2009,(02):6-9.
    [21]马涛.国外氢能源经济发展现状及对我国的启示[J].节能技术,2008,26(04):324-327+346.
    [22]祁威,张蕾,张磊,等.煤催化热解制氢的研究进展[J].中国煤炭,2007,33(10):57-58.
    [23]王峰,田文栋,肖云汉.煤直接制氢实验研究[J].中国电机工程学报,2007,27(32):40-45.
    [24]李永亮,郭烈锦,张明颛,等.高含量煤在超临界水中气化制氢的实验研究[J].西安交通大学学报,2008,42(07):919-924.
    [25]赵俊学,袁媛,李惠娟,等.低变质煤富氧低温干馏试验研究[J].燃料与化工,2012,43(01):14-16.
    [26]ZIOCK H J, ANTHONY E J, BROSHA E L, et al. Technical progress in the development of zero emission coal technologies [M].2002.
    [27]SLOWINSKI G. Some technical issues of zero-emission coal technology [J]. International Journal of Hydrogen Energy,2006,31 (8):1091-1102.
    [28]Dowdy T E. Coal gasification and hydrogen production system and method:U.S. Patent 5,955,039[P].1999-9-21.
    [29]LIN S, HARADA M, SUZUKI Y, et al. Hydrogen production from coal by separating carbon dioxide during gasification [J]. Fuel,2002,81 (16):2079-2085.
    [30]LIN S, HARADA M, SUZUKI Y, et al. Continuous experiment regarding hydrogen production by coal/CaO reaction with steam (I) gas products [J]. Fuel,2004, 83 (7):869-874.
    [31]肖云汉.煤制氢零排放系统[J].工程热物理学报,2001,22(1):13-15.
    [32]王智化,王勤辉,骆仲泱,等.新型煤气化燃烧集成制氢系统的热力学研究[J].中国电机工程学报,2005,25(12):91-97.
    [33]关键,王勤辉,骆仲泱,等.新型近零排放煤气化燃烧利用系统的优化及性能预测[J].中国电机工程学报,2006,26(9):7-13.
    [34]李振山,蔡宁生,黄煜煜.吸收增强式甲烷水蒸气重整制氢实验研究[J].燃料化学学报,2007,35(1):79-84.
    [35]DING Y, ALPAY E. Adsorption-enhanced steam-methane reforming [J]. Chemical Engineering Science,2000,55 (18):3929-3940.
    [36]VERNON P D, GREEN M L, CHEETHAM A K, et al. Partial oxidation of methane to synthesis gas [J]. Catalysis Letters,1990,6 (2):181-186.
    [37]AYABE S, OMOTO H, UTAKA T, et al. Catalytic autothermal reforming of methane and propane over supported metal catalysts [J]. Applied Catalysis A:General, 2003,241 (1):261-269.
    [38]SHAH N, PANJALA D, HUFFMAN G P. Hydrogen production by catalytic decomposition of methane [J]. Energy & Fuels,2001,15 (6):1528-1534.
    [39]史云伟,刘瑾.天然气制氢工艺技术研究进展[J].化工时刊,2009,23(3):59-61.
    [40]邢定峰,林景仁,蒲浩.天然气催化裂解制氢[J].石油规划设计,2010,21(01):21-24.
    [41]周明,许庆利,蓝平,等.生物质制氢研究进展[J].吉林化工学院学报,2009,26(4):35-39.
    [42]于洁,肖宏.生物质制氢技术研究进展[J].中国生物工程杂志,2006,26(05):107-112.
    [43]陈冠益,高文学,马文超.生物质制氢技术的研究现状与展望[J].太阳能学报,2006,27(12):1276-1284.
    [44]NI M, LEUNG D Y, LEUNG M K, et al. An overview of hydrogen production from biomass [J]. Fuel processing technology,2006,87 (5):461-472.
    [45]WANG D, CZERNIK S, MONTANE D, et al. Biomass to hydrogen via fast pyrolysis and catalytic steam reforming of the pyrolysis oil or its fractions [J]. Industrial & engineering chemistry research,1997,36 (5):1507-1518.
    [46]RAPAGNA S, JAND N, FOSCOLO P. Catalytic gasification of biomass to produce hydrogen rich gas [J]. International Journal of Hydrogen Energy,1998,23 (7): 551-557.
    [47]CALZAVARA Y, JOUSSOT-DUBIEN C, BOISSONNET G, et al. Evaluation of biomass gasification in supercritical water process for hydrogen production [J]. Energy Conversion and Management,2005,46 (4):615-631.
    [48]TANG L, HUANG H. Plasma pyrolysis of biomass for production of syngas and carbon adsorbent [J]. Energy & fuels,2005,19 (3):1174-1178.
    [49]TRANE R, DAHL S, SKJ TH-RASMUSSEN M, et al. Catalytic steam reforming of bio-oil [J]. International Journal of Hydrogen Energy,2012,37 (8):6447-6472.
    [50]严晓娟,陈朋,广忠勇,等.微生物制氢技术研究进展[J].生物技术,2011,21(6):91-96.
    [51]杨晋晖.光合微生物制氢菌种连续培养系统及其装置研究[D]:河南农业大学,2011.
    [52]BARBOSA M J, ROCHA J, TRAMPER J, et al. Acetate as a carbon source for hydrogen production by photosynthetic bacteria [J]. Journal of biotechnology,2001, 85 (1):25-33.
    [53]BASAK N, DAS D. The prospect of purple non-sulfur (PNS) photosynthetic bacteria for hydrogen production:the present state of the art [J]. World Journal of Microbiology and Biotechnology,2007,23 (1):31-42.
    [54]IVY J:National Renewable Energy Lab., Golden, CO (US),2004.
    [55]ONDA K, KYAKUNO T, HATTORI K, et al. Prediction of production power for high-pressure hydrogen by high-pressure water electrolysis [J]. Journal of power sources,2004,132 (1):64-70.
    [56]STOJIC D L, MARCETA M P, SOVILJ S P, et al. Hydrogen generation from water electrolysis-possibilities of energy saving [J]. Journal of Power Sources,2003, 118(1):315-319.
    [57]DOMINEY R N, LEWIS N S, BRUCE J A, et al. Improvement of photoelectrochemical hydrogen generation by surface modification of p-type silicon semiconductor photocathodes [J]. Journal of the American Chemical Society,1982, 104 (2):467-482.
