用户名: 密码: 验证码:
自锚式斜拉—悬吊协作体系桥动力响应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自锚式斜拉—悬吊协作体系桥作为一种新型的桥梁结构形式,具备了传统的斜拉—悬吊协作体系桥的诸多优点,而且由于庞大锚碇的取消,更好的适应了深海软土地基的建设,在不良地质环境条件下具有强劲的竞争力,目前已被工程界所采纳。但从已有的文献看,对这种桥型动力性能的研究颇为少见。本文结合以自锚式斜拉—悬吊协作体系桥为研究主体的交通部西部交通建设科技项目“斜拉—悬索协作体系桥梁的研究”这一科研课题,以拟建的大连港跨海大桥为工程背景,对该新型结构体系的动力特性及地震和抖振响应行为进行了深入的研究,主要工作如下:
     (1)自锚式斜拉—悬吊协作体系桥的动力特性主要包括体系的自振频率和主振型,它是该体系桥进行动力响应分析的前提和基础。通过建立空间有限元计算模型,对采用自锚式斜拉—悬吊协作体系的大连港跨海大桥的动力特性进行了分析,并与相同跨径和结构参数的地锚式斜拉—悬吊协作体系桥进行了对比研究,总结了自锚式斜拉—悬吊协作体系桥动力特性的新特点并揭示了其原因。同时,针对主跨主缆易于振动的特点提出了采用斜向交叉拉索的抑振措施并发现其合理的设置位置应与结构体系的动力特性相匹配,就分析实例而言其最优设置位置为主跨0.2875跨度处而不是普通悬索桥的最优设置位置0.25跨度处。此外,还研究了主梁不同的约束方式、辅助墩的设置情况、恒载、加劲梁刚度、主塔刚度等结构参数的变化对自锚式斜拉—悬吊协作体系桥动力特性的影响,就其影响规律作了详细的讨论。
     (2)引入精确高效的虚拟激励法,对自锚式斜拉—悬吊协作体系桥在随机地震荷载作用下的地震响应进行了系统的研究。重点考察了P波、SH波和SV波这三种类型地震波作用下考虑多点激励和地震动的空间变化效应以及阻尼的变化对该新型体系内力和位移峰值响应的影响。以大连港跨海大桥为例,基于由规范反应谱生成的当量功率谱密度函数,对比分析了多点一致激励和非一致激励下其地震响应的特点和规律,所得结论为该新型协作体系桥的抗震设计提供了有价值的参考。此外,通过与地锚式斜拉—悬吊协作体系桥的地震响应进行对比,揭示了由于主缆锚固方式的不同造成两种体系地震响应的差异。
     (3)基于主梁承受较大的轴压可能使大跨径自锚式斜拉—悬吊协作体系桥的非线性行为更为复杂的考虑,采用人工生成的地震波,对大连港跨海大桥在纵向、竖向和横向地震波作用下进行了线性和非线性地震响应研究,对比分析了线性和非线性条件下主梁、主塔和边墩等主要控制截面的内力和位移响应时程结果,并对其影响规律进行了详细地讨论。由于时域分析采用精细逐步积分格式,使计算结果更加精确。
     (4)对前人在ANSYS中进行抖振响应时域分析的方法作了改进,并在此基础上利用ANSYS软件的Matrix27单元具有开放式的特点结合APDL语言进行二次开发获得了一种更为精细化的在ANSYS中进行大跨度桥梁结构抖振响应时域分析的实用方法。继而重点研究了结构几何非线性、侧向气弹效应、气动导纳、自然攻角及缆索上脉动风等因素对自锚式斜拉—悬吊协作体系桥抖振响应的影响。结果表明,以上各因素对该新型体系桥抖振响应结果的精确性具有不容忽视的影响,须认真对待。其中要特别注意的是,缆索上的脉动风引起了主缆的振动并与主梁产生耦合振动,其对自锚式斜拉—悬吊协作体系桥主梁的影响比对普通悬索桥主梁的影响要大。
As a new type of bridge, self-anchored cable-stayed suspension bridge has not only some advantages of traditional cable-stayed suspension bridge, but also is more adaptive to being built in deeper sea and soft soil base owing to canceling giant anchor block, so is highly competitive under bad geologic conditions and has been adopted by engineering filed so far. However, there is little research on dynamic behavior for the type of bridge from the documents that have existed. Combined the scientific research question, i.e. the study on cable-stayed suspension bridge which is scientific and technological item of Ministry of Communciation for traffic construction of west region with the engineering background of Dalian harbor across sea bridge, the dynamic characteristic and seismic response as well as buffeting response of the new structural system are investigated in this dissertation, the main research work covers the following aspects:
     (1) Dynamic characteristics of self-anchored cable-stayed suspension bridge mainly include natural vibration frequencies and principal modes, which are the base and precondition of dynamic response analysis for the kind of the system bridge. Dynamic characteristics of Dalian harbor across sea bridge, belonging to self-anchored cable-stayed suspension system, are analyzed and compared with those of earth-anchored cable-stayed suspension bridge with the same span and structure parameters by using spatial finite element model, some new traits of dynamic characteristics for the system bridge are summarized and the reasons are discovered. Meanwhile, the vibration-restraining measure setting intersecting inclined cable, aiming at the trait of being subjected to vibration of the main cables at main span, is proposed and finds that the reasonable setting position should match the dynamic characteristics of the structural system. As for as the example is concerned, the best setting position is not 0.25 position but 0.2875 position of main span length. Besides, effects on dynamic characters due to different restriction ways to girder, setting conditions of accessorial piers, varieties of dead load and rigidity of stiffing girder as well as stiffness of tower are studied, and the influence regulations are discussed in detail.
