用户名: 密码: 验证码:
基于分子筛的主—客体组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Studies on Host-Guest Assembly Based on Molecular Sieves
  • 作者:田野
  • 论文级别:博士
  • 学科专业名称:无机化学
  • 学位年度:2007
  • 导师:陈接胜
  • 学科代码:070301
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-06-01
摘要
微孔和介孔分子筛具有规则的孔道和有序的周期性结构。在制备先进功能复合材料方面,分子筛是优秀的主体材料。
     以具有菱沸石结构的磷酸硅铝分子筛为主体,通过化学气相反应的方法把金属锌离子引入到孔道中。通过电子自旋共振光谱和磁性测量研究发现,通常不能稳定存在的单核一价锌离子可以在我们所采用的分子筛笼中存在,并发现所得到的主客体材料有反铁磁相互作用。
     以阴离子表面活性剂为模板制备了有机基团功能化的介孔二氧化硅空心球。两种空心球被合成,一种空心球的球壳是层状结构的,而另一种空心球的球壳是由环状孔道构成的。在空心球的层间或孔壁上引入了客体有机基团,这些有机基团可以螯合过渡金属离子。
     采用有序介孔碳分子筛为主体材料,负载磁性纳米粒子,制成磁性可分离介孔碳材料。把这种材料做为催化剂载体,得到了磁性可分离催化剂,并进行了表征。此外,我们还利用介孔碳开放的孔道结构和高的负载能力把金纳米粒子负载到介孔碳上,并进行了表征。
     以介孔二氧化硅为主体负载过渡金属化合物制成催化剂,用于模板合成双壁碳纳米管。我们得到的双壁纳米管直径大于通常情况下制得的双壁碳纳米管,说明所制得的催化剂具有控制双壁碳纳米管直径的作用。
The single molecular sieves can meet far from people's needs, and many established molecular sieves applications depend either directly or indirectly on the functionalization. Increasing attention has been paid to the assembly of the guest materials into molecular sieves. The applications involved in the host-guest materials based on microporous molecular sieves are very wide, especially promoting the development of catalyst. The mesoporous molecular sieves have also been synthesized in 1992. The pore size of mesoporous molecular sieves is bigger than the one of microporous molecular sieves, so more classes of guest materials can be assembled into the host materials.
     In this paper, several host-guest materials based on molecular sieves have been synthesized: 1. Mononuclear univalent zinc has been synthesized in microporous molecular sieves (SAPO-CHA); 2. The organically functionalized hollow silica spheres with a mesostructured shell have been synthesized; 3. Magnetically separable ordered mesoporous carbon with Fe3O4 nanoparticles grafted on the outer surface of the mesoporous carbon material CMK-3 was prepared through a facile route; 4. The Au nanoparticles were assembled into the mesoporous carbon (CMK-3); 5. The host-guest material based on SBA-15 was used as a template for the synthesis of double wall carbon nanotubes (DWCNs).
     As is known, the normal oxidation state of zinc is either 0 or +2. The interest has also been directed to univalent Zn species. The univalent zinc species can be synthesized in many systems, but the univalent zinc species in these systems exist as diamagnetic (Zn-Zn)2+ pairs, and no ESR signals can be observed. In addition, the mononuclear univalent zinc cation prepared by physical methods is not stable. In our experiment, the metallic zinc gradually vaporized to react with the protons in the cages of microporous silicoaluminophosphate material with the topology of chabazite (SAPO-CHA), and mononuclear univalent zinc was synthesized. The cage of SAPO-CHA is a microspace with isolated Br?nsted acidic sites. In principle, each of these Br?nsted acidic sites can react with one Zn atom to form one Zn+ cation. Two crystallographically independent Zn+ cations have replaced the protons of two different Br?nsted acidic sites, since two crystallographically independent framework O atoms in the structure of SAPO-CHA are associated with a proton. Some strong ESR signals can be observed in the ESR spectrum for the host-guest material. The g factors of the ESR spectrum of the host-guest exhibit anisotropy, and there are two g values corresponding to the two crystallographically independent Zn+ cations. Further more, an obvious antiferromagnetic behavior at low temperatures is seen from the temperature dependence of the susceptibility for the host-guest material. The results of the ESR spectrum and the magnetic susceptibilities against temperature effectively prove the existence of mononuclear Zn+ species. The mononuclear Zn+ cations in SAPO-CHA are stable in dry air, but the mononuclear Zn+ cations react with NH3, and new species have been formed.
     We study the synthesis of organically functionalized and anionic surfactant templated hollow silica spheres with a mesostructured shell. Anionic surfactant is first used to template the formation of the hollow silica spheres with a mesostructured shell. Anionic surfactants are widely available, and these compounds are much less costly than cationic surfactants. Moreover, it is easy to form organically functionalized mesoporous material by anionic surfactant template. The organical functionalization of the mesoporous materials is particularly attractive because of the possibility to combine the enormous functional variation of organic chemistry with the advantages of a thermally stable and robust inorganic substrate. Two types of hollow spheres were obtained from the same reaction system through varying the initial synthetic reactant ratio. One of the hollow silica spheres consists of monodisperse particles with a diameter of about 200 nm, and the shells of the particles are of multilamellar structure. The hollow spheres with a wider particle size distribution (diameter 100-2000 nm) also are synthesized, and the sphere shells contain circular mesoporous channels in an approximately hexagonal array. All of the two types of organically functionalized hollow spheres can coordinate transition metal ions. We have coordinated Au ion between the layers of the first type of hollow spheres, and highly dispersed Au nanoparticles are anchored in the hollow spheres after reduction.
     Recently, highly-ordered mesoporous carbons (OMCs) have been attracting increasing interest because these materials find promising applications as catalyst supports, adsorbents, hydrogen storage media. However, small carbon particles are generally difficult to separate from liquid phases and some of their applications, such as in the fields of catalysis and adsorption involving liquids, are restricted to a considerable extent. To overcome this shortcoming, magnetic particles may be introduced to porous carbons, and it is possible to separate the composite support material from the liquid catalytic reaction system using magnets. Here we report a low-cost and convenient route for the preparation of magnetically separable mesoporous carbon material. M?ssbauer spectroscopy and X-ray diffraction prove that the superparamagnetic species in the composite material is Fe3O4 nanocrystal, and the average size of the nanocrystals is estimated to be about 23 nm. Nevertheless, the dispersion of the magnetic nanoparticles on the surface of the CMK-3 material differs depending on preparation temperature. The magnetically separable catalyst was prepared through loading the host-guest material with palladium nanoparticles. The catalytic performance in combination with the magnetically separable property demonstrates that host-guest material is a promising catalyst support with attractive application perspectives.
     Gold nanocrystals are highly active for selective oxidation. We detailedly study the loading of Au nanocrystals on highly-ordered mesoporous carbons CMK-3. Au/CMK-3 material was prepared by three methods, pore volume impregnation-reduction method, deposition-precipitation method, and gold sol method, respectively. The gold sol method is an easy and effective way of loading Au nanocrystals into CMK-3, and the diameters ranging of Au nanocrystals is 1-4 nm.
     Molecular sieves have uniform pore diameter and ordered pore structure, which makes them ideally suited as templates for preparing various nanowires/arrays and nanostructures. The smallest carbon nanotubes prepared in the channels of porous zeolite AlPO4-5 (AFI) single crystals was reported, and a Co-MCM-41 catalytic template for the synthesis of uniform-diameter single-walled carbon nanotubes also was reported. In this paper, SBA-15 was modified with ethylenediamine groups, and Co2+ anions were coordinated in the pore of SBA-15. The molybdenum salt was loaded into the pore of SBA-15 by pore volume impregnation. The nanocomposite of Co-Mo-SBA-15 was used as a catalytic template for the synthesis of carbon nanotubes. The TEM results show that the carbon nanotubes templated by the host-guest catalyst are double-walled carbon nanotubes (DWCNs), and the outer diameter ranging of these DWCNs is 3-4 nm. In general, the outer diameter ranging of DWCNs reported in literature is 0.7-2.5 nm. However, the outer diameter of the most of DWCNs prepared by us is bigger, and we conclude that the Co-Mo-SBA-15 catalyst controls the formation of DWCNs.
引文
[1] Breck D. W., Zeolite molecular sieves. New York: John Wiley & Sons Inc. 1974. 94.
    [2] Barrer R.M., Denny P. J., Hydrothermal chemistry of the silicates. Part IX.Nitrogenous aluminosilicates.J. Chem. Soc.,1961,971- 982.
    [3] Argauer R. J., Landolt G.. R., Crystalline zeolite ZSM-5 and method of preparing the same. 1972, US Patent 3702886.