    [58]GLASSCOCK J A, BARNES P R, PLUMB I C, et al. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si [J]. The Journal of Physical Chemistry C,2007,111 (44): 16477-16488.
    [59]NI M, LEUNG M K, LEUNG D Y, et al. A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production [J]. Renewable and Sustainable Energy Reviews,2007,11 (3):401-425.
    [60]FUNK J E. Thermochemical hydrogen production:past and present [J]. International Journal of Hydrogen Energy,2001,26 (3):185-190.
    [61]KOGAN A. Direct solar thermal splitting of water and on site separation of the products I. Theoretical evaluation of hydrogen yield [J]. International Journal of Hydrogen Energy,1997,22 (5):481-486.
    [62]FUNK J, REINSTROM M. Final report energy depot electrolysis systems study [J]. Allison Division, General Motors, EDR-3714,1964,2 (Supplement A).
    [63]Knoche KF. Thermodynamic aspects of coupled chemical reactions. Round Table on Direct Hydrogen Production, Ispra, Italy,1969.
    [64]Gregory DP et al. A hydrogen energy system. Catalogue No. L21173, American Gas Association,1972.
    [65]Barnert H. Water decomposition by nuclear means. Atomwirt Atomtech 1972;18(8-9):408-410.
    [66]Beghi G. Non-electric application of nuclear energy:hydrogen production. CEC Annual Report,1973.
    [67]Booth LA, Balcomb JD. Nuclear heat and hydrogen in future energy utilization. Los Alamos, New Mexico, USA:Los Alamos Science Laboratory,1973, p.28.
    [68]Hardy-Grena C. Decomposition thermique de l'eau a travers des cycles chimiques de la famille Fe-CI2. Graz de France,1973.
    [69]MARCHETTI C. Hydrogen and energy [M]. Chemical Economy Research Institute,1973.
    [70]MICHEL J:Oak Ridge National Lab., Tenn.(USA),1973.
    [71]Ramsey WJ. Process for thermochemical decomposition of water using process heat to produce hydrogen. Livermore, CA, USA:Lawrence Livermore Laboratory University of California,1973. p.17.
    [72]Souriau D. Method and device for the use of high temperature heat-energy, in particular of nuclear origin. Gaz de France, Patent No.3761352,1973.
    [73]KODAMA T, GOKON N. Thermochernical cycles for high-temperature solar hydrogen production [J]. Chemical Reviews,2007,107 4048-4077.
    [74]ONUKI K, KUBO S, TERADA A, et al. Thermochemical water-splitting cycle using iodine and sulfur [J]. Energy & Environmental Science,2009,2 (5):491-497.
    [75]LIBERATORE R, LANCHI M, GIACONIA A, et al. Energy and economic assessment of an industrial plant for the hydrogen production by water-splitting through the sulfur-iodine thermochemical cycle powered by concentrated solar energy [J]. International Journal of Hydrogen Energy,2012,37 (12):9550-9565.
    [76]KUBO S, NAKAJIMA H, KASAHARA S, et al. A demonstration study on a closed-cycle hydrogen production by the thermochemical water-splitting iodine-sulfur process [J]. Nuclear Engineering and Design,2004,233 (1-3):347-354.
    [77]AOCHI A, TADOKORO T, YOSHIDA K, et al. Economical and technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant [J]. International Journal of Hydrogen Energy,1989,14 (7):421-429.
    [78]TADOKORO Y, KAJIYAMA T, YAMAGUCHI T, et al. Technical evaluation of UT-3 thermochemical hydrogen production process for an industrial scale plant [J]. International journal of hydrogen energy,1997,22 (1):49-56.
    [79]SAKURAI M, BILGEN E, TSUTSUMI A, et al. Solar UT-3 thermochemical cycle for hydrogen production [J]. Solar Energy,1996,57 (1):51-58.
    [80]NATERER G F, SUPPIAH S, STOLBERG L, et al. Progress of international hydrogen production network for the thermochemical Cu-Cl cycle [J]. International Journal of Hydrogen Energy,2013,38 (2):740-759.
    [81]RATLAMWALA T A H, DINCER I. Energy and exergy analyses of a Cu-Cl cycle based integrated system for hydrogen production [J]. Chemical Engineering Science,2012,84 (0):564-573.
    [82]NATERER G, SUPPIAH S, STOLBERG L, et al. Clean hydrogen production with the Cu-Cl cycle-Progress of international consortium, Ⅰ:Experimental unit operations [J]. International Journal of Hydrogen Energy,2011,36 (24): 15472-15485.
    [83]NATERER G, SUPPIAH S, STOLBERG L, et al. Clean hydrogen production with the Cu-Cl cycle-Progress of international consortium, Ⅱ:Simulations, thermochemical data and materials [J]. International Journal of Hydrogen Energy, 2011,36(24):15486-15501.
    [84]ORHAN M F, DINCER I, ROSEN M A. The oxygen production step of a copper-chlorine thermochemical water decomposition cycle for hydrogen production: Energy and exergy analyses [J]. Chemical Engineering Science,2009,64 (5): 860-869.
    [85]CHUEH W C, FALTER C, ABBOTT M, et al. High-flux solar-driven thermochemical dissociation of CO2 and H2O using nonstoichiometric ceria [J]. Science,2010,330 (6012):1797-1801.
    [86]MURUGAN A, THURSFIELD A, METCALFE I S. A chemical looping process for hydrogen production using iron-containing perovskites [J]. Energy & Environmental Science,2011,4 (11):4639-4649.
    [87]VENSTROM L J, DAVIDSON J H. Splitting water and carbon dioxide via the heterogeneous oxidation of zinc vapor:thermodynamic considerations [J]. ASME Conference Proceedings,2010,2010 (43956):79-88.
    [88]SIEGEL N P, MILLER J E, ERMANOSKI I, et al. Factors affecting the efficiency of solar driven metal oxide thermochemical cycles [J]. Industrial & Engineering Chemistry Research,2013,52 (9):3276-3286.
    [89]GOKON N, KONDO K, HATAMACHI T, et al. Oxygen-releasing step of nickel ferrite based on Rietveld analysis for thermochemical two-step water-splitting [J]. International Journal of Hydrogen Energy,2013,38 (12):4935-4944.
