用户名: 密码: 验证码:
蛋白质的分子动力学模拟和催化机理的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文利用同源模建、分子力学、分子动力学模拟和量子化学计算等方法,对六种蛋白质体系进行了理论研究。主要内容包括:
     1.利用同源模建和分子动力学模拟,构建了人类N-乙酰唾液酸酶(hNAL)的三维结构。在此基础上进行了其与配体唾液酸、抑制剂KDO的分子对接研究。验证了hNAL对KDO的水解能力较弱,并阐明了引起水解能力差异的原因,同时指出了形成复合物过程中的关键氨基酸残基。
     2.通过同源模建和分子动力学方法,进行了人类2-氨基-3-羧基粘康酸-6-半醛脱羧酶(hACMSD)的理论研究。确定了开环形式的底物ACMS更容易与酶相互作用,并进入到酶活性位点的中心部位,并且Zn2+在酶与配体的作用过程中起到非常重要的作用。
     3.通过谷胱甘肽硫转移酶M5(GSTM5)的同源模建及分子对接研究,分别考察了五羟黄酮和利尿酸与GSTM5的结合方式,发现抑制剂五羟黄酮的抑制作用要强于利尿酸。
     4.通过天冬氨酸酰基转移酶-2(hASPA-2)的分子动力学模拟研究,并与hASPA-1结果进行比较发现形成酶与底物复合物过程中,起主要作用的为保守氨基酸残基。量子化学计算结果表明当水分子配位到锌离子后,NAA与hASPAs之间的相互作用变强。
     5.利用分子动力学和量子化学计算方法,研究了α-磷酸甘露糖酶1催化的α-D-甘露糖-1-磷酸与D-甘露糖-6-磷酸异构的反应机理。计算结果表明磷酸基团转移过程中,不同的质子化状态拥有不同的反应路径,但都同样伴有质子的迁移,并且非质子化状态更有利于产物的释放。
     6.通过同源模建和分子力学优化,得到了ScFv-B3的三维结构,预测了底物GSH的两个可能结合部位。通过分子对接研究发现,Site1相对于Site2是更有可能的GSH结合位点,并且在不含有丝氨酸的结合位点中,预测Site1的Ala180和Site2的Ala44作为潜在的可突变位点。
In recent years, along with the development of homology, molecule mechanics, dynamics, and quantum mechanics theories, and the process of calculator technique, molecule simulations have already become a main research method in the fields of biology science to analyze the interaction between receptor and ligand and to describe the catalytic mechanism.
     In our thesis, homology modeling, molecule mechanics, dynamics, and quantum mechanics methods were used to theoretically study on the potency and selectivity ligands of the proteins, the reaction mechanism ofα-Phosphomannomutase1 in both protonated and deprotonated state, and improving the GPX activity of the human single-chain Fv antibody. The main results are summarized as follows:
     1. Homology modeling and Molecular dynamics study on N-acetylneuraminate lyase
     N-acetyl-neuraminic acid (sialic acid) is an interesting high carbon sugar with important pharmaceutical implications. It plays a prominent role in numerous biological functions, including virus infections.
     In this investigation, the 3D structure of hNAL was built by homology modeling, which was based on the known crystal structure of N-acetylneuraminate lyase from E.coli. And then energy minimization and molecular dynamics were used to refine the structure. With this model, a flexible docking study was performed and the docking results indicate that the AcHN group in sialic acid can stabilize the position and orientation in active site of hNAL. Thr51 and Tyr143 may be the key amino acids residues interacting with the substrates, and Asp176 and Ser218 may help sialic acid interact with hNAL steady.
     2. Theoretical Studies on Interaction Mode Between human 2-Amino 3-carboxymuconate 6-semialdehyde Decarboxylase and Substrate and Inhibitor
     2-amino 3-carboxymuconate 6-semialdehyde Decarboxylase (hACMSD) occupies a key positition at the branching point of ACMS metabolic pathways and control the final fate of the metabolites in both pathway.
     The three dimensional structure of hACMSD was modeled and refined by using Homology modeling and Molecular dynamics. The complex structures of the substrate or inhibitor with hACMSD were obtained and investigated through ligand-receptor docking studies by means of Affinity. The binding pattern predicted by the affinity module reveals Arg47, Val48 and the catalytic Zn2+ interacted with substrate or inhibitor. By contrasting the results of the ACMS and QA, ACMS interacts more easy with ACMSD than QA.
     3. Molecular Simulation on Interaction between Glutathione S-transferase M5 and Substrate or Inhibitors
     The three dimensional structure of glutathione S-transferase (GSTM5) was modeled and refined by using Homology modeling and Molecular dynamics. The complex structures of the substrate and inhibitor, ethacrynic acid and pentahydroxyflavone, with GSTM5 were obtained and investigated through ligand-receptor docking studies by means of Affinity. The complex of GSTM5 and ligands predicted by the affinity module reveals Tyr7,Trp8,Leu13,His108,Val112 interacted with substrate or inhibitors. And the inhibition of pentahydroxyflavone is more than ethacrynic acid.
     4. 3D Structure and Catalytic Mechanism Potency Study on Aspartoacylase
     Deficiency in aspartoacylase (ASPA) is the established cause of Canavan disease (CD), a fatal progressive leukodystrophy affecting young children.
     The 3D model of the aspartoacylase-2 from human is constructed based on the crystal structure of the aspartoacylase-1. With this model, a flexible docking study is performed and the results indicate that Asp68, Asn70, Asp168, Glu178, Tyr288 and zinc ion play major roles in catalysis of hASPA-2. By contrasting the result, aspartoacylase-1 are performed the same operation. Quantum chemistry calculations show after the water coordinated to the zinc ion, the interactions between the NAA and hASPA become stronger.
     5. DFT Investigation on the Reaction Mechanism Catalyzed byα-Phosphomannomutase1 in Protonated/Deprotonated state
     Congenital disorder of glycosylation type 1a (CDG-1a) which is a congenital disease, is caused by mutations inα-Phosphomannomutase1 (α-PMM1).
     The reaction mechanism of theα-PMM1 enzyme has been investigated by means of density functional theory using the hydrid functional B3LYP.α-PMM1 catalyzes the interconversion of theα-D-mannose 1-phosphate to D-mannose 6-phosphate via a mannose-1, 6-(bis) phosphate intermediate. The quantum chemical models, which were chosen in protonated/deprotonated states models, were built on the basis of the docking result. The process of the phosphoryl group transfer from Asp19 to the mannose 6-phosphate is in different steps in the two states, but are both coupled with the protons transfer. In addition, our results support the hypothesis that the Asp19 as a nucleophile plays an important role in theα-PMM1 biology function, indicate Gln62 helps to stabilize the phosphoryl group and the structure of the substrate, and the deprotonated states is more suitable for product release.
     6. Improving GPX activity of selenium-containing human single-chain Fv antibody by site-directed mutation based on the structural analysis
     GPX is a well-known antioxidant selenoenzyme which can catalyze the reduction of a variety of hydroperoxides and consequently protect cells and other biological tissues against oxidative damage.
     In this investigation, the 3D structure of ScFv-B3 was built by homology modeling. And then energy minimization and molecular dynamics were used to refine the structure. With this model, two active sites were obtained and the Affinity was performed to obtain the complexes of the substrate GSH. Through interaction analysis, it was determined that the total interaction energy in Site 1 is more negative than that in Site 2, thus Site1 is the more likely binding site. Ala180 in Site 1 and Ala44 in Site 2 were the optimal choices for the candidate according to the principles above to improve the GPX activity. Our calculation results are good agreement with the experiment results made by the experimental cooperate team.