     (2) By applying highly efficient pseudo excitation method, the dissertation analyzes random seismic response of self-anchored cable-stayed suspension bridge under P. wave, SH wave and SV wave excitation and the influences on the peak values of internal forces and displacements of some factors such as multiple-support excitation and seismic spatial effect and varieties of damping ratio are considered. Subjected to multiple-support uniform and non-uniform excitation, the traits and regulations of seismic response for Dalian harbor across sea bridge are compared on basis of the equivalent power spectrum density function made by criterion response spectrum, conclusions drawn provide some valuable references for the anti-seismic design of the new type of bridge. Beside, through the comparison with the seismic response of earth-anchored cable-stayed suspension bridge, the reason that the different anchored measures of main cables lead to the differences of seismic response between two systems is revealed.
     (3) Based on the consideration that the nonlinear behaviors of self-anchored cable-stayed suspension bridge will become more complex due to huge axial pressure applied on beam, four groups of artificial seismic waves are utilized to study the linear and nonlinear seismic response of Dalian harbor across sea bridge under longitudinal, vertical and lateral seismic excitation, and the response time histories of internal forces and displacements of controlling section such as main beam, tower, side piers are analyzed and compared in the condition of linear and nonlinear behavior. The effect regulation is discussed in detail. Since the HPD(High Precision Direct integration) method is applied in time domain analysis, the results are more accurate. Conclusions drawn provide some valuable references for the anti-seismic design of the new type of bridge.
     (4) On basis of improving on the former method of time domain buffeting response analysis carried out in ANSYS software, combined the opened trait of Matrix27 element with APDL language, the dissertation obtains a particular and applied kind of method which performs time domain buffeting response analysis of long span bridge in ANSYS software. Then, effects on buffeting response of some factors such as geometrical nonlinear, lateral aerodynamic memory effect, aerodynamic admittance, initial attack angle and fluctuating wind of cables are mainly researched. The results reveal that the above factors have a considerable impact on the precision of buffeting response for the structural system. It is notable in especial that fluctuating wind of cables causes the vibration of main cables and coupling vibration with stiffing girder, which has a bigger effect on beam of self-anchored cable-stayed suspension bridge than this of general suspension bridge.