    [90]M LLER R, STEINFELD A. H2O-splitting thermochemical cycle based on ZnO/Zn-redox:Quenching the effluents from the ZnO dissociation [J]. Chemical Engineering Science,2008,63 (1):217-227.
    [91]刘子祥,吕可青.关于热化学法闭路循环制氢的热力学(Ⅰ)[J].吉林工学院学报,1982,(03):14-21.
    [92]刘子祥,吕可青.关于热化学法闭路循环制氢的热力学(Ⅱ)[J].吉林工学院学报,1983,(04):38-46.
    [93]张龙,李志岩,彭承麟.一种新的热化学闭路循环制氢方法[J].吉林工学院学报,1989,10(01):27-34.
    [94]杨洁,高伟民,孙雅贤.热化学法分解水制氢[J].吉林工学院学报,1994,15(04):41-47.
    [95]张龙,高伟民,李海东.S—I—i开路循环水分解制氢的反应条件及动力学研究[J].吉林工学院学报:自然科学版,1994,15(1):54-59.
    [96]于波,张平,张磊,等.活性氧缺位铁酸铜的制备及其在热化学分解水制氢中的应用[J].中国科学:B辑,2008,38(6):550-556.
    [97]WANG L J, HAN Q, LI D C, et al. Comparisons of Pt catalysts supported on active carbon, carbon molecular sieve, carbon nanotubes and graphite for HI decomposition at different temperature [J]. International Journal of Hydrogen Energy, 2013,38(1):109-116.
    [98]GUO H F, ZHANG P, LAN S R, et al. Study on the phase separation characteristics of HI-I2-H2SO4-H2O mixture at 20'C [J]. Fluid Phase Equilibria, 2012,324(0):33-40.
    [99]ZHANG Y W, ZHOU J H, WANG Z H, et al. Catalytic thermal decomposition of hydrogen iodide in sulfur-iodine cycle for hydrogen production [J]. Energy & Fuels, 2008,22(2):1227-1232.
    [100]ZHU Q Q, ZHANG Y W, ZHOU C, et al. Optimization of liquid-liquid phase separation characteristics in the Bunsen section of the sulfur-iodine hydrogen production process [J]. International Journal of Hydrogen Energy,2012,37 (8): 6407-6414.
    [101]ZHANG Y W, ZHOU Z J, WANG J W, et al. Thermal efficiency evaluation of the thermochemical H2S splitting cycle for the hydrogen and sulfur production [J]. International Journal of Hydrogen Energy,2013,38 (2):769-776.
    [102]ZHANG Y W, LIU J B, LIN X D, et al. Detailed kinetic modeling of homogeneous HI decomposition for hydrogen production, part Ⅰ:Effect of H2O on HI decomposition [J]. International Journal of Hydrogen Energy,2012,37 (22): 16864-16870.
    [103]ZHANG Y W, LIU J B, LIN X D, et al. Detailed kinetic modeling of homogeneous HI decomposition for hydrogen production—Part Ⅱ:Effect of I2 on HI decomposition [J]. International Journal of Hydrogen Energy,2013,38 (11): 4308-4314.
    [104]ZHOU J H, ZHANG Y W, WANG Z H, et al. Thermal efficiency evaluation of open-loop SI thermochemical cycle for the production of hydrogen, sulfuric acid and electric power [J]. International Journal of Hydrogen Energy,2007,32 (5):567-575.
    [105]ZHANG Y W, ZHU Q Q, LIN X D, et al. A novel thermochemical cycle for the dissociation of CO2 and H2O using sustainable energy sources [J]. Applied Energy, 2013,108(0):1-7.
    [106]NAKAMURA T. Hydrogen production from water utilizing solar heat at high temperatures [J]. Solar Energy,1977,19 (5):467-475.
    [107]CHARVIN P, ST PHANE A, FLORENT L, et al. Analysis of solar chemical processes for hydrogen production from water splitting thermochemical cycles [J]. Energy conversion and management,2008,49 (6):1547-1556.
    [108]LUNDBERG M. Model calculations on some feasible two-step water splitting processes [J]. International journal of hydro gen energy,1993,18 (5):369-376.
    [109]STEINFELD A. Solar hydrogen production via a two-step water-splitting thermochemical cycle based on Zn/ZnO redox reactions [J]. International Journal of Hydrogen Energy,2002,27 (6):611-619.
    [110]ABANADES S, FLAMANT G. Thermochemical hydrogen production from a two-step solar-driven water-splitting cycle based on cerium oxides [J]. Solar Energy, 2006,80(12):1611-1623.
    [111]ABANADES S, CHARVIN P, LEMONT F, et al. Novel two-step SnO2/SnO water-splitting cycle for solar thermochemical production of hydrogen [J]. International Journal of Hydrogen Energy,2008,33 (21):6021-6030.
    [112]TAMAURA Y, KOJIMA N, HASEGAWA N, et al. Stoichiometric studies of H2 generation reaction for H2O/Zn/Fe3O4 system [J]. International Journal of Hydrogen Energy,2001,26 (9):917-922.
    [113]KOJIMA M, SANO T, WADA Y, et al. Thermochemical decomposition of H2O to H2 on cation-excess ferrite [J]. Journal of Physics and Chemistry of Solids,1996, 57(11):1757-1763.
    [114]FRESNO F, FERN NDEZ-SAAVEDRA R, BEL N G MEZ-MANCEBO M, et al. Solar hydrogen production by two-step thermochemical cycles:Evaluation of the activity of commercial ferrites [J]. International Journal of Hydrogen Energy,2009, 34 (7):2918-2924.
    [115]KANEKO H, MIURA T, ISHIHARA H, et al. Reactive ceramics of CeO2-MOx (M=Mn, Fe, Ni, Cu) for H2 generation by two-step water splitting using concentrated solar thermal energy [J]. Energy,2007,32 (5):656-663.
    [116]KANEKO H, HOSOKAWA Y, GOKON N, et al. Enhancement of O2-releasing step with Fe2O3 in the water splitting by MnFe2O4-Na2CO3 system [J]. Journal of Physics and Chemistry of Solids,2001,62 (7):1341-1348.