引文
[1]李巍.生物信息学导论[M].郑州:郑州大学出版社,2004。
    [2] BENTON D. Bioinformatics principles and potential of a new multidisciplinary tool [M]. Tibtech., 1996, 14: 261-272.
    [3]纪兆华,裴志利,管仁初,等.生物信息学在新兴学科群中崛起[J].人工智能识别技术,2007,22:1094-1096.
    [4]钟扬,赵亮,赵琼.简明生物信息学[M].北京:高等教育出版社,2001.
    [5]张春霆.生物信息学的现状与展望,The Current Status and The Prospect of Bioinformatics [R], 2000.
    [6]赵国屏.生物信息学[M].北京,科学出版社,2002.
    [7]赵南明,周海梦,等.生物物理学[M].北京:高等教育出版社,2000.
    [8] MCCAMMON J A, GELIN B R, KARPLUS M. Dynamics of folded proteins [J]. Nature, 1977, 267:585-590.
    [9] PHILLIPS D C. in Biomolecular stereodynamics II (ed. SARMA R H ) [M]. Adenien Press, Guilderland, New York, 1981.
    [10] LINDERSTROM-LAND K. Deuterium exchange between peptides and water [M]. Chem. Soc., London, 1955, 2:1-20.
    [11] FEYNMAN R P, LEIGHTON R B, SANDS M. in The Feynman lecture in physics [M]. Vol. I, 3-6. Addison-wiley, 1963.
    [12] FRAUENFELDER H, PETSKO G A, TSERNOGLOU D. Temperature-dependent X-ray diffraction as a probe of protein structural dynamics [J]. Nature, 1979, 280:558-563.
    [13] ARTYMIUK P J, BLAKE C C, GRACE D E, et al. Crystallographic studies of the dynamic properties of lysozyme [J]. Nature, 1979, 563-568.
    [14] ICHIYE T, KARPLUS M. Fluorescence depolarization of tryptophan residues in proteins: a molecular dynamics study [J]. Biochemistry, 1983, 22:2884-2893.
    [15] DOBSON C M, KARPLUS M. Internal motion of proteins: Nuclear magneticresonance measurements and dynamic simulations [J]. Methods Enzymol,1986, 131: 362-389.
    [16] SMITH J, CUSACK S, PEZZECA U, et al. Inelastic neutron scattering analysis of low frequency motion in proteins: A normal mode study of the bovine pancreatic trypsin inhibitor [J]. J. Chem. Phys. 1986, 85:3636-3654.
    [17] BRUNGER A T, BROOKS C L III, KARPLUS M. Active site dynamics of ribonuclease [J]. Proc. Natl. Acad. Sci. USA, 1985, 82: 8458-8462.
    [18] FRAUENFELDER H, HARTMANN H, KARPLUS M, et al. Thermal expansion of a protein [J]. Biochemistry, 1987, 26: 254-261.
    [19] BRUNGER A T, KURIYAN J, KARPLUS M. Crystallogrphic R factor refinement by molecular dynamics [J]. Science, 1987, 235: 458-460.
    [20]靳利霞,唐焕文.蛋白质结构预测方法简述[J].自然杂志,2001,23(4): 217-221
    [21]来鲁华等,蛋白质的结构预测与分子设计,北京大学出版社, 1993.
    [22] ROY S, SEN S. Homology modeling based solution structure of Hoxc8-DNA complex: role of context bases outside TAAT stretch [J]. J. Biomol. Struct. Dyn., 2005, 22: 707-718.
    [23] MOEGLICH A, WEINFURTNER D, MAURER T, et al. A Restraint molecular dynamics and simulated annealing approach for protein homology modeling utilizing mean angles [J]. BMC Bioinformatics, 2005, 8: 91.
    [24] SIVOZHELEZOV V, NICOLINI C. Toward a blueprint for UDP-glucose pyrophosphorylase structure/function properties: homology-modeling analyses [J]. Plant. Mol. Biol., 2004, 56: 783-794.
    [25] MALHERBE P, KRATOCHWIL N, ZENNER M T, et al. Mutational analysis and molecular modeling of the binding pocket of the metabotropic glutamate 5 receptor negative modulator 2-methyl-6-(phenylethynyl)-pyridine [J]. Mol. Pharmacol., 2003, 64: 823-832.
    [26] YASAR F, CELIK S, KOKSEL H. Molecular modeling of various peptide sequences of gliadins and low-molecular-weight glutenin subunits [J]. Nahrung., 2003, 47: 238-242.
    [27] TAKEDA-SHITAKA M, TAKAYA D, CHIBA C, et al. Protein structure prediction in structure based drug design [J]. Curr. Med. Chem., 2004, 11: 551-558.
    [28] BAKHRAT A, JURICA M S, STODDARD B L, et al. Homology modeling and mutational analysis of Ho endonuclease of yeast [J]. Genetics, 2004, 166:721-728.
    [29] ANDREINI C, BANCI L, BERTINI I, et al. Bioinformatic comparison of structures and homology-models of matrix metalloproteinases [J]. J. Proteome. Res., 2004, 3: 21-31.
    [30] LEE K W, BRIGGS J M. Molecular modeling study of the editing active site of Escherichia coli leucyl-tRNA synthetase: two amino acid binding sites in the editing domain [J]. Proteins,2004, 54: 693-704.
    [31] KUBALA M, OBSIL T, OBSILOVA V, et al. Protein modeling combined with spectroscopic techniques: an attractive quick alternative to obtain structural information [J]. Physiol. Res., 2004, 53 Suppl 1:S187-197.
    [32] ROHL C A, STRAUSS C E, CHIVIAN D, et al. Modeling structurally variable regions in homologous proteins with rosetta [J]. Proteins, 2004, 55:656-677.
    [33] LEE S C, RUSSELL A F, LAIDIG W D. Three-dimensional structure of bradykinin in SDS micelles. Study using nuclear magnetic resonance, distance geometry, and restrained molecular mechanics and dynamics [J]. Int. J. Pept. Protein. Res., 1990, 35: 367-377.
    [34] PELLEGRINI M, MIERKE D F. Threonine6-bradykinin: molecular dynamics simulations in a biphasic membrane mimetic [J]. J. Med. Chem., 1997, 40: 99-104.
    [35] BEN-TAL N, SITKOFF D, BRANSBURG-ZABARY S, NACHLIEL E, et al. Theoretical calculations of the permeability of monensin-cation complexes in model bio-membranes [J]. Biochim. Biophys. Acta., 2000, 1466: 221-233.
    [36] BADER R, BETTIO A, BECK-SICKINGER A G, et al. Structure and dynamics of micelle-bound neuropeptide Y: comparison with unligated NPY and implications for receptor selection [J]. J. Mol. Biol., 2001, 305: 307-329.
    [37] BOWIE J U, L UTHY R, EISENBERG D. A method to identify protein sequences that fold into a known three-dimensional structure [J]. Science, 1991, 253: 164-170.
    [38] JONES D T, TAYLOR W R, THORNTON J M. A new approach to protein fold recognition [J]. Nature, 1992, 358: 86-89.
    [39] NAKASHIMA H, NISHIKAWA K, OOI T. The folding type of a protein is relevant tothe amino acid composition [J]. J. Biochem., 1986, 99: 153-162.