引文
[1] 刘恢先.唐山大地震震害.北京:地震出版社,1986.
    [2] 胡聿贤,谢礼立,赵振东.城市与工程减灾基础研究报告.北京:中国地震局地球物理研究所,哈尔滨:中国地震局工程力学研究所,1998.
    [3] 谢礼立,罗学海.国际减轻自然灾害十年和地震工程研究的任务,地震工程与工程振动,1990,10(4):101-108.
    [4] 袁一凡,陈永.日本阪神大震灾在应急救灾上的几点教训.自然灾害学报,19.95,4(4):53-61.
    [5] 范立础.桥梁抗震.上海:同济大学出版社,1997
    [6] 李国豪主编,桥梁结构稳定与振动.北京:中国铁道出版社,1992.
    [7] Simiu E, Scanlan R H. Wind effects on structures. Third edition. New York: John Wiley and Sons, 1996.
    [8] 楼庄鸿,丁明杰.Tacoma海峡桥的空气动力学—60年后.2001,21(3):18-23.
    [9] 王伯惠.斜拉—悬索协作体系桥.辽宁省交通高等专科学报学校学报.2000,2(3):1-7.
    [10] 王伯惠.伶仃洋三大航道桥桥型方案探讨(一)伶仃西桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,1999:555-565.
    [11] 王伯惠.伶仃洋三大航道桥桥型方案探讨(二)伶仃东桥.中国公路学会桥梁和结构工程学会一九九九年桥梁学术讨论会,厦门,1999:565-577.
    [12] 肖汝诚,贾丽君,薛二乐等.斜拉—悬索协作体系的设计探索.土木工程学报.2000,33(5):46-51.
    [13] 肖汝诚,项海帆.斜拉—悬吊协作体系桥力学特性及其经济性能研究.中国公路学报,1999,12(3):43-48.
    [14] 蒙云,上官兴,马春生等.伶仃洋西航道1000M跨径吊拉组合桥方案设计.中国土木工程协会桥梁及结构工程分会第十三届年会,上海,1998,11.
    [15] 尼尔斯J·吉姆辛著.姚玲森,林长川译.缆索承重桥梁.北京:人民交通出版社,1992.3.
    [16] Niels J.Gimsing. Cable Supported Bridges. Chichester: John Wiley, 1997.
    [17] M.Irvine. Cable Structures.New York:Dover. 1992.
    [18] Manabu Ito. Cable-supported steel bridge: design problem and solutions. Journal of construct steel research. 1996, 39(1): 69-84.
    [19] Michel Virlogeux. Recent evolution of cable-stayed bridges [J]. Engineering Structures. 1999, 39(5): 737-755.
    [20] 雷俊卿,郑明珠,徐恭义.悬索桥设计.北京:人民交通出版社,2002.
    [21] 大连理工大学土木建筑设计研究院.大连庄河建设大桥施工图设计,2005.10.
    [22] 大连理工大学土木建筑设计研究院桥梁研究所.大连市跨海大桥可行性研究报告,2005.12.
    [23] 李国豪主编.工程结构抗震动力学.上海:上海科学技术出版社,1980
    [24] 李国豪主编,桥梁结构稳定与振动.北京:中国铁道出版社,1992
    [25] 胡聿贤.地震工程学.北京:地震出版社,1981
    [26] 范立础,胡世德,叶爱君.大跨度桥梁抗震设计.北京:人民交通出版社,2001
    [27] 交通部公路规划设计院.公路工程抗震设计规范JTJ004—89.北京:人民交通出版社,1990.
    [28] 朱位秋.随机振动.北京:科学出版社,1992.
    [29] 星谷胜著,常宝琦译.随机振动分析.北京:地震出版社,1977.
    [30] D E纽兰著,方同译.随机振动与谱分析概论.北京:机械工业出版社,1980.