    [117]SERALESSANDRI L, BELLUSCI M, PADELLA F, et al. The oxygen-releasing step in the water splitting cycle by MnFe2O4-Na2CO3 system [J]. International Journal of Hydrogen Energy,2009,34 (10):4546-4550.
    [118]DE BENI G, MARCHETTI C. Hydrogen, key to the energy market [J]. Eurospectra,1970,9 (2):46.
    [119]BEGHI G. A decade of research on thermochemical hydrogen at the Joint Research Centre, ISPRA [J]. International journal of hydrogen energy,1986,11 (12): 761-771.
    [120]KNOCHE K F, CREMER H, BREYWISCH D, et al. Experimental and theoretical investigation of thermochemical hydrogen production [J]. International Journal of Hydrogen Energy,1978,3 (2):209-216.
    [121]YOSHIDA K, KAMEYAMA H, AOCHI T, et al. A simulation study of the UT-3 thermochemical hydrogen production process [J]. International Journal of Hydrogen Energy,1990,15(3):171-178.
    [122]SAKURAI M, AIHARA M, MIYAKE N, et al. Test of one-loop flow scheme for the UT-3 thermochemical hydrogen production process [J]. International journal of hydrogen energy,1992,17 (8):587-592.
    [123]VAN VELZEN D. Desulphurization and denoxing of waste gases producing hydrogen as a by-product; proceedings of the Proc 2nd IEA Technical Workshop on Hydrogen Production, Document HUF-6, Research Center Julich, F,1991 [C].
    [124]CARTY R, CONGER W. A heat penalty and economic analysis of the hybrid sulfuric acid process [J]. International Journal of Hydrogen Energy,1980,5 (1):7-20.
    [125]DUIGOU A L, BORGARD J-M, LAROUSSE B, et al. HYTHEC:An EC funded search for a long term massive hydrogen production route using solar and nuclear technologies [J]. International Journal of Hydrogen Energy,2007,32 (10-11): 1516-1529.
    [126]WEIRICH W, KNOCHE K F, BEHR F, et al. Thermochemical processes for water splitting — Status and outlook [J]. Nuclear Engineering and Design,1984,78 (2):285-291.
    [127]BROWN L C, BESENBRUCH G E, LENTSCH R, et al. High efficiency generation of hydrogen fuels using nuclear power [J]. General Atomics Report GA-A24285,2003.
    [128]Thermochemical water-splitting cycle, bench-scale investigations, and process engineering. Final report, February 1977-December 31,1981.
    [129]NAKAJIMA H, SAKURAI M, IKENOYA K, et al. A study on a closed-cycle hydrogen production by thermochemical water-splitting IS process; proceedings of the Proc Seventh Intl Conf on Nuclear Engineering (ICONE-7), Tokyo, F,1999 [C].
    [130]NOMURA M, KASAHARA S, OKUDA H, et al. Evaluation of the IS process featuring membrane techniques by total thermal efficiency [J]. International Journal of Hydrogen Energy,2005,30 (13-14):1465-1473.
    [131]NOMURA M, NAKAO S I, OKUDA H, et al. Development of an electrochemical cell for efficient hydrogen production through the IS process [J]. Aiche Journal,2004,50 (8):1991-1998.
    [132]KUBO S, KASAHARA S, OKUDA H, et al. A pilot test plan of the thermochemical water-splitting iodine-sulfur process [J]. Nuclear Engineering and Design,2004,233 (1-3):355-362.
    [133]GOLDSTEIN S, BORGARD J M, VITART X. Upper bound and best estimate of the efficiency of the iodine sulphur cycle [J]. International Journal of Hydrogen Energy,2005,30 (6):619-626.
    [134]LEYBROS J, GILARDI T, SATURNIN A, et al. Plant sizing and evaluation of hydrogen production costs from advanced processes coupled to a nuclear heat source. Part I:Sulphur-iodine cycle [J]. International Journal of Hydrogen Energy,2009,35 (3):1008-1018.
    [135]LEE B J, NO H C, YOON H J, et al. An optimal operating window for the Bunsen process in the I-S thermochemical cycle [J]. International Journal of Hydrogen Energy,2008,33 (9):2200-2210.
    [136]LEE B J, NO H C, YOON H J, et al. Development of a flowsheet for iodine-sulfur thermo-chemical cycle based on optimized Bunsen reaction [J]. International Journal of Hydrogen Energy,2009,34 (5):2133-2143.
    [137]SHIN Y, LEE K, KIM Y, et al. A sulfur-iodine flowsheet using precipitation, electrodialysis, and membrane separation to produce hydrogen [J]. International Journal of Hydrogen Energy,2012,37 (21):16604-16614.
    [138]CHANG J, SHIN Y, LEE K, et al. Development of a dynamic simulation code for the sulfur-iodine process coupled to a very high-temperature gas-cooled nuclear reactor [J]. Simulation-Transactions of the Society for Modeling and Simulation International,2013,89 (2):139-155.
    [139]ZHANG P, CHEN S Z, WANG L J, et al. Study on a lab-scale hydrogen production by closed cycle thermo-chemical iodine-sulfur process [J]. International Journal of Hydrogen Energy,2010,35 (19):10166-10172.
    [140]ZHANG P, CHEN S Z, WANG L J, et al. Overview of nuclear hydrogen production research through iodine sulfur process at INET [J]. International Journal of Hydrogen Energy,2010,35 (7):2883-2887.
    [141]张彦威.热化学硫碘开路循环联产氢气和硫酸系统的基础问题研究[D]:浙江大学,2008.
    [142]王智化,杨剑,张彦威,等.热化学硫碘闭路循环制氢的流程模拟[J].太阳能学报,2011,32(6):802-807.
    [143]杨剑,王智化,张彦威,等.热化学硫碘开路循环制氢系统的设计与模拟[J].浙江大学学报(工学版),2011,5016.
    [144]KASAHARA S, KUBO S, HINO R, et al. Flowsheet study of the thermochemical water-splitting iodine-sulfur process for effective hydrogen production [J]. International Journal of Hydrogen Energy,2007,32 (4):489-496.
    [145]VITART X, CARLES P, ANZIEU P. A general survey of the potential and the main issues associated with the sulfur-iodine thermochemical cycle for hydrogen production using nuclear heat [J]. Progress in Nuclear Energy,2008,50 (2-6): 402-410.