    [40] CHOU K C, ZHANG C T. Prediction of protein structural classes [J]. CRC Critical Reviews in Biochemistry and Molecular Biology, 1995, 30(4): 275-349.
    [41] PILLARDY J, CZAPLEWSKI C, LIWO A, et al. Recent improvements in prediction of protein structure by global optimization of a potential energy function [J]. Proc. Natl. Acad. Sci. USA, 2001, 98 (5): 2329-2333.
    [42]陈凯先.计算机辅助药物设计:原理、方法及应用[M].上海:上海科学技术出版社,2000。
    [43]郑珩,王非.药物生物信息学[M].北京:化学工业出版社,2004.
    [44]孙之荣.后基因组信息学北京[M].北京:清华大学出版社,2002.
    [45] ROOS D S. Bioinformatics-Trying to swim in a sea of data [J]. Science, 2001, 291: 1260-1261.
    [46] SPENGLER S J. Bioinformatics in the information age [J]. Science, 2000, 287: 1221-1223.
    [47]陈竺,强伯勤,方福德.基因组科学与人类疾病[M].北京:科学出版社,2001.
    [48]欧阳曙光,贺福初.生物信息学:生物实验数据和计算技术结合的新领域[J].科学通报,1999, 44: 1457-1468.
    [49]马大龙.从人类基因组中发掘药物宝藏[J].生物学通报,2000, 35: 5-7.
    [50]李违章,恽榴红.生物信息学与新药研究[J].科学,1999, 51: 17-20.
    [51]郭利,王玉霞.基因组学在寻找新型抗生素中的应用[J].国外医学药学分册,2001, 28: 34-37.
    [52] BRYANT T N, et al. Computers in Microbiology [M]. IRL Press at Oxford University Press, Oxfrd: 1989.
    [53] WEINER P W, KOLLMAN P A. AMBER: assisted model building with energy refinement, A general program for modelling molecules and their interactions [J]. J. Comput. Chem.., 1981, 2: 287–303.
    [54] SCOTT W R P, H UNENBERGER P H, TIRONI I G, et al. The GROMOS biomolecular simulation program package [J]. J. Phys. Chem. A, 1999, 103: 3596–3607.
    [55] VAN GUNSTEREN W F, WEINER P K, WILKINSON A J. ComputationalSimulation of Biomolecular Systems: Theoretical and Experimental Applications [M]. ESCOM, Leiden, 1993.
    [56] BECKER O M, MACKERELL A D Jr, ROUX B, et al. Computational Biochemistry and Biophysics [M]. Marcel Dekker, New York, 2001.
    [57] M. E. Tuckerman, G. J. Martyna, Understanding modern molecular dynamics: techniques and applications, J. Phys. Chem., 2000, 104, 159–178.
    [58] HAYWARD S, KITAO A, GO- N, Harmonicity and anharmonicity in protein dynamics [J]. Proteins: Struct. Funct. Genet., 1995, 23: 177–186.
    [59] ZALOJ V, ELBER R. Parallel computations of molecular dynamics trajectories usingthe stochastic path approach [J]. Comput. Phys. Commun., 2000, 128: 118–127.
    [60] KOLLMAN P. Free energy calculations: Application to chemical and biological phenomena [J]. Chem. Rev., 1993, 93: 2395–2421.
    [61] LAMB M L, JORGENSON W. Computational approaches to molecular recognition [J]. Curr. Opin. Struct. Biol., 1997, 1: 449–457.
    [62] VAN GUNSTEREN W F, Mark A E. Validation of molecular dynamics simulations [J]. J. Chem. Phys., 1998, 108: 6109–6116.
    [63] GAO J, D. TRUHLAR G. Quantum mechanical methods for enzyme kinetics [J]. Annu. Rev. Phys. Chem., 2002, 53: 467–505.
    [1] STERNBER M J E. Protein structure prediction-a practical approach [M]. Oxford: Oxford Press, 1996.
    [2] GUSFILED D. Algorithms on strings, tress and sequences: Computer science and computational biology [M]. Cambridge: Cambridge Unversity Press, 1997.
    [3]黄韧.生物信息学网络资源与应用[M].广州:中山大学出版社,2003.
    [4] FENG D F, DOOHTTLE R F. Progressive alignment of amino acid sequences and construction of phylogenetic trees from them [J]. Methods in enzymology, 1996, 266: 368-382.
    [5] SMITH T F, WATERMAN M S. Comparison of biosequences [J]. Adv. Appl. Math., 1981, 2: 482-489.
    [6] PEARSON W R, LIPMAN D J. Improved tools for biological sequence comparison [J]. Proc. Natl. Acad. Sci. U S A, 1988, 85: 2444-2448.
    [7] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool [J]. J. Mol. Biol., 1990, 215: 403-410.
    [8]来鲁华等,蛋白质的结构预测与分子设计[M],北京大学出版社, 1993.
    [9] BUNDELL T L, SIBANDA B L, STERNBERG M J E. et al. Knowledge-based prediction of protein structures and the design of novel molecules [J]. Nature, 1987, 326: 347-352.
    [10] BUNDELL T L, CARNEY D, GARDNER S, et al. 18th Sir Hans Krebs lecture. Knowledge-based protein modelling and design [J]. Eur. J. Beiochem., 1988, 172: 513-520.
    [11] JIANG T, XU M. ZHANG M Q. Current Topic in Computational Molecular Biology [M]. Beijing: Tinghua University Press, 2002.
    [12] BUNDELL T L, SIBANDA B L, STERNBERG M J E, et al. Knowledge-based prediction of protein structures and the design of novel molecules. Nature, 1987, 326:347-352.
    [13] PEARSON W R. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods in Enzymology [J], 1990, 183: 63-98.
    [14] BACON D J, ANDERSON W F. Multiple sequence alignment [J]. J. Mol. Biol. 1990, 191: 153-160.
    [15] SCHULER G D, ALTSCHUL S F, LIPMAN D J. A workbench for multiple alignment construction and analysis [J]. Proteins: Struct. Func. Gen., 1991, 9: 180-190.
    [16] BERGER M P, MUNSON P J. A novel randomized iterative strategy for aligning multiple protein sequences [J]. Comput. Appl. Biosci. 1991, 7: 479-484.
    [17] WESSON L, EISENBERG D. Atomic solvation parameters applied to molecular dynamics of proteins in solution [J]. Protein Science, 1992, 1: 227-235.
    [18] PASCARELLA S A A P. Analysis of insertions/deletions in protein structures [J]. J. Mol. Biol., 1992, 224: 461-471.
    [18] ALLEN F H, KENNARD O. Search and Research using the Cambridge Structural Database [J]. Chemical Design Automation News, 1993, 8: 31-37.
    [19] VON FREYBERG B, RICHMOND T J, BRAUN W. Surface area included in energy refinement of proteins. A comparative study on atomic solvation parameters [J]. J. Mol. Biol., 1993, 233:275-292.
    [20] MACARTHUR M W, THORNTON J M. Conformational analysis of protein structures derived from NMR data [J]. Proteins, 1993, 17: 232-251.
    [21] DODGE C. The HSSP database of protein structure-sequence alignments and family profiles [J]. Nucleic. Acid Res., 1998, 26:313-315.
    [22] BROWNE W J, NORTH A C T, PHILLIPS D C, et al. A possible three-dimensional structure of bovine alpha-lactalbumin based on that of hen's egg-white lysozyme [J]. J. Mol. Biol. 1969, 42: 65-86.