    [4] Taramasso M., Perego G.., Notari B. et al, Inter. Conf. on Zeolite. London: Heyden and Sons,1980, Proc. 5th, 40
    [5] Wilson S.T., Brent M L., Celeste A. et al, Aluminophosphate molecular sieves: a new class of microporous crystalline inorganic solids. J. Am. Chem. Soc. 1982, 104: 1146-1147
    [6] Kasai P. H., Bishop R. J., Ionization and electron transfer reactions in Linde type Y zeolites. J. Phys. Chem. 1973, 77: 2308-2312.
    [7] Rabo J. A., Kasai P. H., Progress in the Solid State Chemistry. Pergamon Press, Oxford, 1975, 9.
    [8]. Barrer R. M, Whiteman J. L., Mercury uptake in various cationic forms of several zeolites. J. Chem. Soc. 1967: 19-25
    [9] Kasai P. H., Electron Spin Resonance Studies of γ- and X-Ray-Irradiated Zeolites. J. Chem. Phys. 1965, 43: 3322-3327
    [10] Rabo J. A., Angell C. L., Kasai P. H. and Schomaker V., Studies of cations in zeolites: adsorption of carbon monoxide; formation of Ni ions and Na3+4 centres. Discuss. Faraday Soc. 1966, 41: 328
    [11] Barrer R.M., Zeolites and clay minerals as sorbents and molecular sieves.Academic. Press, London, 1982.
    [12] Edwards P.P., Harrison M.R., Klinowski J. et al, Ionic and metallic clusters in zeolites. J. Chem. Soc., Chem. Commun. 1984, 15: 982-984
    [13] Harrison M. R., Edwards P. P., Klinowski J. et al, Ionic and metallic clusters of the alkali metals in zeolite Y. J. Solid State Chem. 1984, 54: 330-341
    [14] Edwards P. P., Anderson P. A., Thomas J. M., Dissolved alkali metals in zeolites. Acc. Chem. Res. 1996, 29: 23
    [15] Srdanov V. I., Haug K., Metiu H., Stucky G..D., Sodium (Na43+) clusters in sodium sodalite. J. Phys. Chem. 1992, 96: 9039-9043.
    [16] Xu B. and Kevan L., Electron paramagnetic resonance studies of the formation of alkali-metal particles and ionic clusters in alkali-metal-loaded X zeolites. J. Chem. Soc., Faraday Trans. 1991, 87: 2843
    [17] Kiricsi I., Hannus I., Kiss A. and Fejes P., Investigation of NaN3 salt occlusion in the framework of Y zeolites. Zeolites 1982, 2: 247-251
    [18] Virgilio L. L., Hockaday A., Sepulveda M.I. et al, Compartmentalization of sickle-cell calcium in endocytic inside-out vesicles. Nature 1985, 315: 586 – 589
    [19] Yoon K. B., Kochi J. K., Novel synthesis of ionic clusters (Na4 3+) in zeolites. J. Chem. Soc., Chem. Commun. 1988, 8: 510-511
    [20] Bordiga S., Ferrero A., Giamello E., Spoto G.., Zecchina A., Ionic clusters in zeolites formed by interaction with sodium solutions in liquid ammonia. Catal Lett. 1991, 8:375
    [21] Liu X.S., Thomas J.K., Temperature effects on formation and transformation of alkali-metal ionic clusters in .gamma.-irradiated zeolites.Langmuir 1992, 8: 1750-1756.
    [22] Iu K. K., Liu X. S., Thomas J. K., Spectroscopic studies of electron trapping by sodium cationic clusters in zeolites. J. Phys. Chem. 1993, 97: 8165-8170.
    [23] Sun T., Seff K., Crystal structures of the potassium clusters in the sodalite cavities of zeolites A and X. J. Phys. Chem. 1993, 97: 5213-5214.
    [24] Sun T., Seff K., Crystal structure of zeolite A with potassium clusters and continua. J. Phys. Chem. 1993, 97: 10756-10760.
    [25] Sun T., Seff K., Structure of the K32+ Cluster in Zeolite A. J. Phys. Chem. 1994, 98: 10156-10159.
    [26] Armstrong A. R., Anderson P. A., Woodall L. J., Edwards P. P., Structure of Na43+ in Sodium Zeolite Y. J. Am. Chem. Soc. 1995, 117: 9087-9088.
    [27] Nakayama H., Klug D. D., Ratcliffe C. I., Ripmeester J. A., 23Na MAS NMR Evidence for a New Sodium Cluster and Na.cntdot. in Metal-Loaded Zeolites. J. Am. Chem. Soc. 1994, 116: 9777-9778.
    [28] Heo N.H., Seff K., Preparation and structure of fully caesium exchanged zeolite A and of the linear (Cs4)3+ cation. J. Chem. Soc., Chem. Commun. 1987, 16: 1225-1226
    [29] Heo N.H., Seff K., Reaction of dehydrated Na12-A with cesium. Synthesis and crystal structure of fully dehydrated, fully cesium ion-exchanged zeolite A. J. Am. Chem. Soc. 1987, 109: 7986-7992.
    [30] Song S.H., Kim Y., Seff K., Formation of hexasilver at the center of the large cavity: three crystal structures of dehydrated Ag+- and Ca2+-exchanged zeolite A, Ag12-2xCax-A (x = 2, 3, and 4) treated with rubidium vapor. J. Phys. Chem.1991, 95: 9919-9924.
    [31] Song S. H., Kim Y., Seff K., Reactino of Na12-A with rubidium vapor. Synthesis and crystal structure of fully dehydrated fully Rb+-exchanged zeolite A containing (Rb6)4+ clusters. J. Phys. Chem. 1992, 96: 10937-10941.
    [32] Jeong M.S., Kim Y., Seff K., Crystal structures of dehydrated zeolite Ag5.6K6.4-A and of the product of its reaction with cesium: Cs13.5Ag4.5-A, containing silver and cationic cesium clusters. J. Phys. Chem.1993, 97: 10139-10143.
    [33] Anderson P. P., Ionic clusters in zeolites. In: Molecular Sieves. Berlin Heidelberg: Springer-Verlag, 2002, 3: 307
    [34] Rabo J. A., Angell C. L., Kasai P. H.and Schomaker V., Studies of cations in zeolites: adsorption of carbon monoxide; formation of Ni ions and Na3+4 centres. Discuss. Faraday Soc. 1966, 41: 328
    [35] Taarit Y.B., Naccache C., Che M., Tench A. J., ESR studies of 17O?2 and SO?2 generated from Na3+4 centres in NaY zeolites. Chem Phys Lett. 1974, 24: 41-44
    [36] Ralek M., Jiru P.,Grubner O., Beyer H., Collect Czech Chem Commun. 1962, 27:142
    [37] Kim Y., Seff K., Structure of a very small piece of silver metal. The octahedral silver (Ag6) molecule. Two crystal structures of partially decomposed vacuum-dehydrated fully silver(1+) ion-exchanged zeolite A. J. Am. Chem. Soc. 1977, 99: 7055-7057
    [38] Jacobs P.A., Uytterhoeven J.B.and Beyer H.K., Some unusual properties of activated and reduced AgNaA zeolites. J. Chem. Soc., Faraday Trans. 1, 1979, 75: 56
    [39] Kim Y., Seff K., The octahedral hexasilver molecule. Seven crystalstructures of variously vacuum-dehydrated fully silver(1+)-exchanged zeolite A. J. Am. Chem. Soc. 1978, 100: 6989-6997.
    [40] Bothner-By A. A., Harris R. K., Nuclear Magnetic Resonance Studies of 1,3-Butadienes. I. The Spectra of Halogenated Butadienes. J. Am. Chem. Soc. 1965, 87: 3445-3450.
    [41] Beyer H., Jacobs P. A. and Uytterhoeven J. B., Redox behaviour of transition metal ions in zeolites. Part 2.—Kinetic study of the reduction and reoxidation of silver-Y zeolites. J. Chem. Soc., Faraday Trans. 1, 1976, 72: 674
    [42] Song S.H., Kim Y., Seff K., Formation of hexasilver at the center of the large cavity: three crystal structures of dehydrated Ag+- and Ca2+-exchanged zeolite A, Ag12-2xCax-A (x = 2, 3, and 4) treated with rubidium vapor. J. Phys. Chem. 1991, 95: 9919-9924.