    [146]WONG B, BUCKINGHAM R T, BROWN L C, et al. Construction materials development in sulfur-iodine thermochemical water-splitting process for hydrogen production [J]. International Journal of Hydrogen Energy,2007,32 (4):497-504.
    [147]COLETTE MAATOUK S, BRIJOU MOKRANI N, TABARANT M, et al. Study of the miscibility gap in H2SO4/HI/I2/H2O mixtures produced by the Bunsen reaction-Part Ⅰ:Preliminary results at 308K [J]. International Journal of Hydrogen Energy,2009,34 (17):7155-7161.
    [148]SAKURAI M, NAKAJIMA H, ONUKI K, et al. Preliminary process analysis for the closed cycle operation of the iodine-sulfur thermochemical hydrogen production process [J]. International Journal of Hydrogen Energy,1999,24 (7): 603-612.
    [149]SAKURAI M, NAKAJIMA H, ONUKI K, et al. Investigation of 2 liquid phase separation characteristics on the iodine-sulfur thermochemical hydrogen production process [J]. International Journal of Hydrogen Energy,2000,25 (7):605-611.
    [150]GIACONIA A, CAPUTO G, CEROLI A, et al. Experimental study of two phase separation in the Bunsen section of the sulfur-iodine thermochemical cycle [J]. International Journal of Hydrogen Energy,2007,32 (5):531-536.
    [151]YOON H J, NO H C, KIM Y S, et al. Demonstration of the I-S thermochemical cycle feasibility by experimentally validating the over-azeotropic condition in the hydroiodic acid phase of the Bunsen process [J]. International Journal of Hydrogen Energy,2009,34 (19):7939-7948.
    [152]张彦威,周俊虎,陈云,等.热化学硫碘制氢中Bunsen反应分层现象及副反应的实验研究[J].太阳能学报,2009,30(7):996-999.
    [153]HADJ-KALI M K, GERBAUD V, LOVERA P, et al. Bunsen section thermodynamic model for hydrogen production by the sulfur-iodine cycle [J]. International Journal of Hydrogen Energy,2009,34 (16):6625-6635.
    [154]NOMURA M, FUJIWARA S, IKENOYA K, et al. Application of an electrochemical membrane reactor to the thermochemical water splitting IS process for hydrogen production [J]. Journal of Membrane Science,2004,240 (1-2):221-226.
    [155]IMMANUEL V, SHUKLA A. Effect of operating variables on performance of membrane electrolysis cell for carrying out Bunsen reaction of I-S cycle [J]. International Journal of Hydrogen Energy,2012,37 (6):4829-4842.
    [156]GOKUL K U, IMMANUEL V, SANT S, et al. Membrane electrolysis for Bunsen reaction of the SI cycle [J]. Journal of Membrane Science,2011,380 (1-2): 13-20.
    [157]IMMANUEL V, GOKUL K U, SHUKLA A. Membrane electrolysis of Bunsen reaction in the iodine-sulphur process for hydrogen production [J]. International Journal of Hydrogen Energy,2012,37 (4):3595-3601.
    [158]GIACONIA A, CAPUTO G, SAU S, et al. Survey of Bunsen reaction routes to improve the sulfur-iodine thermochemical water-splitting cycle [J]. International Journal of Hydrogen Energy,2009,34 (9):4041-4048.
    [159]DE BENI G, PIERINI G, SPELTA B. The reaction of sulphur dioxide with water and a halogen. The case of iodine:reaction in presence of organic solvents [J]. International Journal of Hydrogen Energy,1980,5 (2):141-149.
    [160]BARBAROSSA V, VANG A G, DIAMANTI M, et al. Chemically enhanced separation of H2SO4/HI mixtures from the Bunsen reaction in the sulfur-iodine thermochemical cycle [J]. Industrial & Engineering Chemistry Research,2009,48 (19):9040-9044.
    [161]AuYeong N. Hydrogen production via a sulfur-sulfur thermochemical water-splitting cycle. PhD Thesis, Oregon State University; 2011.
    [162]WANG H, LE PERSON A, ZHAO X, et al. A low-temperature hydrogen production process based on H2S splitting cycle for sustainable oil sands bitumen upgrading [J]. Fuel Processing Technology,2013,108 (0):55-62.
    [163]TAYLOR M L, ELDER R H, STYRING P, et al. Improved solvation routes for the Bunsen reaction in the sulphur iodine thermochemical cycle:Part Ⅰ-Ionic liquids [J]. International Journal of Hydrogen Energy,2013,38 (4):1765-1774.
    [164]TAYLOR M L, ELDER R H, ALLEN R W K. Improved solvation routes for the Bunsen reaction in the sulphur iodine thermochemical cycle:Part Ⅱ-Molecular solvent properties [J]. International Journal of Hydrogen Energy,2013,38 (4): 1775-1783.
    [165]TAYLOR M L, ELDER R H, ALLEN R W K. Improved solvation routes for the Bunsen reaction in the sulphur iodine thermochemical cycle:Part Ⅲ-Bunsen reaction in molecular solvents [J]. International Journal of Hydrogen Energy,2013,38 (4): 1784-1794.
    [166]SAKURAI M, NAKAJIMA H, AMIR R, et al. Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process [J]. International Journal of Hydrogen Energy,2000,25 (7): 613-619.
    [167]HWANG G J, KIM Y H, PARK C S, et al. Bunsen reaction in IS (Iodine-sulfur) process for the thermochemical hydrogen production; proceedings of the Proceedings, 1th International Hydrogen Energy Congress & Exhibition (IHEC2005), July 13-15, Istanbul, Turkey, F,2005 [C].
    [168]BAI Y, ZHANG P, GUO H F, et al. Purification of sulfuric and hydriodic acids phases in the iodine-sulfur process [J]. Chinese Journal of Chemical Engineering, 2009,17(1):160-166.
    [169]GUO H F, ZHANG P, BAI Y, et al. Continuous purification of H2SO4 and HI phases by packed column in IS process [J]. International Journal of Hydrogen Energy, 2010,35 (7):2836-2839.
    [170]PARISI M, GIACONIA A, SAU S, et al. Bunsen reaction and hydriodic phase purification in the sulfur-iodine process:An experimental investigation [J]. International Journal of Hydrogen Energy,2011,36 (3):2007-2013.