    [23] SHOTTON D M, WATSON H C. Three-dimensional structure of tosyl-elastase [J]. Nature, 1970, 225:811-816.
    [24] GREER J. Comparative model-building of the mammalian serine proteases [J]. J. Mol. Biol. 1981, 153: 1027-1042
    [25] Discover 3.0 User Guide, Version 98.0, MSI, San Diego, 1998.
    [26] MSI manual, Forcefield-Based Simulations General Theory &Methodology, 1997.
    [27]陈凯先.计算机辅助药物设计:原理、方法及应用[M].上海:上海科学技术出版社,2000.
    [28] ANDREWS D H. The Relation Between the Raman Spectra and the Structure of Organic Molecules [J]. Phys. Rev., 1930, 36:544-554.
    [29] WESTHEIMER F H, MEYER J E. Theory of the racemization of optically active derivatives of biphenyl [J]. J. Chem. Phys. 1946, 14: 733..
    [30] HENDRICKSON J B. Molecular geometry. I. machine computation of the common rings [J]. J. Am. Chem. Soc., 1961, 83: 4537-4547
    [31] ALLINGER N L, MILLER M A, CATLEDGE F A, et al. Conformational analysis L VII. The calculation of the conformational structures of hydrocarbons by the Westheimer-Hendrick-son-Weberg method. J. Am. Chem. Soc., 1967, 89: 4345-4357.
    [32] LIFSON S, WARSHEL A. Consistent Force Field for Calculations of Conformations, Vibrational Spectra, and Enthalpies of Cycloalkane and n-Alkane Molecules [J]. J. Chem. Phys., 49: 5116.
    [33] HALL D, PAVITT N. Conformation of cyclic analogs of enkephalin. II. Analogs containing a cystine bridge [J]. Biopolymers, 1984, 23: 2325-2334.
    [34] WEINER S J, KOLLMAN P A, NGUYEN D T, et al. An all atom force field for simulations of proteins and nucleic acids [J]. J. Comp. Chem. 1986, 7: 230-252.
    [35] BRUNCK T K, WEINHOLD F. Quantum-machanical studies on the origin of barriers to internal rotation about single bonds [J]. J. Am. Chem. Soc. 1979, 101: 1700-1709.
    [36] ANDREW R L. Molecular modeling: principles and applications [M]. Addison Wesley Longman Limited, London, 1996.
    [37] MACKAY D H J, CROSS A J, HAGLER A T. Prediction of protein structure and the principles of protein conformation [M]. New York: Plenum Press, 1989.
    [38] FLECHER R, REEVES C M. Function minimization by conjugate gradients [J]. Comput. J., 1964, 7:149-154.
    [39] FLECHER R, Practical Methods of Optimization, Vol. 1, Unconstrained Optimization [M]. New York: John Wiley & Sons, 1980.
    [40] GUNSTEREN W F, KARPLUS M. A method for constrained energy minimizationof macromolecules [J]. J. Comp. Chem., 1980: 266-274.
    [41] ALDER B J, WAINWRIGHT T E. Studies in Molecular Dynamics. I. General Method [J]. J. Chem, Phys., 1959, 31: 459.
    [42] VERLET L. Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules [J].Phys. Rev., 1967, 159: 98-103.
    [43] DUAN Y, KOLLMAN A. Pathways to a protein folding intermediate observed in a 1-microsecond simulation in aqueous solution [J]. Science, 1998, 282, 740.
    [44] ZHONG Q, JIANG Q, MOORE P B, et al. Molecular dynamics simulation of a synthetic ion channel. Biophys. J., 1998, 74, 3-10.
    [45] ZHONG Q, MOORE P B, NEWNS D M, et al. Molecular dynamics study of the LS3 voltage-gated ion channel [J]. FEBS Lett., 1998, 427, 267-270
    [46] MI H, TUCKERMAN M E, SCHUSTER D I, et al. A molecular dynamics study of HIV-1 protease complexes with C60 and fullerene-based anti-viral angens [J]. Electrochem. Soc. Proc., 1999, 99, 256-269.
    [47] TUCHERMAN M E, MARTYNA G J. Understanding Modern Molecular Dynamics: Techniques and Applications [J]. J. Phys. Chem. B, 2000,104: 159-178.
    [48] BEEMAN D. Some multistep methods for use in molecular dynamics calculations [J]. J. Comp. Phys., 1976, 20: 130-139.
    [49] NOSE S. A molecular dynamics method for simulations in the canonical ensemble [J]. Molecular Physics, 1984, 53: 255-268.
    [50] NOSE S, KLEIN M L. Constant pressure molecular dynamics for molecular systems [J]. Molecular Physics, 1983, 50: 1055-1076.
    [51] HOOVER W G. Canonical dynamics: Equilibrium phase-space distributions [J]. Phys. Rev. A., 1985, 31, 1695-1697.
    [52] NOSE S, YONEZAWA F. Isothermal-isobaric computer simulations of melting and crystallization of a Lennard-Jones system [J]. J. Phys. Chem., 1986, 84, 1803-1809.
    [53]陈正隆,徐为人,汤立达.分子生物学的理论与实践[M].北京:化学工业出版社,2007.
    [54] METROPOLIS N, ROSENBLUTH A W, ROSENBLUTH M N, et al. Equation of State Calculations by Fast Computing Machines [J]. J. Chem. Phys., 1953, 21:1087.
    [55] ROSSKY P J, DOLL J D, FRIEDMAN H L. Brownian dynamics as smart Monte Carlo simulation [J]. J. Chem. Phys., 1978, 69:4628.
    [56] KIRKPATRICK S, GELATT C D, VECCHI M P. Optimization by Simulated Annealing [J]. Science, 1983, 220: 671-680.
    [57] CERR V. J. Opt. Theo. Appl., 1985, 45: 41
    [58] Koshland DEJ. Application of a theory of enzyme specificity to protein synthesis. Proc. Natl Acad. Sci. USA (1958)44: 98-114.
    [59] F. Jiang and S. H. Kim. Soft docking: matching of molecular surface cubes. J. Mol. Biol., 219:79-102, 1991.
    [60] Kuntz, I. D. Structure-based strategies for drug design and discovery. Science 1992, 257: 1078-1082.
    [61] Sybyl 6.5 Manual [M]. South Hanley Rd, Tripos Inc,St Louis, MO, USA, 1999.
    [62] KUNTZ I D, BLANEY J M, OATLEY S J, et al. A geometric approach to macromolecule-ligand interactions [J]. J. Mol. Biol., 1982, 161:269-278
    [63] SHOICHET B K, BODIAN D L, KUNTZ I D. Molecular docking using shape descriptors [J]. J. Comp. Chem., 1992, 13(3):380-397
    [64] MENG E C, SHOICHET B K, KUNTZ I D. Automated docking with grid-based energy evaluation [J]. J. Comp. Chem., 1992, 13: 123505-524
    [65] MENG E C, GSCHWEND D A, BLANEY J M, et al. Orientational sampling and rigid-body minimization in molecular docking [J]. Proteins, 1993, 17(3): 266 -278
    [66] DESJARLAIS R L, DIXON J S. A Shape- and chemistry-based docking method and its use in the design of HIV -1 protease inhibitors [J]. J. Comput. Aided Mol. Des., 1994, 8: 231–242.