    [43] Jeong M.S., Kim Y., Seff K., Crystal structures of dehydrated zeolite Ag5.6K6.4-A and of the product of its reaction with cesium: Cs13.5Ag4.5-A, containing silver and cationic cesium clusters. J. Phys. Chem. 1993, 97: 10139-10143
    [45] Ozin G.A., Godber J., Stein A (1990) Photosensitive, radiation sensitive, thermally sensitive and pressure sensitive silver sodalite materials. US Patent 4 942 119
    [46] Ozin G.A., Kuperman A., Stein A., Advanced Zeolite, Materials Science. Angew. Chem. Int. Ed. 1989, 28: 359-376
    [47] McCusker L .B., Seff K., Cadmium(I) and dicadmium(I). Crystal structures of cadmium(II)-exchanged zeolite A evacuated at 500°C and of its cadmium sorption complex. J Am Chem Soc1979, 101: 5235
    [48] Jang S.B., Kim U. S., Kim Y. et al., Crystal structures of fully dehydrated Cd(II)-exchanged zeolite A and of its cadmium sorption complex containing Cd2+, Cd+, Cd22+, and Cd20. J Phys. Chem. 1994, 98: 3796
    [49] Goldbach A., Barker P. D., Anderson P. A. et al, The clusters Cd22+ and Cd42+ in zeolite A. Chem Phys Lett, 1998, 292: 137
    [50] Sprang T., Seidel A., Wark M. et al, Cadmium ion exchange in zeolite Y by chemical vapour deposition and reaction. J Mater Chem.1997, 7: 1429
    [51] Seidel A., Rittner F., Boddenberg B., Chemical vapor deposition of zinc in zeolite HY. J Phys Chem.1998, 102: 7176
    [52] Rabo J.A., Pickert P.E., In: Actes Deuxième Congrès International de Catalyse Paris, Technip, Paris, 1960, p 2055
    [53] Parvulescu V. I., Coman S. S., Palade P. P. et al, Reducibility of ruthenium in relation with zeolite structure. Appl. Surf. Sci. 1999, 164-176
    [54] Kraushaar-Czarnetzki B., van Hooff J. H. C., In: Jacobs PA, van Santen RA (eds) Zeolites: facts, figures, future. Elsevier, Amsterdam, 1989, p 1063
    [55] Chen L. Y., Lin L. W., Xu Z. S. et al, Dehydro-oligomerization of Methane to Ethylene and Aromatics over Molybdenum/HZSM-5 Catalyst. J. Catal. 1995, 190-200
    [56] Lane G.. S., Modica F.S.and Miller J. T., Platinum/zeolite catalyst for reforming n-hexane: Kinetic and mechanistic considerations. J. Catal. 1991, 145-158
    [57] Chung J. S., Yun H. G., Koh D. J.and Kim Y. G., Preparation and Fischer—Tropsch reaction of highly-reduced cobalt clusters in cobalt-exchanged zeolite. J. Mol. Catal. 1993, 79: 199-215
    [58] Hong S. B., Mielczarski E.and Davis M. E., Aromatization of n-hexaneby platinum-containing molecular sieves I. Catalyst preparation by the vapor phase impregnation method. J. Catal. 1992, 134: 349-358
    [59] Jacobs G.., Ghadiali F., Pisanu A. et al, Characterization of the morphology of Pt clusters incorporated in a KL zeolite by vapor phase and incipient wetness impregnation. Influence of Pt particle morphology on aromatization activity and deactivation. Appl. Catal., A 1999, 188: 79-98
    [60] Dossi C., Psaro R., Bartsch A. et al, Chemical Vapor Deposition of Platinum Hexafluoroacetylacetonate Inside KL Zeolite: A New Route to Nonacidic Platinum-in-Zeolite Catalysts. J. Catal. 1994, 145: 377-383
    [61] Weber W. A. and Gates B. C., Rhodium Supported on Faujasites: Effects of Cluster Size and CO Ligands on Catalytic Activity for Toluene Hydrogenation. J. Catal. 1998, 180: 207-217
    [62]Weber W. A., Zhao A. and Gates B. C., NaY Zeolite-Supported Rhodium and Iridium Cluster Catalysts: Characterization by X-ray Absorption Spectroscopy during Propene Hydrogenation Catalysis. J. Catal. 1999, 182: 13-29
    [63] Gallezot P., Coudurier G., Primet M., Imelik B (1977) In: Katzer JR (ed) Molecular Sieves II, ACS Symp Ser No 40, Am Chem Soc,Washington DC, p 144
    [64] Okamoto Y., Maezawa A., Kane H.and Imanaka T., Stoichiometry of molybdenum subcarbonyl species encaged in NaY and HY zeolites. J. Catal. 1988, 112: 585-589
    [65] Kraushaar-Czarnetzki B., van Hooff JHC (1989) In: Jacobs PA, van Santen RA (eds) Zeolites: facts, figures, future. Elsevier,Amsterdam, p 1063
    [66] Gao Z., Zhang B.and Cui J., Activity of highly dispersed α-Fe2O3 onmolecular sieves for ethylbenzene dehydrogenation. Applied Catalysis 1991, 72: 331-342
    [67] Zecchina A., Rao K.M., Coluccia S. et al, Interaction of Cr(CO)6, with silicalite, ZSM-5 and H-Y zeolites: An infrared investigation.
    [68] Hong S.B., Mielczarski E.and Davis M.E., Aromatization of n-hexane by platinum-containing molecular sieves I. Catalyst preparation by the vapor phase impregnation method. J. Catal. 1992, 134: 349-358
    [69] Nagy J. B., Eenoo M. and Derouane E. G., Highly dispersed supported iron particles from the decomposition of iron carbonyl on HY zeolite. J. Catal. 1979, 58: 230-237
    [70] Lee D.K. and Ihm S.K, Metal loading effects on CO hydrogenation of Co/Y zeolite prepared by ion-exchange and carbonyl complex impregnation. J. Catal. 1987, 386-393
    [71] Schmiester T.B.G., Jacobs P.A., Characterization of a new iron-on-zeolite Y Fischer-Tropsch catalyst. J. Phys. Chem.1986, 90: 4851-4856.
    [72] Iwamoto M., Kusano H., Kagawa S., Surface chemistry of iron carbonyls grafted on a hydrated sodium-Y zeolite. Inorg. Chem. 1983, 22: 3365-3366.
    [73] Howe R. F., Jiang M., Wong S. T.and Zhu J. H., Comparison of zeolites and aluminophosphates as hosts for transition metal complexes. Catal. Today 1989, 6:113-122
    [74] Zerger R. P., McMahon K. C., Seltzer M. D. et al, Preparation of highly dispersed cobalt clusters in zeolites via microwave discharge methods. J. Catal. 1986, 99: 498-505
    [75] Zhang Z. C., Suib S. L., Zhang Y. D. et al, Spin echo NMR of cobaltzeolite catalysts. Control of particle size and structure. J. Am. Chem. Soc.1988, 110: 5569-5571
    [76] Zhang Z., Zhang Y. D., Hines W. A., Budnick J.I., Sachtler W.M.H., Size and location of cobalt clusters in zeolite NaY: a nuclear magnetic resonance study. J. Am. Chem. Soc.1992, 114: 4843-4846
    [77] Hong S. B., Mielczarski E. and Davis M. D., Aromatization of n-hexane by platinum-containing molecular sieves I. Catalyst preparation by the vapor phase impregnation method. Journal of Catalysis 1992, 134:349-358
    [78] Dossi C., Psaro R., Bartsch A. et al, Chemical Vapor Deposition of Platinum Hexafluoroacetylacetonate Inside KL Zeolite: A New Route to Nonacidic Platinum-in-Zeolite Catalysts. J. Catal. 1994, 145:377-383
    [79] Rabo J.A., Angell C.L., Kasai P. H. and Schomaker V., Studies of cations in zeolites: adsorption of carbon monoxide; formation of Ni ions and Na3+4 centres. Discuss. Faraday Soc.1966, 41: 328
    [80] Martens L. R. M., Grobet P. J., Jacobs P. A., Preparation and catalytic properties of ionic sodium clusters in zeolites. Nature 1985, 315: 568-570
    [81] Xu B., Kevan L., Formation of metal clusters in alkaline-earth cation-exchanged X zeolites. J. Phys. Chem.1992, 96:3647-3652
    [82] Park Y.S., Lee Y.S., Yoon K.B. In:Weitkamp J, Karge HG, Pfeifer H,H derich W (eds) Zeolites and related microporous materials: state of the art 1994. Elsevier, Amsterdam, 1994, p 901
    [83] Klabunde K. J. and Tanaka Y., The building of a Catal.ytic metal particle one atom at a time: solvated metal atom dispersed Catalysts. J. Mol. Catal. 1993, 21:57-79
    [84] Nazar L. F., Ozin G.. Z., Hugues F. et al, Metal atoms in solution:versatile reagents for preparing metal cluster-zeolite catalysts; application to the selective reduction of carbon monoxide to butene. J. Mol. Catal. 1993, 21:313-329