    [171]LANCHI M, LARIA F, LIBERATORE R, et al. HI extraction by H3PO4 in the sulfur-iodine thermochemical water splitting cycle:Composition optimization of the HI/H2O/H3PO4/I2 biphasic quaternary system [J]. International Journal of Hydrogen Energy,2009,34 (15):6120-6128.
    [172]SOW P K, SHUKLA A. A chronopotentiometry based identification of time-varying different transport resistances of electro-electrodialysis cell used for concentration of HIx solution [J]. International Journal of Hydrogen Energy,2013,38 (8):3154-3165.
    [173]CHEN S Z, WANG R L, ZHANG P, et al. HI, concentration by electro-electrodialysis using stacked cells for thermochemical water-splitting IS process [J]. International Journal of Hydrogen Energy,2013,38 (8):3146-3153.
    [174]TANAKA N, YAMAKI T, ASANO M, et al. Effect of temperature on electro-electrodialysis of HI-I2-H2O mixture using ion exchange membranes [J]. Journal of Membrane Science,2012,411-412 (0):99-108.
    [175]HONG S D, KIM J K, KIM B K, et al. Evaluation on the electro-electrodialysis to concentrate HI from HIx solution by using two types of the electrode [J]. International Journal of Hydrogen Energy,2007,32 (12):2005-2009.
    [176]HWANG G J, ONUKI K, NOMURA M, et al. Improvement of the thermochemical water-splitting IS (iodine-sulfur) process by electro-electrodialysis [J]. Journal of Membrane Science,2003,220 (1-2):129-136.
    [177]ONUKI K, HWANG G J, ARIFAL, et al. Electro-electrodialysis of hydriodic acid in the presence of iodine at elevated temperature [J]. Journal of Membrane Science,2001,192(1-2):193-199.
    [178]ONUKI K, NAKAJIMA H, SHIMIZU S. Concentration of HIx solution by electrodialysis [J]. Kagaku Kogaku Ronbunshu,1997,23 (2):289-291.
    [179]BELAISSAOUI B, THERY R, MEYER X M, et al. Vapour reactive distillation process for hydrogen production by HI decomposition from HI-I2-H2O solutions [J]. Chemical Engineering and Processing,2008,47 (3):396-407.
    [180]ELDER R H, BORGARD J M, PRIESTMAN G H, et al. Use of membranes and reactive distillation for the separation of HIV in the sulphur-iodine cycle; proceedings of the Proceedings of the AIChE 2005 Annual meeting, F,2005 [C].
    [181]MURPHY IV J E, O'CONNELL J P. Process simulations of HI decomposition via reactive distillation in the sulfur-iodine cycle for hydrogen manufacture [J]. International Journal of Hydrogen Energy,2012,37 (5):4002-4011.
    [182]KRACEK F. Solubilities in the system water-iodine to 200 [J]. The Journal of Physical Chemistry,1931,35 (2):417-422.
    [183]HARTLEY H, CAMPBELL N P. The solubility of iodine in water [J]. Journal of the Chemical Society, Transactions,1908,93741-745.
    [184]HODOTSUKA M, YANG X, OKUDA H, et al. Vapor-liquid equilibria for the HI+H2O system and the HI+H2O+I2 System [J]. Journal of Chemical & Engineering Data,2008,53(8):1683-1687.
    [185]HAASE R, NAAS H, THUMM H. Experimental investigation on the thermodynamic behavior of concentrated halogen hydrogen acids [J]. Zeitschrift fur Physikalische Chemie,1963,37210-229.
    [186]O'KEEFE D R, NORMAN J H. Vapor pressure, iodine solubility, and hydrogen solubility of hydrogen iodide-iodine solutions [J]. Journal of Chemical and Engineering Data,1982,27 (1):77-80.
    [187]LIBERATORE R, CEROLI A, LANCHI M, et al. Experimental vapour-liquid equilibrium data of HI-H2O-I2 mixtures for hydrogen production by sulphur-Iodine thermochemical cycle [J]. International Journal of Hydrogen Energy,2008,33 (16): 4283-4290.
    [188]LANCHI M, CEROLI A, LIBERATORE R, et al. S-I thermochemical cycle:A thermodynamic analysis of the HI-H2O-I2 system and design of the HIx decomposition section [J]. International Journal of Hydrogen Energy,2009,34 (5): 2121-2132.
    [189]DOIZI D, DAUVOIS V, ROUJOU J L, et al. Total and partial pressure measurements for the sulphur-iodine thermochemical cycle [J]. International Journal of Hydrogen Energy,2007,32 (9):1183-1191.
    [190]DOIZI D, DAUVOIS V, ROUJOU J, et al. Experimental study of the vapour-liquid equilibria of HI-H2O-I2 ternary mixtures, Part 1:Experimental results around the atmospheric pressure [J]. International Journal of Hydrogen Energy,2009, 34 (10):4275-4282.
    [191]LAROUSSE B, LOVERA P, BORGARD J, et al. Experimental study of the vapour-liquid equilibria of HI+I2+H2O ternary mixtures, Part 2:Experimental results at high temperature and pressure [J]. International Journal of Hydrogen Energy,2009, 34 (8):3258-3266.
    [192]MENA S E. Liquid-liquid equilibrium for iodine-hydroiodic acid-water mixtures at elevated temperatures and pressures for the sulfur-iodine cycle [D]: Clemson University,2010.
    [193]CALABRESE V T, KHAN A. Polyiodine and polyiodide species in an aqueous solution of iodine+KI:Theoretical and experimental studies [J]. The Journal of Physical Chemistry A,2000,104(6):1287-1292.
    [194]SVENSSON P H, KLOO L. Synthesis, structure, and bonding in polyiodide and metal I iodide-iodine systems [J]. Chemical Reviews,2003,103 (5):1649-1684.
    [195]TYAGI D, VARMA S, BHATTACHARYA K, et al. Iodine speciation studies on Bunsen reaction of S-I cycle using spectroscopic techniques [J]. International Journal of Hydrogen Energy,2012,37 (4):3621-3625.
    [196]SPADONI A, FALCONIERI M, LANCHI M, et al. Iodine compounds speciation in HI-I2 aqueous solutions by Raman spectroscopy [J]. International Journal of Hydrogen Energy,2012,37 (2):1326-1334.