    [67] GOODSELL D S, OLSON A J. Automated docking of substrates to proteins by simulated annealing [J]. Protein, 1990, 8(3):195–202
    [68] GOODSELL D S, MORRIS G M, OLSON A J. Automated docking of flexible ligands: applications of autodock [J]. J. Mol. Recongnit, 1996, 9(1):1-5
    [69] BERNSTEIN F C, KOETZLE T F, WILLIAMS G J B, et al. The protein data bank: a computer based archivalle for macromolecular structures [J]. J. Mol. Biol., 1977,112: 535—542
    [70] BOHM H J. LUDI: rule-based automatic design of new substituents for enzyeme inhibitor leads [J]. J. Comput. Aided Mol. Des., 1992, 6: 593 -606.
    [71] BORN M, OPPENHEIMER R. Zur Quantentheorie der Molekeln Ann. Phsik [J]. Ann. Phys., 1927, 84: 457-484.
    [72] Kenneth M M Jr. Curr. Opin. Struct. Biol. 1993, 3, 234-240
    [73]阎隆飞,孙之荣.蛋白质分子结构[M].北京:清华大学出版社,1999.
    [74]王志中,现代量子化学计算方法[M],长春:吉林大学出版社,1998.
    [75]唐敖庆,杨忠志,李前树,量子化学[M],北京:科学出版社, 1982.
    [76] HOHENBERG P, KOHN W. Inhomogeneous Electron Gas [J]. Phys. Rev., 1964, 136, B864-B871.
    [77] W. Kohn, L. J. Sham, Self-consistent equations including exchange and correlation effects [J]. Phys. Rev., 1965, 140:A1133 -A1138.
    [78] J.C. Slater, Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids McGraw-Hill: New York, 1974.
    [79] D. R. Salahub and M. C. Zerner, eds., The Challenge of d and f Electrons ACS: Washington, D.C. 1989.
    [80] R. G. Parr and W. Yang, Density-functional theory of atoms and molecules Oxford Univ. Press: Oxford, 1989.
    [81] J. A. Pople, P. M. W. Gill and B. G. Johnson, density-functional theory within a finite basis set, Chem. Phys. Lett., 1992, 199, 557 -560.
    [82] B. G. Johnson and M. J. Frisch, An Implementation of Analytic Second Derivatives of the Gradient-Corrected Density Functional Energy J. Chem. Phys., 1994, 100, 7429 -7432.
    [83] J. K. Labanowski, J. W. Andzelm, eds., Density Functional Methods in Chemistry, Springer-Verlag: New York, 1991: 49-60.
    [84]徐光宪,黎乐民,王德民.量子化学基本原理和从头计算法[M],北京:科学出版社, 1985.
    [85]赵学庄,罗渝然,臧雅茹,等.《化学反应动力学原理》下册[M],北京:高等教育出版社,1990.
    
    [1] KAGESHITA T, HIRAI S, KIMURA T, et al. Association between sialyl Lewis(a) expression and tumor progression in melanoma [J]. Cancer. Res., 1995, 55: 1748–1751.
    [2] VIMR E, LICHTENSTEIGER C. To sialylate, or not to sialylate: that is the question [J]. Trends. Microbiol., 2002, 10: 254–257.
    [3] SEARS P P, WONG C H, Enzyme action in glycoprotein synthesis [J]. Cell. Mol. Life. Sci., 1998, 54: 223-252.
    [4] LIN C C, LIN CH, WONG C H. Sialic acid aldolase-catalyzed condensation of pyruvate and N-substituted mannosamine: A useful method for the synthesis of N-substituted sialic acids [J]. Tetrahedron. Lett., 1997, 38: 2649-2652.
    [5] KRAGL U, GOEDDE A, WANDREY C, et al. Directed evolution of d-sialic acid aldolase to l-3-deoxy-manno-2-octulosonic acid (l-KDO) aldolase [J]. J. Chem. Soc., Perkin. Trans., 1994, 1: 119-124.
    [6] MACHAJEWSKI T D, WONG C H. The Catalytic Asymmetric Aldol Reaction [J]. Angew. Chem., Int. Ed., 2000, 39: 1352-1374.
    [7] KIM M J, HENEN W J, SWEERS H M, et al. Method for preparing N-acetylneuraminic acid [J]. J. Am. Chem. Soc., 1988, 110: 6481-6486.
    [8] WADA M, HSU C C, FRANKE D, et al. Directed evolution of N-acetylneuraminic acid aldolase to catalyze enantiomeric aldol reactions [J]. Bioorganic & Medicinal Chemistry, 2003, 11: 2091–2098.
    [9] ZHENG Q C, LI Z S, SUN M, et al. Homology modeling and substrate binding study of Nudix hydrolase Ndx1 from Thermos thermophilus HB8 [J] . Biochem. Biophys. Res. Commun., 2005, 333:881-887
    [10]郑喜亮,张红星,孙家锺, et al.双金属存在下整合酶和抑制剂5CITEP的分子对接研究[J].高等学校化学学报, 2006, 27: 1298-1302.
    [11] ZHENG Q C, LI Z S, XIAO J F, et al. Homology modeling and PAPS ligand (cofactor) binding study of bovine phenol sulfotransferase [J]. J. Mol. Model., 2005, 11: 97-104.
    [12] IZARD T, LAWRENCE M C, MALBY R L, et al. The three-dimensional structure of N-acetylneuraminate lyase from Escherichia coli [J]. Structure, 1994, 2: 361-369.
    [13] InsightII, User Guide [M], San Diego: Accelrys Inc, 2000.
    [14] InsightII, Homology User Guide [M], San Diego: Accelrys Inc, 2000.
    [15] ALTSCHUL S F, MANDDEN TL, SCHFER AA, et al. Basic local alignment search tool [J] . Nucl. Acid. Res., 1997, 25:3389-3402
    [16] SALI A, OVERINGTON J P. Derivation of rules for comparative protein modeling from a database of protein structure alignments [J]. Protein. Sci., 1994, 3: 1582–1596
    [17] SALI A, POTTERTON L, YUAN F, et al. Evaluation of comparative protein modeling by MODELLER [J]. Proteins, 1995, 23: 318–326.
    [18] SALI A. Modeling mutations and homologous proteins [J]. Curr. Opin. Biotechnol., 1995, 6: 437–451
    [19] InsightII Discover3 User Guide, [M], San Diego: Accelrys Inc, 2000
    [20] InsightII Profile-3D User Guide, [M], San Diego: Accelrys Inc, 2000
    [21] InsightII Affinity User Guide [M], San Diego: Accelrys Inc, 2000
    [22] LASKOWSKI R A, MACARTHUR M W, MOSS D S, et al. Procheck: A program to check the stereochemical quality of protein structures [J]. J. Appl. Cryst., 1993, 26: 283-219.
    [23] FRISCH M J, TRUCKS G W, SCHLEGEL H B, et al. Gaussian 03 (Revision A.1) Gaussian Pittsburgh, PA, Gaussian, Inc. 2003.
    [24] KURNASOV O, GORAL V, COLABROY K, et al. NAD biosynthesis: identification of the tryptophan to quinolinate pathway in bacteria [J]. Chem. Biol., 2003, 10: 1195-1204.
    [25] MAGNI G, AMICI A, EMANULLI M, et al. Enzymology of NAD+ synthesis [J]. Adv. Enzymol. Relat. Areas. Mol. Biol., 1999, 73: 135-182.
    [26] HASEGAWA Y, MURAKI T, TOKUYAYA T, et al. The presence of free D-serine in rat brain [J]. FEMS Microbiol. Lett., 1992, 296: 33–36.