    [85] Karge H.G., Beyer H. K., In: Jacobs PA, Jaeger NI, Kubelkova L,Wichterlova B (eds)Zeolite chemistry and catalysis. Elsevier, Amsterdam, 1991, p 43
    [86] Karge H.G., Zhang Y., Beyer H. K. In: Smith KJ, Sanford EC (eds) Progress in catalysis. Elsevier, Amsterdam, 1992, p 19
    [87] Garbowski E.D., Mirodatos C., Primet M. In: Jacobs PA, Jaeger NI, Jiru P, Schulz-Ekloff G (eds) Metal microstructures in zeolites. Elsevier, Amsterdam, 1982, p 235
    [88] Tzou M. S., Teo B. K. and Sachtler W. M. H., Formation of Pt particles in Y-type zeolites : The influence of coexchanged metal cations. J. Catal. 1988, 113: 220-235
    [89] Suzuki M., Tsutsumi K., Takahashi H. and Saito Y., T.p.r. study on hydrolysis character of Co2+ ions in Y zeolite. Zeolites 1988, 8: 381-386
    [90] Olivier D., Richard M., Bonneviot L., Che M., In: Bourdon J (ed) Growth and properties of metal clusters. Elsevier, Amsterdam, 1980, p 165
    [91] Schmidt F., Gunsser W., Adolph J., In: Katzer JR (ed) Molecular sieves II, ACS Symp Ser. 40, Am Chem Soc, Washington DC, 1977, p 291
    [92] Weisz P. B., Frilette V. J., Maatman R. W. and Mower E. B., Catalysis by crystalline aluminosilicates II. Molecular-shape selective reactions. J. Catal. 1962, 1:307-312
    [93] Feeley J. S. and Sachtler W. M. H., Mechanisms of the formation of PdNix in the cages of NaY. J. Catal. 1991, 131:573-581
    [94] Zhang Z., Sachtler W. M. H., Suib S. L., Proximity requirement for Pd enhanced reducibility of Co2+ in NaY. Catal Lett. 1989, 2:395
    [95]Zhang Z. C., Xu L. Q. and Sachtler W. M. H., Oxidative leaching of Cu atoms from PdCu particles in zeolite Y. J. Catal. 1991, 131: 502-512
    [96] Tri T. M., Candy J. P., Gallezot P. P. et al, Pt---Mo bimetallic catalysts supported on Y-zeolite : I. Characterization of the catalysts. J. Catal. 1983, 79: 396-409
    [97] Tsang C. M., Augustine S. M., Butt J. B. and Sachtler W. M. H., Synthesis and characterization of bimetallic clusters prepared by sublimation of Re2(CO)10 onto Pt/NaY. Appl. Catal. 1989, 46: 45-56
    [98] Ugo R., Dossi C.and Psaro R., Molecular metal carbonyl clusters and volatile organometallic compounds for tailored mono and bimetallic heterogeneous catalysts. Appl. Catal., A 1996, 107:13-22
    [99] Kresge C. T., Leonowicz M. E., Roth W. J. et al, Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 359: 710–712
    [100] Antonelli D. M., Ying J. Y., Synthesis and Characterization of Hexagonally Packed Mesoporous Tantalum Oxide Molecular Sieves. Chem. Mater.1996, 8: 874-881
    [101] Hoffmann F., Cornelius M., Morell J., Fr?ba M., Silica-Based Mesoporous Organic-Inorganic Hybrid Materials. Angew. Chem. Int. Ed. 2006, 45: 3216-3251
    [102] Mal N. K., Fujiwara M., Tanaka Y., Photocontrolled reversible release of guest molecules from coumarin-modified mesoporous silica. Nature 421: 350 – 353
    [103] Mal N. K., Fujiwara M., Tanaka Y., Taguchi T., Matsukata M., Photo-Switched Storage and Release of Guest Molecules in the Pore Void of Coumarin-Modified MCM-41. Chem. Mater.2003, 15: 3385-3394.
    [104] Péteilh C. T., Brunel D., Bégu S. et al, Synthesis and characterisation of ibuprofen-anchored MCM-41 silica and silica gel. New J. Chem. 2003, 27:1415
    [105] Fu Q., Rao G.. V. R., Ista L. K. et al, Control of Molecular Transport Through Stimuli-Responsive Ordered Mesoporous Materials. Adv. Mater. 2003, 15:1262-1266
    [106] Radu D. R., Lai C.-Y., Wiench J. W. et al, Gatekeeping Layer Effect: A Poly(lactic acid)-coated Mesoporous Silica Nanosphere-Based Fluorescence Probe for Detection of Amino-Containing Neurotransmitters. J. Am. Chem. Soc.2004, 126: 1640-1641
    [107] Descalzo A .B, Jimenez D., Marcos M. D. et al, A New Approach to Chemosensors for Anions Using MCM-41 Grafted with Amino Groups. Adv. Mater. 2002, 14:966-969
    [108] Rodman D. L., Pan H., Clavier C. W. et al, Optical Metal Ion Sensor Based on Diffusion Followed by an Immobilizing Reaction. Quantitative Analysis by a Mesoporous Monolith Containing Functional Groups. Anal. Chem.2005, 77: 3231-3237
    [109] Mercier L., Pinnavaia T. J., Heavy Metal Ion Adsorbents Formed by the Grafting of a Thiol Functionality to Mesoporous Silica Molecular Sieves: Factors Affecting Hg(II) Uptake Environ. Sci. Technol.1998, 32:2749-2754
    [110] Liu A. M., Hidajat K., Kawi S., Zhao D. Y., A new class of hybrid mesoporous materials with functionalized organic monolayers for selective adsorption of heavy metal ions. Chem. Commun.2000, 1145-1146
    [111] Trens P., Russell M. L., Spjuth L., Hudson M. J., Liljenzin J.-O., Preparation of Malonamide-MCM-41 Materials for the Heterogeneous Extraction of Radionuclides. Ind. Eng. Chem. Res. 2002, 41: 5220-5225
    [112] Kang T., Park Y., Yi J., Highly Selective Adsorption of Pt2+ and Pd2+ Using Thiol-Functionalized Mesoporous Silica. Ind. Eng. Chem. Res. 2004, 43: 1478-1484
    [113] Yoshitake H., Yokoi T., Tatsumi T., Adsorption of Chromate and Arsenate by Amino-Functionalized MCM-41 and SBA-1. Chem. Mater. 2002, 14: 4603-4610
    [114] Gertrudis R. Z., Marcos M. D., Ramón M. M., Efficient boron removal by using mesoporous matrices grafted with saccharides. Chem. Commun. 2004, 19: 2198-2199
    [115] Ho K. Y., McKay G.., Yeung K. L., Selective Adsorbents from Ordered Mesoporous Silica. Langmuir 2003, 19:3019-3024
    [116] Acosta E. J., Carr C. S., Simanek E. E., Shantz D. F., Engineering Nanospaces: Iterative Synthesis of Melamine-Based Dendrimers on Amine-Functionalized SBA-15 Leading to Complex Hybrids with Controllable Chemistry and Porosity. Adv. Mater. 2004, 16: 985-989
    [117] Fukuoka A., Fujishima K., Chiba M., Yamagishi A. et al, Photooxidation of cyclohexene and benzene with oxygen by fullerenes grafted on mesoporous FSM-16. Catal. Lett. 2000, 68: 241 – 244.
    [118] Dufaud V., Davis M. E., Design of Heterogeneous Catalysts via MultipleActive Site Positioning in Organic-Inorganic Hybrid Materials. J. Am. Chem. Soc. 2003, 125: 9403-9413
    [119] Das D., Lee J.-F., Cheng S., Selective synthesis of Bisphenol-A over mesoporous MCM silica catalysts functionalized with sulfonic acid groups. J. Catal. 2004, 223, 152 – 160.
    [120] Shimizu K., Hayashi E., Hatamachi T. et al, Acidic properties of sulfonic acid-functionalized FSM-16 mesoporous silica and its catalytic efficiency for acetalization of carbonyl compounds. J. Catal. 2005, 231: 131-138
    [121] Weitkamp J., Hunger M.and Rymsa U., Base catalysis on microporous and mesoporous materials: recent progress and perspectives. Microporous Mesoporous Mater. 2001, 48:255-270
    [122] Corma A., Iborra S., Rodríguez I.and Sánchez F., Immobilized Proton Sponge on Inorganic Carriers: The Synergic Effect of the Support on Catalytic Activity. J. Catal. 2002, 211: 208-215
    [123] Motorina I., Crudden C. M., Asymmetric Dihydroxylation of Olefins Using Cinchona Alkaloids on Highly Ordered Inorganic Supports. Org. Lett. 2001, 3: 2325-2328
    [124] Yiu H. H. P., Wright P. A., and Botting N. P., Enzyme immobilisation using SBA-15 mesoporous molecular sieves with functionalised surfaces. J. Mol. Catal. B 2001, 15: 81-92
    [125] Yiu H. H. P., Wright P. A., and Botting N. P., Enzyme immobilisation using siliceous mesoporous molecular sieves. Microporous Mesoporous Mater. 2001, 44–45: 763 – 768.