    [31] 庄表中.非线性随机振动理论及应用.杭州:浙江大学出版社,1986
    [32] 徐昭鑫.随机振动.北京:高等教育出版社,1990
    [33] 俞载道,曹国敖.随机振动理论及其应用.上海:同济大学出版社,1988
    [34] 钟万勰.应用力学对偶体系.北京:科学出版社,2002.
    [35] 钟万勰.一个高效结构随机响应算法系列.自然科学进展—国家重点实验室通讯,1996,6(4):391—401.
    [36] 林家浩.随机地震响应的确定性算法.地震工程与工程振动,1985,5(1):89-94.
    [37] 林家浩,张亚辉.受非均匀调制演变随机激励结构响应快速精确计算.计算力学学报,1997,1(14):2-8.
    [38] 林家浩,林少培,钟万勰.固定式海洋平台结构分析程序DASOS-J(D)的动力分析策略.计算结构力学及其应用.1985,2(3):37-44.
    [39] 林家浩.随机地震响应功率谱快速算法.地震工程与工程振动,1990,10(4):38-46.
    [40] 林家浩.多相位输入结构随机响应.振动工程学报,1992,5(1):73-77.
    [41] 林家浩.非平稳随机地震响应的精确高效算法.地震工程与工程振动,1993,13(1):24-29.
    [42] 林家浩.关于虚拟激励法与结构随机响应的注记.计算力学学报,1998,15(2):217-223.
    [43] 林家浩,沈为平,F.W.威廉斯.受演变随机激励结构响应的精细逐步积分法.大连理工大学学报,1995,35(5):600-605.
    [44] 林家浩,张亚辉,赵岩.大跨度结构抗震分析方法及近期进展.力学进展,2001,31(3):350-360.
    [45] Lin J H, Willams F W, Zhang W S. A new approach to multi-excitation stochastic seismic response. Microcomputers in Civil Engineering.1993,8(4):283-290.
    [46] Lin J H, Zhang W S, Willams F W. Pseudo excitation algorithm for non-stationary random seismic responses. Engineering Structures, 1994,16(4):270-276.
    [47] Lin Jiahao, Zhang Wenshou, Li Jianjun. Structure responses to arbitrary coherent stationary random excitation. Computers&Structures,1994,50(5);629-634.
    [48] Lin J H, Willams F W. Computation and analysis of multi-excitation random seismic response. Engineering Computations, 1992,9:561-574.
    [49] Lin J H, Shen W P . Williams F W. A high precision direct integration scheme for non-stationary random seismic responses of non-classically damped structures. Int Journal Structure Engineering and Mechanics, 1995,3(3):215-228.
    [50] 钟万勰.结构动力学的精细时程积分法.大连理工大学学报,1994,34(2):131-136.
    [51] 林家浩,钟万勰等.结构非平稳随机响应方差矩阵的直接精细积分计算.振动工程学报,1999,12(1):1—8.
    [52] 钟万勰,林家浩等.大跨度桥梁分析方法的一些进展.大连理工大学学报,2000,40(2):127—135.
    [53] 苗家武,胡世德,范立础.大型桥梁多点激励效应的研究现状与发展.同济大学学报,1999,27(2):189—193.
    [54] 赵灿晖.大跨度钢管混凝土拱桥的地震响应研究:(博士学位论文).成都:西南交通大学,2001.
    [55] 张亚辉.复杂结构在多种荷载工况下的屈曲及动力分析:(博士学位论文).大连:大连理工大学,1999.
    [56] 赵岩.桥梁抗震的线性/非线性分析方法研究:(博士学位论文).大连:大连理工大学,2003.
    [57] 刘春城.混凝土自锚式悬索桥三维地震反应研究:(博士学位论文).大连:大连理工大学,2003.
    [58] Yamamura N, Hiroshi Tanaka. Response analysis of flexible MDF systems for multiple-support excitations. EESD, 1990,19:345-357.