    [197]DANIELE G. Measurement of equilibrium constants of potassium triiodide with a spectrophotometric method [J]. Gazz chim ital,1960,90 1068-1081.
    [198]AWTREY A D, CONNICK R E. The Absorption Spectra of I2, I3-, I-, IO3-, S4O6= and S2O3= heat of the Reaction I3-=I2+I- [J]. Journal of the American Chemical Society,1951,73 (4):1842-1843.
    [199]PALMER D A, RAMETTE R, MESMER R. Triiodide ion formation equilibrium and activity coefficients in aqueous solution [J]. Journal of solution chemistry,1984,13 (9):673-683.
    [200]RENGEVICH E, SHILOV E. New determination of the equilibrium constant of the reaction I2+I-=I3- by the distribution method [J]. Ukr Khim Zh,1962,28 1080-1086.
    [201]Neumann, D. Phasengleichgewichte von HI/H2O/I2-Losungen [D]:RWTH Aachen,1987.
    [202]CHEN C C, BRITT H, BOSTON J, et al. Local composition model for excess Gibbs energy of electrolyte systems. Part Ⅰ:Single solvent, single completely dissociated electrolyte systems [J]. AIChE Journal,1982,28 (4):588-596.
    [203]MURPHY J E, O'CONNELL J P. A properties model of the HI-I2-H2O-H2 system in the sulfur-iodine cycle for hydrogen manufacture [J]. Fluid Phase Equilibria, 2010,288 (1-2):99-110.
    [204]BROWN L, MATHIAS P, CHEN C, et al. Thermodynamic model for the HI-I2-H2O system; proceedings of the AIChE Annual Meeting, F,2001 [C].
    [205]HADJ-KALI M K, GERBAUD V, BORGARD J M, et al. HIx system thermodynamic model for hydrogen production by the Sulfur-Iodine cycle [J]. International Journal of Hydrogen Energy,2009,34 (4):1696-1709.
    [206]ZHANG Y W, ZHOU J H, WANG Z H, et al. Detailed kinetic modeling and sensitivity analysis of hydrogen iodide decomposition in sulfur-iodine cycle for hydrogen production [J]. International Journal of Hydrogen Energy,2008,33 (2): 627-632.
    [207]WANG Z C, WANG L J, ZHANG P, et al. Effect of preparation methods on Pt/alumina catalysts for the hydrogen iodide catalytic decomposition [J]. Chinese Chemical Letters,2009,20102-105.
    [208]WANG L J, BAI S K, WANG Z C, et al. Activity and stability of Pt catalysts supported on carbon nanotubes, active carbon and γ-Al2O3 for HI decomposition in iodine-sulfur thermochemical cycle [J]. International Journal of Hydrogen Energy, 2012,37(13):10020-10027.
    [209]ZHANG Y W, WANG Z H, ZHOU J H, et al. Effect of preparation method on platinum-ceria catalysts for hydrogen iodide decomposition in sulfur-iodine cycle [J]. International Journal of Hydrogen Energy,2008,33 (2):602-607.
    [210]TYAGI D, SCHOLZ K, VARMA S, et al. Development of Pt-Carbon catalysts using MCM-41 template for HI decomposition reaction in S-I thermochemical cycle [J]. International Journal of Hydrogen Energy,2012,37 (4):3602-3611.
    [211]CHEN Y, WANG Z H, ZHANG Y W, et al. Platinum-ceria-zirconia catalysts for hydrogen production in sulfur-iodine cycle [J]. International Journal of Hydrogen Energy,2010,35 (2):445-451.
    [212]ZHANG Y W, ZHOU J H, WANG Z H, et al. Influence of the oxidative/reductive treatments on Pt/CeO2 catalyst for hydrogen iodide decomposition in sulfur-iodine cycle [J]. International Journal of Hydrogen Energy,2008,33 (9): 2211-2217.
    [213]FAVUZZA P, FELICI C, LANCHI M, et al. Decomposition of hydrogen iodide in the S-I thermochemical cycle over Ni catalyst systems [J]. International Journal of Hydrogen Energy,2009,34 (9):4049-4056.
    [214]ZHANG Y W, ZHOU J H, CHEN Y, et al. Hydrogen iodide decomposition over nickel-ceria catalysts for hydrogen production in the sulfur-iodine cycle [J]. International Journal of Hydrogen Energy,2008,33 (20):5477-5483.
    [215]ZHANG Y W, WANG Z H, ZHOU J H, et al. Experimental study of Ni/CeO2 catalytic properties and performance for hydrogen production in sulfur-iodine cycle [J]. International Journal of Hydrogen Energy,2009,34(14):5637-5644.
    [216]GINOSAR D M, PETKOVIC L M, BURCH K C. Commercial activated carbon for the catalytic production of hydrogen via the sulfur-iodine thermochemical water splitting cycle [J]. International Journal of Hydrogen Energy,2011,36 (15): 8908-8914.
    [217]PETKOVIC L M, GINOSAR D M, ROLLINS H W, et al. Activated carbon catalysts for the production of hydrogen via the sulfur-iodine thermochemical water splitting cycle [J]. International Journal of Hydrogen Energy,2009,34 (9): 4057-4064.
    [218]WANG Z H, CHEN Y, ZHOU C, et al. Decomposition of hydrogen iodide via wood-based activated carbon catalysts for hydrogen production [J]. International Journal of Hydrogen Energy,2011,36 (1):216-223.
    [219]HWANG G J, ONUKI K, SHIMIZU S. Separation of hydrogen from a H2-H2O-HI gaseous mixture using a silica membrane [J]. Aiche Journal,2000,46 (1): 92-98.
    [220]HWANG G-J, KIM J-W, CHOI H-S, et al. Stability of a silica membrane prepared by CVD using γ- and α-alumina tube as the support tube in the HI-H2O gaseous mixture [J]. Journal of Membrane Science,2003,215 (1-2):293-302.
    [221]HWANG G-J, ONUKI K. Simulation study on the catalytic decomposition of hydrogen iodide in a membrane reactor with a silica membrane for the thermochemical water-splitting IS process [J]. Journal of Membrane Science,2001, 194(2):207-215.