    [126] Lei C., Shin Y., Liu, J., Ackerman E. J., Entrapping Enzyme in aFunctionalized Nanoporous Support. J. Am. Chem. Soc. 2002, 124: 11242 – 11243
    [127] Burkett S. L., Sims S. D., Mann S., Synthesis of hybrid inorganic–organic mesoporous silica by co-condensation of siloxane and organosiloxane precursors. Chem. Commun. 1996, 1367-1368
    [128] Macquarrie D. J, Direct preparation of organically modified MCM-type materials. Preparation and characterisation of aminopropyl–MCM and 2-cyanoethyl–MCM. Chem. Commun.1996, 1961-1962
    [129] Lim M. H., Blanford C. F., Stein A., Synthesis and Characterization of a Reactive Vinyl-Functionalized MCM-41: Probing the Internal Pore Structure by a Bromination Reaction. J. Am. Chem. Soc.1997, 119: 4090-4091
    [130] Asefa T., Kruk M., MacLachlan M. J., Coombs N. et al, Sequential Hydroboration-Alcoholysis and Epoxidation-Ring Opening Reactions of Vinyl Groups in Mesoporous Vinylsilica. Adv. Funct. Mater. 2001, 11: 447 – 456.
    [131] MacquarrieD. J., Jackson D. B., Aminopropylated MCMs as base catalysts: a comparison with aminopropylated silica. Chem. Commun. 1997, 18:1781-1782
    [132] Macquarrie D. J., Jackson D. B., Tailland S., Utting K.A., Organically modified hexagonal mesoporous silicas (HMS)—remarkable effect of preparation solvent on physical and chemical properties. J. Mater. Chem.2001, 11:1843-1849
    [133] Lim M. H., Blanford C. F., Stein A., Synthesis of Ordered Microporous Silicates with Organosulfur Surface Groups and Their Applications as Solid Acid Catalysts. Chem. Mater.1998, 10: 467-470
    [134] Ganesan V., Walcarius A., Surfactant Templated Sulfonic AcidFunctionalized Silica Microspheres as New Efficient Ion Exchangers and Electrode Modifiers. Langmuir 2004, 20:3632-3640
    [135] Yang C., Zibrowius B., Schüth F., A novel synthetic route for negatively charged ordered mesoporous silica SBA-15. Chem. Commun. 2003, 14:1772-1773
    [136] Corriu R. J. P., Datas L., Guari Y. et al, Ordered SBA-15 mesoporous silica containing phosphonic acid groups prepared by a direct synthetic approach. Chem. Commun.2001, 763-764
    [137] Nooney R. I., Kalyanaraman M., Kennedy G.., Maginn E. J., Heavy Metal Remediation Using Functionalized Mesoporous Silicas with Controlled Macrostructure. Langmuir 2001, 17: 528-533.
    [138] Bibby A., Mercier L., Mercury(II) Ion Adsorption Behavior in Thiol-Functionalized Mesoporous Silica Microspheres. Chem. Mater. 2002, 14: 1591-1597
    [139] Yiu H. H. P., Botting C. H., Botting N. P., Wright P. A., Size selective protein adsorption on tiol-functionalised SBA-1% mesoporous molecular sieve. Phys. Chem. Chem. Phys. 2001, 3: 2983–2985.
    [140] Guari Y., Thieuleux C., Mehdi A. et al, In Situ Formation of Gold Nanoparticles within Thiol Functionalized HMS-C16 and SBA-15 Type Materials via an Organometallic Two-Step Approach. Chem. Mater. 2003, 15: 2017-2024
    [141] Corriu R. J. P., Mehdi A., Reye C., Thieuleux C., Direct Synthesis of Functionalized Mesoporous Silica by Non-Ionic Assembly Routes. Quantitative Chemical Transformations within the Materials Leading to Strongly Chelated Transition Metal Ions. Chem. Mater. 2004, 16: 159-166
    [142] Jia M., Seifert A., Berger M., Giegengack H., Schulze S., Thiel W. R., Hybrid Mesoporous Materials with a Uniform Ligand Distribution: Synthesis, Characterization, and Application in Epoxidation Catalysis. Chem. Mater 2004, 16: 877-882
    [143] Huq R., Mercier L., Kooyman P. J., Incorporation of Cyclodextrin into Mesostructured Silica. Chem. Mater. 2001, 13: 4512-4519
    [144] Liu C., Naismith N., Fu L., Economy J., Ordered mesoporous organic–inorganic hybrid materials containing microporous functional calix[8]arene amides. Chem. Commun. 2003, 2472-2473
    [145] Walcarius A., Sayen S., Gérardin C. et al, Dipeptide-functionalized mesoporous silica spheres. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2004, 234:145-151
    [146] Fowler C. E., Lebeau B., Mann S., Covalent coupling of an organic chromophore into functionalized MCM-41 mesophases by template-directed co-condensation. Chem. Commun.1998, 1825-1826
    [147] Ganschow M., Wark M., WVhrle D. et al, Anchoring of Functional Dye Molecules in MCM-41 by Microwave-Assisted Hydrothermal Cocondensation. Angew. Chem. Int. Ed. 2000, 39: 161 – 163.
    [148] Liu N., Chen Z., Dunphy D. R. et al, Photoresponsive Nanocomposite Formed by Self-Assembly of an Azobenzene-Modified Silane. Angew. Chem. Int. Ed. 2003, 42: 1731 – 1734.
    [149] Wirnsberger G., Scott B. J., Stucky G. D., pH Sensing with mesoporous thin films. Chem.Commun.2001, 119–120.
    [150] Lai C.-Y., Trewyn B. G., Jeftinija D. M. et al, A Mesoporous Silica Nanosphere-Based Carrier System with Chemically Removable CdSNanoparticle Caps for Stimuli-Responsive Controlled Release of Neurotransmitters and Drug Molecules. 2003, 125:4451-4459.
    [151] Che S., Liu Z., Ohsuna T. et al, Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429: 281 – 284.
    [152] Schmid G., B?umle M., Geerkens M. et al, Current and future applications of nanoclusters. Chem. Soc. Rev. 1999, 179-185.
    [153] Sawitowski T., Miquel Y., Heilmann A. and Schmid G., Optical Properties of Quasi One-Dimensional Chains of Gold Nanoparticles. Adv.Funct. Mater. 2001, 11:435-440
    [154] Mukherjee P., Patra C. R., Ghosh A. et al, Characterization and Catalytic Activity of Gold Nanoparticles Synthesized by Autoreduction of Aqueous Chloroaurate Ions with Fumed Silica. Chem. Mater.2002, 14: 1678-1684
    [155] Nishihata Y., Mizuki J., Akao T. et al, Self-regeneration of a Pd-perovskite catalyst for automotive emissions control. Nature 2002,418: 164 – 167
    [156] Moller K., Bein T., Inclusion Chemistry in Periodic Mesoporous Hosts. Chem. Mater.1998, 10: 2950-2963
    [157] Zhou W., Thomas J., Shephard D. et al, Ordering of Ruthenium Cluster Carbonyls in Mesoporous Silica. Science 1998, 280: 705-708
    [158] Schweyer F., Braunstein P., Estourne`s C. et al, Metallic nanoparticles from heterometallic Co–Ru carbonyl clusters in mesoporous silica xerogels and MCM-41-type materials. Chem. Commun. 2000, 1271-1272.
    [159] Han Y. J., Kim J. M. and Stucky G. D., Preparation of Noble Metal Nanowires Using Hexagonal Mesoporous Silica SBA-15. Chem. Mater.2000,12: 2068-2069.
    [160] Huang M., Choudrey A. and Yang P., Ag nanowire formation within mesoporous silica. Chem. Commun. 2000, 1063-1064
    [161] Shin H. J., Ryoo R., Liu Z. and Terasaki O., Template Synthesis of Asymmetrically Mesostructured Platinum Networks. J. Am. Chem. Soc. 2001, 123: 1246-1247.
    [162] Kang H., Jun Y., Park J. et al, Synthesis of Porous Palladium Superlattice Nanoballs and Nanowires. Chem. Mater 2000, 12: 3530-3532.
    [163] Lee K. B., Lee S. M. and Cheon J., Size-Controlled Synthesis of Pd Nanowires Using a Mesoporous Silica Template via Chemical Vapor Infiltration. Adv. Mater. 2001, 13: 517-520
    [164] Yang C., Sheu H. and Chao K. et al, Templated Synthesis and Structural Study of Densely Packed Metal Nanostructures in MCM-41 and MCM-48. Adv. Funct. Mater. 2002, 12:143-148.
    [165] Gurai Y., Thieuleux C., Mehde A. et al, In Situ Formation of Gold Nanoparticles within Thiol Functionalized HMS-C16 and SBA-15 Type Materials via an Organometallic Two-Step Approach. Chem. Mater. 2003, 15: 2017-2024.