    [27] MURAKI T., TAKI M., HASEGAWA Y., et al. Prokaryotic homologs of theeukaryotic 3-hydroxyanthranilate 3, 4-dioxygenase and 2-amino-3-carboxymuconate-6-semialdehyde decarboxylase in the 2-nitrobenzoate degradation pathway of Pseudomonas fluorescens strain KU-7 [J]. Appl. Environ. Microbiol., 2003, 69:1564-1572.
    [28] COLABORY K L, BEGLEY T P. The pyridine ring of NAD is formed by a nonenzymatic pericyclic reaction [J]. J. Am. Chem. Soc., 2005, 127: 840-841.
    [29] NISHIZUKA Y, ICHIYAMA A, HAYAISHI O. Metabolism of the benzene ring of tryptophan (mammals). II. Picolinic carboxylase (cat liver) (α-amino-α-carboxymuconate-ε-semialdehyde decarboxylase) [J]. Methods Enzymol, 1970, 17: 471-476.
    [30] WILSON R, HENDERSON L. Tryptophan-niacin relationship in Xanthomonas pruni [J]. J. Bacteriol, 1962, 85: 221-228.
    [31] ICHIYAMA A, NAKAMURAL S, KAWAI H, et al. Studies on the Metabolism of the Benzeme Ring of Tryptophan in Mammalian Tissues. II. Enzymic Formation ofα-Aminomuconic Acid from 3-Hydroxyanthranilic Acid [J]. J. Biol. Chem., 1965, 240: 740-749.
    [32] MARTYNOWSKI D, EYOBO Y, LI T F. et al. Crystal structure of alpha-amino-beta-carboxymuconate-epsilon-semialdehyde decarboxylase: insight into the active site and catalytic mechanism of a novel decarboxylation reaction [J]. Biochemistry, 2006, 45: 10412-10421.
    [33] PUCCI L, PEROZZI S, CIMADAMORE F, et al. Tissue expression and biochemical characterization of human 2-amino 3-carboxymuconate 6-semialdehyde decarboxylase, a key enzyme in tryptophan catabolism [J]. FEBS J., 2007, 274: 827-840.
    [34] ZHAO Y S, ZHENG Q C, ZHANG H X, et al. Analysis of a Three-Dimensional Structure of human Acidic Mammalian Chitinase Obtained by Homology Modeling and Ligand Binding Studies. Journal of molecular model, 2009, 15: 499-505.
    [35] MORRIS A L, MACARTHUR M W, HUTCHINSON E G, et al. Stereochemical quality of protein structure coordinates [J]. Proteins, 1992, 12: 345-364.
    [36] LU M, XIA L, LUO D, et al. Dual effects of glutathione-S-transferase pi on As2O3action in prostate cancer cells: enhancement of growth inhibition and inhibition of apoptosis [J]. Oncogene, 2004, 23(22): 3945-3952.
    [37] BERENDSEN C L, PETERS W H, SCHEFFER P G, et al. Glutathione S-transferase activity and subunit composition in transitional cell cancer and mucosa of the human bladder [J]. Urology, 1997, 49(4): 644-651.
    [38] DIRVEN H A, VAN OMMEN B, VAN BLADEREN P J, Glutathione conjugation of alkylating cytostatic drugs with a nitrogen mustard group and the role of glutathione S-transferases [J]. Chem. Res. Toxicol., 1996, 9(2): 351-360.
    [39] TEW K D. Glutathione-associated enzymes in anticancer drug resistance [J]. Cancer Res., 1994, 54(16): 4313-4320.
    [40] PICKETT B, LU Y H. Glutathione S-transferases: gene structure, regulation, and biological function [J]. Annu. Rev. Biochem., 1989, 58: 743-764.
    [41] VAN IERSEL M L, PLOEMEN J P, STRUIK I, et al. Inhibition of glutathione S-transferase activity in human melanoma cells by alpha,beta-unsaturated carbonyl derivatives. Effects of acrolein, cinnamaldehyde, citral, crotonaldehyde, curcumin, ethacrynic acid, and trans-2-hexenal [J]. Chem. Biol. Interact., 1996, 102(2): 117-132.
    [42] DE JONG J L, MOHANDAS T, TU C P. The human Hb (mu) class glutathione S-transferases are encoded by a dispersed gene family [J]. Biochem. Biophys. Res. Commun., 1991, 180(1):15-22.
    [43] PATSKOVSKY Y V, PATSKOVSKA L N, LISTOWSKY I. Functions of His107 in the catalytic mechanism of human glutathione S-transferase hGSTM1a-1a [J]. Biochemistry, 1999, 38(4): 1193-1202.
    [44] LIANG J, EDELSBRUNNER H, WOODWARD C. Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design [J]. Protein Science, 1998, 7(9): 1884-1897.
    [45] DAMBORSKY J, PEITIEK M, BANAS P, et al. Identification of tunnels in proteins, nucleic acids, inorganic materials and molecular ensembles [J]. Biotechnol. J., 2007, 2(1): 62-67
    [46] KURATA M, SUZUKI M, TAKEDA K. Effects of phenol compounds, glutathioneanalogues and a diuretic drug on glutathione S-transferase, glutathione reductase and glutathione peroxidase from canine erythrocytes [J]. Comp. Biochem. Physiol. B, 1992, 103(4): 863-867.
    
    [1] BASLOW M H. N-acetylaspartate in the vertebrate brain: metabolism and function [J]. Neurochem. Res., 2003, 28: 941–953.
    [2] BASLOW M H. Canavan’s spongiform leukodystrophy: a clinical anatomy of genetic metabolic CNS disease– An analytical review [J]. J. Mol. Neurosci., 2000, 15: 61-69.
    [3] GEORGE R L, HUANG W, NAGGAR H A, et al. Transport of N-acetylaspartate via murine sodium/dicarboxylate cotransporter NaDC3 and expression of this transporter and aspartoacylase II in ocular tissues in mouse [J]. Biochim. Biophys. Acta., 2004, 1690(1): 63-69.
    [4] TSAI G, COYLE J T. N-acetylaspartate in neuropsychiatric disorders [J]. Prog. Neurobiol., 1995, 46: 531–540.
    [5] CLARK J B. N-acetylaspartate: a marker for neuronal loss or mitochondrial dysfunction [J]. Dev. Neurosci., 1998, 20: 271-276.
    [6] MADHAVARAO C N, CHINOPOULOUS C, CHANDRASEKARAN K, et al. Characterization of the N-acetylaspartate biosynthetic enzyme from rat brain [J]. J. Neurochem., 2003, 86: 824-835.
    [7] TALLAN H H, MOORE S, STEIN W H. N-acety-L-aspartate acid in brain [J]. J. Biol. Chem., 1956, 219: 257-264.
    [8] MATALON R, MICHALS K, SEBESTA D, et al. Aspartoacylase deficiency and N-acetylaspartic aciduria in patients with Canavan disease [J]. Am. J. Med. Genet., 1988, 29(2): 463–471.
    [9] MATALON R, MICHANLS K, KAUL R. Canavan Disease: from spongy degeneration to molecular analysis [J]. J. Pediatr., 1995, 127: 511–517.
    [10] MATALON R, MICHANLS- MATALON K. Recent advances in Canavan disease [J]. Neurochem. Res., 1999, 24: 507–513.
    [11] SURENDRAN S, MICHANLS- MATALON K, QUAST M J, et al. Canavan disease: a monogenic trait with complex genomic interaction [J]. Mol. Genet. Metab., 2003, 80: 74–80.