    [222]NOMURA M, KASAHARA S, NAKAO S. Silica membrane reactor for the thermochemical iodine-sulfur process to produce hydrogen [J]. Industrial & Engineering Chemistry Research,2004,43 (18):5874-5879.
    [223]BRUTTI S, BENCIVENNI L, BARBAROSSA V, et al. Gas phase dissociation of H2SO4:A computational study [J]. Journal of Chemical Thermodynamics,2006,38 (11):1292-1300.
    [224]ORME C J, STEWART F F. Pervaporation of water from aqueous sulfuric acid at elevated temperatures using Nafion(?) membranes [J]. Journal of Membrane Science, 2009,326 (2):507-513.
    [225]POLEVOI P S, KHACHATUROVTAVRIZYAN A E, IVANOV I N, et al. Mechanism of radiation-thermal decomposition of concentrated sulfuric-acid [J]. High Energy Chemistry,1989,23 (3):178-183.
    [226]OZTURK I T, HAMMACHE A, BILGEN E. An Improved process for H2SO4 decomposition step of the sulfur iodine cycle [J]. Energy Conversion and Management,1995,36 (1):11-21.
    [227]BRUTTI S, DE MARIA G, CERRI G, et al. Decomposition of H2SO4 by direct solar radiation [J]. Industrial & Engineering Chemistry Research,2007,46 (20): 6393-6400.
    [228]KONDAMUDI K, UPADHYAYULA S. Kinetic studies of sulfuric acid decomposition over Al-Fe2O3 catalyst in the sulfur-iodine cycle for hydrogen production [J]. International Journal of Hydrogen Energy,2012,37 (4):3586-3594.
    [229]KIM Y S, NO H C, CHOI J Y, et al. Stability and kinetics of powder-type and pellet-type iron (III) oxide catalysts for sulfuric acid decomposition in practical iodine-sulfur cycle [J]. International Journal of Hydrogen Energy,2013,38 (9): 3537-3544.
    [230]BRITTAIN R, HILDENBRAND D. Catalytic decomposition of gaseous sulfur trioxide [J]. The Journal of Physical Chemistry,1983,87 (19):3713-3717.
    [231]BARBAROSSA V, BRUTTI S, DIAMANTI M, et al. Catalytic thermal decomposition of sulphuric acid in sulphur-iodine cycle for hydrogen production [J]. International Journal of Hydrogen Energy,2006,31 (7):883-890.
    [232]GINOSAR D M, PETKOVIC L M, GLENN A W, et al. Stability of supported platinum sulfuric acid decomposition catalysts for use in thermochemical water splitting cycles [J]. International Journal of Hydrogen Energy,2007,32 (4):482-488.
    [233]GIACONIA A, SAU S, FELICI C, et al. Hydrogen production via sulfur-based thermochemical cycles:Part 2:Performance evaluation of Fe2O3-based catalysts for the sulfuric acid decomposition step [J]. International Journal of Hydrogen Energy, 2011,36 (11):6496-6509.
    [234]KARAGIANNAKIS G, AGRAFIOTIS C C, ZYGOGIANNI A, et al. Hydrogen production via sulfur-based thermochemical cycles:Part 1:Synthesis and evaluation of metal oxide-based candidate catalyst powders for the sulfuric acid decomposition step [J]. International Journal of Hydrogen Energy,2011,36 (4):2831-2844.
    [235]MACHIDA M, MIYAZAKI Y, MATSUNAGA Y, et al. Efficient catalytic decomposition of sulfuric acid with copper vanadates as an oxygen-generating reaction for solar thermochemical water splitting cycles [J]. Chemical Communications,2011,47 (34):9591-9593.
    [236]BANERJEE A M, PAI M R, MEENA S S, et al. Catalytic activities of cobalt, nickel and copper ferrospinels for sulfuric acid decomposition:The high temperature step in the sulfur based thermochemical water splitting cycles [J]. International Journal of Hydrogen Energy,2011,36 (8):4768-4780.
    [237]KIM T H, GONG G T, LEE B G, et al. Catalytic decomposition of sulfur trioxide on the binary metal oxide catalysts of Fe/Al and Fe/Ti [J]. Applied Catalysis A:General,2006,305 (1):39-45.
    [238]BANERJEE A M, PAI M R, BHATTACHARYA K, et al. Catalytic decomposition of sulfuric acid on mixed Cr/Fe oxide samples and its application in sulfur-iodine cycle for hydrogen production [J]. International Journal of Hydrogen Energy,2008,33 (1):319-326.
    [239]ATKIN I, ELDER R H, PRIESTMAN G H, et al. High temperature oxygen separation for the sulphur family of thermochemical cycles-part Ⅰ:Membrane selection and flux testing [J]. International Journal of Hydrogen Energy,2011,36 (17): 10614-10625.
    [240]HE G, ELDER R H, SINCLAIR D C, et al. High temperature oxygen separation for the sulphur family of thermochemical cycles - Part Ⅱ:Sulphur poisoning and membrane performance recovery [J]. International Journal of Hydrogen Energy,2013, 38 (2):785-794.
    [241]薛璐璐,张平,陈崧哲,等.热化学碘硫循环中的Bunsen反应研究进展[J].化工进展,2011,30(5):
    [242]BORGARD J, G. GOLDSTEIN ET X. VITART. General comments about the efficiency of the iodine-sulphur cycle coupled to a high temperature gas-cooled reactor [M]. Editions OCDE.
    [243]LAN S R, GUO H F, ZHANG P, et al. Phase separation characteristics of HI-I2-H2SO4-H2O mixture at elevated temperatures [J]. Fluid Phase Equilibria,2013, 342(0):1-7.
    [244]O'KEEFE D, NORMAN J, WILLIAMSON D. Catalysis research in thermochemical water-splitting processes [J]. Catalysis Reviews Science and Engineering,1980,22 (3):325-369.
    [245]POWELL C F, CAMPBELL I E. The solubility of iodine in concentrated hydriodic acid solutions [J]. Journal of the American Chemical Society,1947,69 (5): 1227-1228.
    [246]IMMANUEL V, PARVATALU D, BHARDWAJ A, et al. Properties of Nafion 117 in highly acidic environment of Bunsen reaction of I-S cycle [J]. Journal of Membrane Science,2012,409-410 (0):137-144.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700