    [166] Fukuoka A., Sakamoto Y., Guan S. et al, Novel Templating Synthesis of Necklace-Shaped Mono- and Bimetallic Nanowires in Hybrid Organic-Inorganic Mesoporous Material. J. Am. Chem. Soc.2001, 123: 3373-3374.
    [167] Hornebecq V., Antonietti M., Cardinal T. et al, Stable Silver Nanoparticles Immobilized in Mesoporous Silica. Chem. Mater. 2003, 15: 1993-1999.
    [168] Yamada T., Zhou H. S., Hiroishi D. et al, Platinum Surface Modification of SBA-15 by γ-Radiation Treatment. Adv. Mater. 2003, 15: 511-513
    [169] Chen H. R., Shi J. L., Li Y. S. et al, A New Method for the Synthesis of Highly Dispersive and Catalytically Active Platinum Nanoparticles Confined in Mesoporous Zirconia. Adv. Mater. 2003, 15: 1078-1081
    [170] Dhepe P. L., Fukuoka A., Ichikawa M., Preparation of highly dispersed RhPt alloy catalysts in mesoporous silica using supercritical carbon dioxide and selective synthesis of ethane in butane hydrogenolysis. Chem. Commun., 2003, 590-591
    [171] Crowley T. A., Ziegler K. J., Lyons D. M. et al, Synthesis of Metal and Metal Oxide Nanowire and Nanotube Arrays within a Mesoporous Silica Template. Chem. Mater. 2003, 15: 3518-3522.
    [172] Li Y., Xu D., Zhang Q. et al, Preparation of Cadmium Sulfide Nanowire Arrays in Anodic Aluminum Oxide Templates Chem. Mater. 1999, 11: 3433-3435.
    [173] Wu J., Jiang Y., Li Q. et al, Using thiosemicarbazide as starting material to synthesize CdS crystalline nanowhiskers via solvothermal route. J. Cryst. Growth 2002, 235: 421-424
    [174] Garcia C., Zhang Y., DiSalvo F., Wiesner U. et al, Mesoporous Aluminosilicate Materials with Superparamagnetic γ-Fe2O3 Particles Embedded in the Walls. Angew. Chem. Int. Ed. 2003, 42: 1526-1530
    [175] Alvaro M., Aprile C., Garcia H. et al, Synthesis of a hydrothermally stable, periodic mesoporous material containing magnetite nanoparticles, and the preparation of oriented films. Adv. Funct. Mater. 2006, 16: 1543-1548.
    [176] Hu B., Shi J. L., A novel MCM-41 templet route to Eu8(SiO4)6crystalline nanorods in silica with enhanced luminescence. J. Mater. Chem. 2003, 6: 1250-1252
    [177] Sauer J., Marlow F., Spliethoff B., Schuth F. et al, Rare Earth Oxide Coating of the Walls of SBA-15. Chem. Mater. 2002, 14: 217-224.
    [178] Landau M. V., Titelman L., Vradman L. , Wilson P. et al, Thermostable sulfated 2–4 nm tetragonal ZrO2 with high loading in nanotubes of SBA-15: a superior acidic catalytic material. Chem. Commun. 2003, 594-595.
    [179] Besson S., Gacoin T., Ricolleau C. et al, 3D Quantum Dot Lattice Inside Mesoporous Silica Films. Nano Lett. 2002, 2:409-414.
    [180] Rao R. R., Weckhuysen B., Schoonheyd R. et al, Ethylene polymerization over chromium complexes grafted onto MCM-41 materials. Chem. Commun.1999, 5: 445-446.
    [181] Looveren L. K.V., Geysen D. F., Vercruysse K. A. et al, Methylalumoxane MCM-41 as Support in the Co-Oligomerization of Ethene and Propene with [{C2H4(1-indenyl)2}Zr(CH3)2]. Angew. Chem. Int. Ed. 1998, 37: 517-520.
    [182] Mokaya R., Jones W., Efficient post-synthesis alumination of MCM-41 using aluminium chlorohydrate containing Al polycations. J. Mater. Chem.1999, 2: 555-561
    [183] Hua Z. L., Shi J. L., Zhang L. X. et al, Formation of Nanosized TiO2 in Mesoporous Silica Thin Films. Adv. Mater. 2002, 14: 830-833.
    [184] Hua Z. L., Shi J. L., Zhang L. X. et al, Formation of Nanosized TiO2 in Mesoporous Silica Thin Films. Adv. Mater. 2002, 14: 830-833.
    [185] Zhang W. H., Shi J. L., Wang L. Z. and Yan D. S., Preparation and Characterization of ZnO Clusters inside Mesoporous Silica. Chem. Mater.2000, 12: 1408-1403.
    [186] Zhu K., Yue B., Zhou W. Z. and He H., Preparation of three-dimensional chromium oxide porous single crystals templated by SBA-15. Chem. Commun. 2003, 98-99.
    [187] Zhang W. H., Shi J. L., Chen H. R. et al, Synthesis and Characterization of Nanosized ZnS Confined in Ordered Mesoporous Silica. Chem. Mater. 2001, 13: 648-654.
    [188] Zhao X. G., Shi J. L., Hu B., Zhang L. X., Hua Z. L., Confinement of Cd3P2 nanoparticles inside ordered pore channels in mesoporous silica. J. Mater. Chem. 2003, 13: 399.
    [189] Zhang Z. T., Dai S., Fan X. et al, Controlled Synthesis of CdS Nanoparticles inside Ordered Mesoporous Silica Using Ion-Exchange Reaction. J. Phys. Chem. B, 2001, 105, 6755.
    [190] Hirai T., Okubo H. and Komasawa I., Size-Selective Incorporation of CdS Nanoparticles into Mesoporous Silica. J. Phys. Chem. B 1999, 103: 4228-4230
    [191] Xue W., Liao Y. and Akins D. L., Formation of CdS Nanoparticles within Modified MCM-41 and SBA-15. J. Phys. Chem. B 2002, 106: 11127-11131.
    [192] Gao F., Lu Q., Liu X., Yan Y. and Zhao D. Y., ontrolled Synthesis of Semiconductor PbS Nanocrystals and Nanowires Inside Mesoporous Silica SBA-15 Phase. Nano Lett. 2001, 1: 743-748
    [193] Gao F., Lu Q. and Zhao D., Synthesis of Crystalline Mesoporous CdS Semiconductor Nanoarrays Through a Mesoporous SBA-15 Silica Template Technique. Adv. Mater. 2003, 15: 739-742.
    [194] Wang Y. M., Wu Z. Y., Wang H. J., Zhu J. H., Fabrication of metal oxides occluded in ordered mesoporous hosts via a solid-state grinding route: The influence of host-guest interactions. Adv. Funct. Mater. 2006, 16: 2374-2386.
    [195] Ryoo R., Joo S. H., Jun S. et al, Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J. Phys. Chem. B.1999, 103: 7743-7746.
    [196] Joo S. H., Choi S. J., Oh I., Ordered nanoporous arrays of carbonsupporting high dispersions ofplatinum nanoparticles. Nature 2001, 412: 169-172
    [197] Lu, A. H., Schmidt W., Taguchi A. et al, Taking Nanocasting One Step Further: Replicating CMK-3 as a Silica Material. Angew. Chem. Int. Ed. 2002, 41, 3489-3492
    [198] Kim T., Park I.and Ryoo R., A Synthetic Route to Ordered Mesoporous Carbon Materials with Graphitic Pore Walls. Angew. Chem. Int. Ed. 2003, 42: 4375-4379.
    [199] Holmes S. M., Foran P., Roberts E. P. L., Newton J. M., Encapsulation of metal particles within the wall structure of mesoporous carbons. Chem. Commun. 2005, 1912-1913.
    [200] Choi W. C., Woo S. I., Jeon M. K., Sohn J. M., Kim M. R., Jeon H. J., Platinum Nanoclusters Studded in the Microporous Nanowalls of Ordered Mesoporous Carbon. Adv. Mater. 2005, 17: 446-451.
    [201] Lu A. H., Li W. C., Hou Z. S., Schuth F., Molecular level dispersed Pd clusters in the carbon walls of ordered mesoporous carbon as a highly selective alcohol oxidation catalyst. Chem. Commun. 2007, 1038-1040.
    [202] Liu S. H., Lu R. F., Huang S. J. et al, Controlled synthesis of highly dispersed platinum nanoparticles in ordered mesoporous carbon. Chem. Commun. 2006, 3435-3437.
    [203] Kim J. Y., Yoon S. B., Yu J. S., Template synthesis of a new mesostructured silica from highly ordered mesoporous carbon molecular sieves. Chem. Mater. 2003, 15: 1932-1934
    [204] Lu A. H., Schmidt W., Taguchi A. et al, Taking Nanocasting One Step Further: Replicating CMK-3 as a Silica Material. Angew. Chem. Int. Ed. 2002, 41: 3489-3492
    [205] Dong A. G., Ren N., Tang Y., et al, General synthesis of mesoporous spheres of metal oxides and phosphates. J. Am. Chem. Soc. 2003, 125: 4976-4977
    [206] Roggenbuck J., Tiemann M., Ordered Mesoporous Magnesium Oxide with High Thermal Stability Synthesized by Exotemplating Using CMK-3 Carbon. J. Am. Chem. Soc. 2005, 127: 1096-1097.