    [59] Berrah M K, Eduardo Kausel. A modal combination rule for spatially varying seismic motions.EESD, 1993,22:791-800.
    [60] Kiureghian A D, Neuenhofer A. Response spectrum method for multi-support seismic excitaions. Earthquake Engineering and Structural Dynamics, 1992,21:713-740.
    [61] Kiureghian A D, Neuenhofer A. A discussion on seismic random vibration analysis of multi-support seismic excitations. Journal of Engineering Mechanics, 1995,121:1037.
    [62] Yutaka Nakamura, Kiureghian A D, David Liu, Multiple-support response spectrum analysis of the golden gate bridge. Berkeley: University of California at Berkeley, 1993.
    [63] Ernesto H Z, Vanmarcke E H. Seismic random vibration analysis of multi-support structural systems. ASCE, Journal of Engineering Mechanics, 1994,120:1107-1128.
    [64] Zavoni E H,Vanmarcke E H. Seismic random-vibration analysis of multi-support structural systems. Journal of Engineering Mechanics,ASCE, 1994,120(5): 1107-1128.
    [65] Harichandran R S, Vanmarcke E H. Stochastic variation of earthquake ground motion in space and time. Journal of Engineering Mechanics,ASCE, 1986,105(2):217-231.
    [66] Corotis.R.B, Vanmarcke.E.H. First passage of nonsationary random process[J]. ASCE, Journal of Engineering Mechanics Division, 1972,98(5): 1107-1120.
    [67] Vanmarcke.E.H., Lee.G.C. On the distribution of the first-passage time for normal stationary random processes. Application of Mechanics, 1975,42:1254-1265.
    [68] 刘洪兵.大跨度斜拉桥多支承激励地震响应分析.土木工程学报,2001,34(6);38-44.
    [69] 刘洪兵.多支承激励地震响应分析的简化反应谱法.中国公路学报,2002,15(1):34-37.
    [70] ALY S.Nazmy. Nonlinear-linear earthquake-response analysis of long-span cable-stayed bridges: theory. Earthquake Engineering and Structural Dynamics. 1990.vol. 19, 45-62.
    [71] ALY S.Nazmy. Nonlinear-linear earthquake-response analysis of long-span cable-stayed bridges:applications. Earthquake Engineering and Structural Dynamics. 1990.vol. 19, 63-76.
    [72] A.M.Abdel-Ghaffar.and ALY S.Nazmy. 3-D nonlinear seismic behaviour of cable-stayed bridges. Journal of structural Engineering, 1991, 117 (11): 3456-3476.
    [73] ALY S.Nazmy and A.M.Abdel-Ghaffar. Seismic responses analysis of cable-stayed bridges subjected to uniform and muliple-support excitations.Report No.87-SM-1,Department of Civil Engineering, Princeton University, 1987.
    [74] Nazmy A S, A.M.Abdel-Ghaffar. Effects of ground motion spatial variability on the response of cable-stayed bridges. EESD, 1992,21 (1):1-20.
    [75] A.M.Abdel-Ghaffar. Vertical seismic behaviour of suspension bridge[J]. Earthquake Engineering and Structural Dynamics. 1983.vol. 11,1-19.
    [76] A.M.Abdel-Ghaffar. Suspension bridge response to multiple-support excitations. Journal of the Engineering Mechanics Division,ASCE 1982, 108 (2):417-435.
    [77] A.M.Abdel-Ghaffar. Vertical vibration analysis of suspension bridges. Journal of the structure engineering division,ASCE 1980, 106 (10):2053-2075.
    [78] A.M.Abdel-Ghaffar. Free lateral vibrations of suspension bridges, Journal of Structure Engineering ,ASCE, 1978,104(3):503-525.
    [79] A M.Abdel-Ghaffar. Suspension bridge vibration. Continuum formulation. Journal of the Engineering Mechanics, ASCE, 1982,t08(6):1215-1236.