    [12] JANSON C G, KOLODNY E H, ZENG B J, et al. Mild onset presentation of Canavan's disease associated with novel G212A point mutation in aspartoacylase gene [J]. Ann. Neurol. 2006, 59: 428-431.
    [13] ZENG B J, WANG Z H, RIBEIRL L A, et al. Identification and characterization of novel mutations of the aspartoacylase gene in non-Jewish patients with Canavan disease [J]. J. Inher. Metabol. Dis., 2002, 25: 557-570.
    [14] BASLOW M H, RESNIK T R. Canavan disease. Analysis of the nature of metabolic lesions responsible for development of observed clinical symptoms [J]. J. Mol. Neurosci., 1997, 9: 109–125.
    [15] LEONE P, JANSON C G, MCPHEE S J, et al. Global CNS gene transfer for a childhood neurogenetic enzyme deficiency: Canavan disease [J]. Curr. Opin. Mol. Ther., 1999, 1: 487– 492.
    [16] JANSON C G, ASSADI M, FRANCIS J, et al. Lithium citrate for Canavan disease [J]. Pediatr. Neurol., 2005, 33: 235–243.
    [17] MATOLON R. Canavan disease: diagnosis and molecular analysis [J]. Genet. Test. 1997, 1: 21–25.
    [18] MATOLON R, RADY P L, PLATT K A, et al. Knock-out mouse for Canavan disease: a model for gene transfer to the central nervous system [J]. J. Gene. Med., 2000, 2: 165–175.
    [19] BIRNBAUM S M, LEVINTOW L, KINGSLEY R B, et al. Specificity of amino acid acylases [J]. J. Biol. Chem., 1952, 194: 455-470.
    [20] MAKAROVA K S, GRISHIN N V. The Zn-peptidase superfamily: Functional convergence after evolutionary divergence [J]. J. Mol. Biol., 1999, 292: 11–17.
    [21] LE COP J, AN H J, LERILLA C, et al. Characterization of human aspartoacylase: the brain enzyme responsible for Canavan disease [J]. Biochemistry, 2006, 45: 5878–5884.
    [22] BITTO E, BINGMAN C A, WESNBERG G E, et al. Structure of aspartoacylase, the brain enzyme impaired in Canavan disease [J]. Proc. Natl. Acad. Sci. U S A, 2007, 104: 456–461.
    [23] LE COP J, PAVLOVSKY A, MAILIK R, et al. Examination of the mechanism ofhuman brain aspartoacylase through the bingding of an intermediate analogue [J]. Biochemistry, 2008, 47: 3484-3492.
    [24] Insight II User Guide [M], San Diego: Accelrys Inc, 2000.
    [25] ALTSCHUL S F, GISH W, MILLER W, et al. Basic local alignment search tool [J]. J. Mol. Biol., 1990, 215: 403-410.
    [26] SALI A, BLUNDELL T L. Comparative protein modeling by satisfaction of spatial restraints [J]. J. Mol. Biol., 1993, 234: 779.
    [27] SALI A, OVERINGTON J P. Derivation of rules for comparative protein modeling from a database of protein structure alignments [J]. Protein. Sci., 1994, 3: 1582-1596.
    [28] SALI A, POTTERTON L, YUAN F, et al. Evaluation of comparative protein modeling by MODELLER [J]. Protein, 1995, 23: 318-326.
    [29] SALI A. Modeling mutations and homologous proteins [J]. Curr. Opin. Biotechnol., 1995, 6: 437-451
    [30] Discover3 Program, [M], San Diego: Accelrys Inc, 2000.
    [31]Gaussian 03, Revision A.1 [M], Gaussian, Inc., Pittsburgh PA, 2003.
    [32] LASKOWSKI R A, MACARTHUR M W, MOSS D S, et al. Procheck: A program to check the stereochemical quality of protein structures [J]. J. Appl. Cryst., 1993, 26: 283-291.
    [33] Affinity Program, [M], San Diego: Accelrys Inc, 2000.
    [34] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange [J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [35] BECKE A D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction [J]. J. Chem. Phys., 1992, 96: 2155-2160.
    [36] BECKE A D. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction [J]. J. Chem. Phys., 1992, 97: 9173-9177.
    [37] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. ReV. B, 1988, 37: 785-789.
    [38] RYDE U. Carboxylate Binding Modes in Zinc Proteins: A Theoretical Study [J]. U.Biophys. J., 1999, 77: 2777-2787.
    [39] BENDTSEN J D, NIELSEN H, VON HEIJNE G, et al. Improved prediction of signal peptides: SignalP 3.0 [J]. J. Mol. Biol., 2004, 340: 783-795.
    [1] WESTPHAL V, EMMS G M, MCCRACKEN MF, et al. Functional analysis of novel mutations in a congenital disorder of glycosylation Ia patient with mixed Asian ancestry [J]. Mol. Genet. Metab., 2001, 73: 71-76.
    [2] HEYKANTS L, SCHOLLEN E, GRUNEWALD S, et al. Identification and localization of two mouse phosphomannomutase genes, Pmm1 and Pmm2 [J]. Gene, 2001, 270: 53-59.
    [3] PIRARD M, ACHOURI Y, COLLET J F, et al. Kinetic properties and tissular distribution of mammalian phosphomannomutase isozymes [J]. Biochem. J. 1999, 339: 201–207.
    [4] MATTHIJS G, SCHOLLEN E, PARDON E, et al. Mutations in PMM2, a phosphomannomutase gene on chromosome 16p13, in carbohydrate-deficient glycoprotein type I syndrome (Jaeken syndrome) [J]. Nat. Genet., 1997, 16: 88–92.
    [5] MATTHIJS G, SCHOLLEN E, VAN SCHAFTINGEN E, et al. Lack of homozygotes for the most frequent disease allele in carbohydrate-deficient glycoprotein syndrome type 1A [J]. Am. J.Hum. Genet., 1998, 62: 542–550.
    [6] NEUMANN L M, VON MOERS A, KUNZE J, et al. Congenital disorder of glycosylation type 1a in a macrosomic 16-month-old boy with an atypical phenotype and homozygosity of the N216I mutation [J]. Eur. J. Pediatr., 2003, 162: 710-713.
    [7] VAN SCHAFTINGEN E, JAEKEN J. Phosphomannomutase deficiency is a cause of carbohydrate-deficient glycoprotein syndrome type I [J]. FEBS Lett., 1995, 377: 318–320.
    [8] WESTPHAL V, SRIKRISHNA G, FREEZE H H. Congenital disorders of glycosylation: have you encountered them? [J]. Genet. Med., 2000, 2: 329-337.
    [9] MARQUARDT T, HASILIK M, NIEHUES R, et al. Mannose therapy in carbohydrate-deficient glycoprotein syndrome type I: First results from a German multicenter study [J]. Amino Acids, 1997, 12, 389.
    [10] KRISTIANSSON B, BOURULF S, CONRADI N, et al. Intestinal, pancreatic and hepatic involvement in carbohydrate-deficient glycoprotein syndrome type I [J]. J.Pediatr. Gastroenterol. Nutr., 1998, 27: 23–29.
    [11] CARCHON H, VAN SCHAFTINGEN E, MATTIJS G, et al. Carbohydrate-deficient glycoprotein syndrome type IA (phosphomannomutase-deficiency) [J]. Biochim. Biophys. Acta., 1999, 1455: 155–165.