    [207] Ye B., Trudeau M. and Antonelli D., Synthesis and Electronic Properties of Potassium Fulleride Nanowires in a Mesoporous Niobium Oxide Host. Adv. Mater. 2001, 13: 29-33.
    [208] Ye B., Trudeau M. and Antonelli D., Observation of a Double Maximum in the Dependence of Conductivity on Oxidation State in Potassium Fulleride Nanowires Supported by a Mesoporous Niobium Oxide Host Lattice. Adv. Mater. 2001, 13: 561-565.
    [209] Subbiah S. and Mokaya R., Transparent thin films and monoliths synthesized from fullerene doped mesoporous silica: evidence for embedded monodispersed C60. Chem. Commun. 2003, 92-93.
    [210] álvaro M., Atienzar P., Bourdelande J. L. and García H., Photochemistry of single wall carbon nanotubes embedded in a mesoporous silica matrix. Chem. Commun. 2002, 3004-3005.
    [211] Srdanov V.I., Alxneit I., Stucky G. D. et al, Optical Properties of GaAs Confined in the Pores of MCM-41. J. Phys. Chem. B 1998, 102: 3341-3344
    [212] Parala H., Winkler H., Kolbe M. et al, Confinement of CdSe Nanoparticles Inside MCM-41. Adv. Mater. 2000, 12: 1050-1055
    [213] Agger J. R., Anderson M. W., Pemble M. Z. et al, J. Phys. Growth of Quantum-Confined Indium Phosphide inside MCM-41. J. Phys. Chem. B 1998, 102: 3345-3353
    [214] Coleman N. R. B., Morris M. A., Spalding T. R. and Holmes J. D., The Formation of Dimensionally Ordered Silicon Nanowires within Mesoporous Silica. J. Am. Chem. Soc. 2001, 123: 187-188
    [215] Kozhevnikov I. V., Sinnema A., Jansen R. J. J. et al, New Acid Catalyst Comprising Heteropoly Acid on a Mesoporous Molecular Sieve MCM-41. Catal Lett. 1995, 30: 241
    [216] Cotton F.A., Wilkinson, G., Advanced Inorganic Chemistry, John Wiley & Sons: New York, 1988, 5th ed., 601.
    [217] Cotton F.A., Wilkinson, G.W., Gaus P.L., Basic Inorganic Chemistry, John Wiley and Sons: New York, 1995, 3rd Ed., 492.
    [218] Seidel A., Rittner F., Boddenberg B., Chemical Vapor Deposition of Zinc in Zeolite HY. J. Phys. Chem. B 1998, 102: 7176-7182.
    [219] Weis P., Kemper P. R., Bowers M.T., Mn+(H2)n and Zn+(H2)n Clusters: Influence of 3d and 4s Orbitals on Metal-Ligand Bonding. J. Phys. Chem. A 1997, 101: 2809-2816.
    [220] Clemmer D.E., Dalleska N.F., Armentrout P.B., Reaction of Zn+ with NO2. The gas-phase thermochemistry of ZnO. J. Chem. Phys.1991, 95: 7263-7268.
    [221] Popescu F. F., Crecu V. V., EPR study of Zn+ in calcite. Solid State Commun.1973, 13: 749-751.
    [222] Davis M. E., Ordered porous materials for emerging applications. Nature 2002, 417: 813-821.
    [223] Ashtekar S., Chilukuri S. V. V., Chakrabarty D. K., Small-Pore Molecular Sieves SAPO-34 and SAPO-44 with Chabazite Structure: A Study of Silicon Incorporation . J. Phys. Chem.1994, 98: 4878-4883.
    [224] Lok B. M., Messina C. A., Patton R.. L. et al, Silicoaluminophosphate molecular sieves: another new class of microporous crystalline inorganic solids. J. Am. Chem. Soc.1984, 106: 6092-6093.
    [225] Baerlocher C., Meier W. M., Olson D. H., Atlas of Zeolite Framework Types, Elsevier:Amsterdam, (2001), 5th Ed.,96-97.
    [226] Smith L., Cheetham A. K., Morris R. E. et al, On the Nature of Water Bound to a Solid Acid Catalyst. Science 1996, 271: 799-802.
    [227] Ebsworth E. A. V., Rankin D. W. H., Cradock S., Structural Methods in Inorganic Chemistry, Blackwell Scientific Publications: Oxford, 1991, 2nd Ed., 121.
    [228] Weckhuysen B. M., Verberckmoes A. A., Fu L. J., Schoonheydt R.. A., Zeolite-Encapsulated Copper(II) Amino Acid Complexes: Synthesis, Spectroscopy, and Catalysis. J. Phys. Chem.1996, 100: 9456-9461.
    [229] Chen J. S., Jones R. H., Natarajan S., Hursthouse M. B., Thomas J. M., A Novel Open-Framework Cobalt Phosphate Containing a TetrahedrallyCoordinated Cobalt(II) Center: CoPO4 · 0.5 C2H10N2. Angew. Chem., Int. Ed. Engl.1994, 33: 639-640.
    [230] Chen W., Yue Q., Chen C., Yuan H. M. et al, Assembly of a manganese(II) pyridine-3,4-dicarboxylate polymeric network based on infinite Mn–O–C chains. Dalton Trans. 2003, 28-30.
    [231] Dinsmore A. D., Hsu M. F., Nikolaides M. G.. et al, Colloidosomes: Selectively Permeable Capsules Composed of Colloidal Particles. Science 2002, 298:1006-1009.
    [232] Chen M., Wu L., Zhou S., You B., A Method for the Fabrication of Monodisperse Hollow Silica Spheres. Adv. Mater. 2006, 18: 801-806.
    [233] Yang M., Ma J., Zhang C. L., Yang Z. Z., Lu Y. F., General Synthetic Route toward Functional Hollow Spheres with Double-Shelled Structures. Angew. Chem. Int. Ed. 2005, 44: 6727-6730.
    [234] Li X. H., Zhang D. H., Chen J. S., Synthesis of Amphiphilic Superparamagnetic Ferrite/Block Copolymer Hollow Submicrospheres. J. Am. Chem. Soc. 2006, 128: 8382-8383.
    [235] Discher B. M., Won Y. Y., Ege D. S. et al, Polymersomes: Tough Vesicles Made from Diblock Copolymers. Science1999, 284: 1143-1146.
    [236] Schacht S., Huo Q., Voigt-Martin I. G., Stucky G.. D., Schüth F., Oil-Water Interface Templating of Mesoporous Macroscale Structures. Science1996, 273: 768-771.
    [237] Fornasieri G.., Badaire S., Backov R.et al, Mesoporous and Homothetic Silica Capsules in Reverse-Emulsion Microreactors. Adv. Mater.2004, 16: 1094-1097.
    [238] Tian B., Rinkin S. E., Dual Latex/Surfactant Templating of HollowSpherical Silica Particles with Ordered Mesoporous Shells. Langmuir 2005, 21: 8180-8187.
    [239] Zhu Y. F., Shi J. L., Chen H. R., Shen W. H., Dong X. P., A facile method to synthesize novel hollow mesoporous silica spheres and advanced storage property. Micro. Meso. Mater.2005, 84: 218-222.
    [240] Sun Q., Kooyman P. J., Grossmann J. G.. et al, The Formation of Well-Defined Hollow Silica Spheres with Multilamellar Shell Structure. Adv. Mater. 2003, 15: 1097-1100.
    [241] Fujiwara M., Shiokawa K., Tanaka Y., Nakahara Y., Preparation and Formation Mechanism of Silica Microcapsules (Hollow Sphere) by Water/Oil/Water Interfacial Reaction. Chem. Mater. 2004, 16: 5420-5426.
    [242] Rana R. K., Mastai Y., Gedanken A., Acoustic Cavitation Leading to the Morphosynthesis of Mesoporous Silica Vesicles. Adv. Mater. 2002, 14: 1414-1418.
    [243] Tan B., Lehmler H. J., Vyas S. M. et al, Fluorinated-Surfactant- Templated Synthesis of Hollow Silica Particles with a Single Layer of Mesopores in Their Shells. Adv. Mater. 2005, 17: 2368-2371.
    [244] Djojoputro H., Zhou X. F., Qiao S. Z. et al, Periodic Mesoporous Organosilica Hollow Spheres with Tunable Wall Thickness. J. Am. Chem. Soc. 2006, 128: 6320-6321.
    [245] Ulagappan N., Rao C. N. R., Mesoporous phases based on SnO2 and TiO2. Chem. Commun.1996, 7: 1685-1686.
    [246] Yada M., Takenaka H., Machida M. and Kijima T., Mesostructured gallium oxides templated by dodecyl sulfate assemblies. J. Chem. Soc. Dalton Trans.1998, 1547-1550.
    [247] Che S. A., Liu Z., Ohsuna T., Sakamoto K., Terasaki O., Tatsumi T., Synthesis and characterization of chiral mesoporous silica. Nature 2004, 429: 281-284.
    [248] Che S. A., Garcia-Bennett A. E., Yokoi T. et al, A novel anionic surfactant templating route for synthesizing mesoporous silica with unique structure. Nat. Mater. 2003, 2: 801-805.
    [249] Ryoo R., Joo S. H., Jun S., Synthesis of Highly Ordered Carbon Molecular Sieves via Template-Mediated Structural Transformation. J. Phys. Chem. B 1999, 103: 7743-7746.
    [250] Jun S., Joo S. H., Ryoo R. et al, Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc. 2000, 122: 10712-10713.
    [251] Zhang W. H., Liang C. H., Sun H. J. et al, Synthesis of Ordered Mesoporous Carbons Composed of Nanotubes via Catalytic Chemical Vapor Deposition. Adv. Mater. 2002, 14: 1776-1778.
    [252] Joo S. H., Choi S. J., Oh I. et al, Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 2001, 412: 169-172.
    [253] Zhou H. S. , Zhu S. M., Hibino M., Honma I., Ichihara M., Lithium Storage in Ordered Mesoporous Carbon (CMK-3) with High Reversible Specific Energy Capacity and Good Cycling Performance. Adv. Mater. 2003, 15: 2107-2111.
    [254] Li Z. J., Cul G.. D., Yan W. F., Liang C. D., Dai S., Fluorinated Carbon with Ordered Mesoporous Structure. J. Am. Chem. Soc. 2004, 126: 12782-12783.
    [255] Teunissen W., de Groot F. M. F., Geus J. et al, The Structure of Carbon Encapsulated NiFe Nanoparticles. J. Catal. 2001, 204: 169-174
    [256] Garcia C., Zhang Y., Disalvo F., Wiesener U., Mesoporous Aluminosilicate Materials with Superparamagnetic -Fe2O3 Particles Embedded in the Walls. Angew. Chem. Int. Ed. 2003, 42: 1526-1530
    [257] Garcia C., Zhang Y., Mahajan S., Disalvo F., Wiesener U., Self-Assembly Approach toward Magnetic Silica-Type Nanoparticles of Different Shapes from Reverse Block Copolymer Mesophases. J. Am. Chem. Soc. 2003, 125: 13310-13311.
    [258] Lu A. H., Li W. C., Keifer A., Schmidt W., Bill E., Fink G.., Fabrication of magnetically separable mesostructured silica with an open pore system. J Am Chem Soc 2004, 126: 8816–8817.
    [259] Lu A. H., Schmidt W., Matoussevitch N. et al, Nanoengineering of a Magnetically Separable Hydrogenation Catalyst. Angew. Chem. Int. Ed. 2004, 43: 4303-4304.
    [260] Lee J., Jin S., Hwang Y., Park J. G., Park H. M., Hyeon T., Simple synthesis of mesoporous carbon with magnetic nanoparticles embedded in carbon rods. Carbon 2005, 43: 2536-2543.
    [261] Valden M., Lai X., and Goodman D. W., Onset of Catalytic Activity of Gold Clusters on Titania with the Appearance of Nonmetallic Properties. Science 1998 281: 1647-1650
    [262] Deng X., Friend C. M., Selective Oxidation of Styrene on an Oxygen-Covered Au(111). J. Am. Chem. Soc. 2005, 127: 17178-17179.
    [263] Porta F., Prati L., Rossi M. et al, Metal sols as a useful tool for heterogeneous gold catalyst preparation: reinvestigation of a liquid phaseoxidation. Cata. Today 2000, 61: 165-172.
    [264] Biella S., Prati L.and Rossi M., Selective Oxidation of D-Glucose on Gold Catalyst. J. Catal. 2002, 206: 242-247
    [265] Comotti M., Pina C. D., Matarrese R., Rossi M.and Siani A., Oxidation of alcohols and sugars using Au/C catalysts: Part 2. Sugars. Appl. Catal. A 2005, 291: 204-209.
    [266] Prati L.,and Porta F., Oxidation of alcohols and sugars using Au/C catalysts: Part 1. Alcohols. Appl. Catal. A 2005, 291: 199-203.
    [267] Hughes M.D., Xu Y. J., Jenkins P. et al, Tunable gold catalysts for selective hydrocarbon oxidation under mild conditions. Nature 2005, 437: 1132-1135.
    [268] Zhao D. Y., Feng J. L., Huo Q. S. et al, Triblock Copolymer Syntheses of Mesoporous Silica with Periodic 50 to 300 Angstrom Pores. Science 1998, 279, 548.
    [269] Jun S., Joo S. H., Ryoo R. et al, Synthesis of New, Nanoporous Carbon with Hexagonally Ordered Mesostructure. J. Am. Chem. Soc. 2000, 122: 10712-10713.
    [270] Si S., Kotal A., Mandal T. K., Giri S. et al, Size-Controlled Synthesis of Magnetite Nanoparticles in the Presence of Polyelectrolytes. Chem. Mater 2004, 16: 3489-3496.
    [271] Shan F. L., Gao Z. M., Wang Y. M., Microhardness evaluation of Cu–Ni multilayered films by X-ray diffraction line profile analysis. Thin Solid Films 1998, 324: 162-164
    [272]Si S., Kotal A., Mandal T. K. et al, Size-Controlled Synthesis of Magnetite Nanoparticles in the Presence of Polyelectrolytes. Chem. Mater2004, 16: 3489-3496.
    [273] Aramendia M. A., Borau V., Garcia I. M. et al, Transformation of cyclohexene on palladium catalysts: activity and deactivation. J. Mol. Catal. A: Chem. 2000, 151: 261-269.
    [274] Phillips J., Weigle J., Herskowitz M. et al, Metal particle structure: Contrasting the influences of carbons and refractory oxides. Appl. Catal. A 1998, 173: 273-287.
    [275] Lyu S. C., Liu, B. C., Lee, C. J. et al, High-Quality Double-Walled Carbon Nanotubes Produced by Catalytic Decomposition of Benzene. Chem. Mater. 2003, 15: 3951-3954.
    [276] Ramesh P., Okazaki T., Taniguchi R. et al, Selective Chemical Vapor Deposition Synthesis of Double-Wall Carbon Nanotubes on Mesoporous Silica. J. Phys. Chem. B 2005, 109: 1141-1147
    [277] Endo M., Muramatsu H., Hayashi T. et al, Nanotechnology 'Buckypaper' from coaxial nanotubes. Nature 2005, 433: 476-476.
    [278] Ugarte D., Chatelain A., de Heer W. A., Nanocapillarity and Chemistry in Carbon Nanotubes. Science 1996, 274: 1897 - 1 899.
    [279] Sloan J., Dunin-Borkowski R. E., Hutchison J. L. et al, The size distribution, imaging and obstructing properties of C-60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem. Phys. Lett. 2000, 316: 191~198
    [280] Dujardin E., Ebbesen T. W., Hiura H. et al, Capillarity and wetting of carbon nanotubes. Science 1994, 265:1850-1852.
    [281]Ugarte D., Stockli T., Bonard J. et al, Capillarity in carbon nanotubes. In: Tanaka K, Yamabe T, Fukui K, eds. The Science and Technology of CarbonNanotubes. Netherlands: Elsevier Science Ltd, 1999, 136
    [282] Wang N., Tang Z. K., Li G. D., Chen J. S., Single-walled 4 angstrom carbon nanotube arrays. Nature 2000, 408: 50-51
    [283] Lim S., Ciuparu D., Pak C. et al, Synthesis and Characterization of Highly Ordered Co-MCM-41 for Production of Aligned Single Walled Carbon Nanotubes. J. Phys. Chem. B 2003, 107: 11048-11056.
    [284]Ciuparu D., Chen Y., Lim S. et al, Uniform-Diameter Single-Walled Carbon Nanotubes Catalytically Grown in Cobalt-Incorporated MCM-41. J. Phys. Chem. B 2004, 108: 503-507.
    [285]Endo M., Muramatsu H., Hayashi T. et al, Nanotechnology 'Buckypaper' from coaxial nanotubes. Nature 2005, 433: 476-476.
    [286]Sugai T.,Yoshida H., ShimadaT. et al, New Synthesis of High-Quality Double-Walled Carbon Nanotubes by High-Temperature Pulsed Arc Discharge. Nano Lett. 2003, 3: 769-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700