    [12] SILVAGGI N R, ZHANG C, LU Z, et al. The X-ray crystal structures of human alpha-phosphomannomutase 1 reveal the structural basis of congenital disorder of glycosylation type 1a [J]. J. Biol. Chem., 2006, 281: 14918–14926.
    [13] DAI J B, LIU Y, RAY W J Jr, et al. The crystal structure of muscle phosphoglucomutase refined at 2.7-angstrom resolution [J]. J. Biol. Chem., 1992, 267: 6322–6337.
    [14] NAUGHT L E, TIPTON P A. Kinetic mechanism and pH dependence of the kinetic parameters of Pseudomonas aeruginosa phosphomannomutase / phosphoglucomutase [J]. Arch. Biochem. Biophys., 2001, 396: 111–118.
    [15] ORVISKY E, STUBBLEFIELD B, LONG R T, et al. Phosphomannomutase activity in congenital disorders of glycosylation type Ia determined by direct analysis of the interconversion of mannose-1-phosphate to mannose-6-phosphate by high-pH anion-exchange chromatography with pulsed amperometric detection [J]. Anal. Biochem., 2003, 317: 12–18.
    [16] CHENG Y, ZHANG Y, MCCAMMON J A. How does the cAMP-dependent protein kinase catalyze the phosphorylation reaction: an ab initio QM/MM study [J]. J. Am. Chem. Soc., 2005, 127: 1553-1562.
    [17] CORMINBOEUF C, HU P, TUKERMAN M E, et al. Unexpected deacetylation mechanism suggested by a density functional theory QM/MM study of histone-deacetylase-like protein [J]. J. Am. Chem. Soc., 2006, 128: 4530-4531.
    [18] CHEN S L, MARINO T, FANG W H, et al. Peptide hydrolysis by the binuclear zinc enzyme aminopeptidase from Aeromonas proteolytica: a density functional theory study [J]. J. Phys. Chem. B, 2008, 112: 2494–2500.
    [19] Insight II User Guide [M], San Diego: Accelrys Inc, 2000.
    [20] Discover3 User Guide, [M], San Diego: Accelrys Inc, 2000.
    [21] BECKE A D. Density-functional thermochemistry. III. The role of exact exchange[J]. J. Chem. Phys., 1993, 98: 5648-5652.
    [22] BECKE A D. Density-functional thermochemistry. I. The effect of the exchange-only gradient correction [J]. J. Chem. Phys., 1992, 96:2155-2160.
    [23] BECKE A D. Density-functional thermochemistry. II. The effect of the Perdew–Wang generalized-gradient correlation correction [J]. J. Chem. Phys., 1992, 97: 9173-9177.
    [24] LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys ReV B, 1988, 37: 785-789.
    [25] Gaussian 03, Revision A.1 [M], Gaussian, Inc., Pittsburgh PA, (2003).
    [26] VELICHKOVA P, HIMO F. Theoretical study of the methyl transfer in guanidinoacetate methyltransferase [J]. J. Phys. Chem. B, 2006, 110: 16-19.
    [27] VELICHKOVA P, HIMO F. Methyl transfer in glycine N-methyltransferase. A theoretical study [J]. J. Phys. Chem. B, 2005, 109: 8216-8219.
    [28] HIMO F. Quantum chemical modeling of enzyme active sites and reaction mechanisms [J]. Theor. Chim. Acc., 2006, 116: 232-240.
    [29] CURTISS L A, RAGHAVACHARI K, REDFERN P C, et al. Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation [J]. J. Chem. Phys., 1997, 106: 1063-1079.
    [1] VAUGHAN M. Oxidative modification of macromolecules minireview series [J]. J. Biol. Chem., 1997, 272: 18513.
    [2] HALLIWELL B, GUTTERIDGE J M. The importance of free radicals and catalytic metal ions in human diseases [J]. Mol. Aspects Med., 1982, 8: 89-193.
    [3] DOROSHOW J H. Glutathione peroxidase and oxidative stress [J]. Toxicol. Lett., 1995, 82-83:395-398.
    [4] ARAI M, IMAI H, KOUMURA T, et al. Mitochondrial phospholipid hydroperoxide glutathione peroxidase plays a major role in preventing oxidative injury to cells [J]. J. Biol. Chem., 1999, 274: 4924-4933.
    [5] MILLS G C. Hemoglobin catabolism. I. glutathione peroxidase, an erythrocyte enzyme which protects hemoglobin form oxidative breakdown [J]. J. Biol. Chem., 1957, 229: 189-197.
    [6] TAPPEL A L. Free-radical lipid peroxidation damage and its inhibition by vitamin E and selenium [J]. Fed. Proc., 1965, 24: 73-78.
    [7] FLOHE L, CUNZLER W A, SCHOCK H H. Glutathione peroxidase: a selenoenzyme [J]. FEBS Lett., 1973, 32: 132-134.
    [8] TAPPEL A L, in: MUTH O H, OLDFIELD J E, et al. (Eds), Selenium in biomedicine [M]. AVI Publishing Company, Westport Conn, 1967: 345-361.
    [9] OH S H, GANTHER H E, HOEKSTRA W G. Selenium as a component of glutathione peroxidase isolated from ovine erythrocytes [J]. Biochemistry, 1974, 13: 1825-1828.
    [10] BRODERICK D J, DEAGEN J T, WHANGER P D. Properties of glutathione peroxidase isolated from human plasma [J]. J. Inorg. Biochem., 1987, 30: 299-308.
    [11] TAKAHASHI K, AVISSAR N, WHITIN J, et al. Purification and characterization of human glutathione peroxidase:a selenoglycoprotein distinct from the known cellular enzyme [J]. Arch. Biochem. Biophys., 1987, 256: 677–686.
    [12] STADTMAN T C. Selenocysteine [J]. Annu. Rev. Biochem., 1996, 65: 83-100.
    [13] HUANG X, DONG Z Y, LIU J Q, et al. Selenium-mediated micellar catalyst: an efficient enzyme model for glutathione peroxidase-like catalysis [J]. Langmuir 2007,23: 1518–1522.
    [14] CASI G, ROELFES G, HILVERT D. Selenoglutaredoxin as a glutathione peroxidase mimic [J]. Chembiochem 2008, 9: 1623–1631.
    [15] LIU L, MAO S Z, LIU X M, et al.. Functional mimicry of the active site of glutathione peroxidase by glutathione imprinted selenium-containing protein [J]. Biomacromolecules, 2008, 9: 363–368.
    [16] YAN F, YANG W K, LI X Y, et al. A trifunctional enzyme with glutathioneS-transferase, glutathione peroxidase and superoxide dismutase activity [J]. Biochim. Biophys. Acta., 2008, 1780: 869–872.
    [17] Insight II User Guide [M], San Diego: Accelrys Inc, 2000.
    [18] SALI A, BLUNDELL T L. Comparative protein modeling by satisfaction of spatial restraints [J]. J. Mol. Biol., 1993, 234: 779.
    [19] Discover3 Program, [M], San Diego: Accelrys Inc, 2000.
    [20] Profile-3D User Guide, [M], San Diego: Accelrys Inc, 2000.
    [21] LASKOWSKI R A, MACARTHUR M W, MOSS D S, et al. Procheck: A program to check the stereochemical quality of protein structures [J]. J. Appl. Cryst., 1993, 26: 283-291.
    [22] Binding Site Analysis User Guide, [M], San Diego: Accelrys Inc, 2000.
    [23] Affinity Program, [M], San Diego: Accelrys Inc, 2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700