    [80] 项海帆.斜张桥在行波作用下的地震反应分析.同济大学学报,1983,11(2):1-8.
    [81] 范立础,王君杰,陈玮.非一致地震激励下大跨度斜拉桥的响应特征.计算力学学报,2001,18(3):358-363.
    [82] 陈幼平,周宏业.斜拉桥地震反应的行波效应.土木工程学报,1996,29(6);61-67.
    [83] 陈幼平,周宏业.斜拉桥地震反应特性.中国铁道科学,1996,17(1);1-8.
    [84] 陈淮等.大跨度斜拉桥动力特性分析.计算力学学报,1997,14(1):57-63.
    [85] 朱宏平,唐家祥.斜拉桥动力分析的三维有限元模型.振动工程学报,1998,11(1):121-126.
    [86] 李建中,袁万城.斜拉桥减震耗能体系非线性纵向地震反应分析.中国公路学报,1998,11(1):71—76.
    [87] 杨玉民,袁万城,范立础.大跨斜拉桥横向地震反应及其分形特征.同济大学学报,2001,29(1):15—19.
    [88] 郭永辉,贺国京.桥梁在多点激振下的非线性响应.长沙铁道学院学报,2000,18(2):9—12.
    [89] 邹立华,袁薇等.单索面斜拉桥考虑几何非线性地震反应分析.甘肃工业大学学报,1997,23(1):83—87.
    [90] 白国良等.咸阳渭河大桥斜拉桥结构地震反应分析.西安建筑科技大学学报,2000,32(4):330-333.
    [91] 刘春城,张哲,黄才良.任意荷载激励下考虑局部效应的斜拉桥结构动力响应分析.公路交通科技,2002,19(5);70-73.
    [92] 邱新林.大跨斜拉桥空间非线性地震反应分析.华东公路,2001,3,8—12.
    [93] 张亚辉,林家浩.香港青马桥抗震分析.应用力学学报,2002,19(3)25-31.
    [94] 李志岭,秦权.用Ritz法分析江阴悬索桥的地震反应的影响.工程力学,2003,20(1):32-37.
    [95] 秦权,罗颖,孙浩.悬索桥上部结构的抗震设计.清华大学学报,1998,38(12):52-56.
    [96] 胡世德,范立础.江阴长江公路大桥纵向地震反应分析.同济大学学报,1994,22(4):433-438
    [97] 聂利英,叶爱群,胡世德.大跨度悬索桥地震动力分析中的高阶振动的影响.同济大学学报,2001,29(1):84—88
    [98] 朱宏平,张之勇.悬索桥动力模型设计与实验.华中理工大学学报,1999,27(3):25-27.
    [99] 彭大文,黄朝光等.单塔悬索桥的地震响应研究.中国公路学报,1997,10(4):55-63.
    [100] 黄朝光,彭大文.单塔悬索桥的结构参数对动力特性的影响分析.福州大学学报(增刊),1996,24(9):279-287.
    [101] 柳春光,焦双建.城市立交桥结构三维地震反应.地震工程与工程振动,2001,21(2):41-47.
    [102] 张宁勇,王君杰,陆锐.土—桩—桥相互作用的集中质量模型的比较研究.结构工程师,2002,(1):43-48.
    [103] 杨玉民,胡勃,袁万城.基于位移反应谱的连续梁桥的抗震设计简化方法.同济大学学报,1999,27(2):150—154.
    [104] 赵大亮等.大跨度连续梁桥地震反应分析.兰州铁道学院学报,2002,21(6):87-90.
    [105] 屈铁军,王前信.多点输入地震反应分析研究的进展.世界地震工程,1993(1):30-36.
    [106] 屈铁军,王君杰,王前信.空间变化的地震动功率谱的实用模型.地震学报,1996,18(1):55-62.
    [107] 李建俊,林家浩等.大跨度结构受多点随机地震激励的响应.计算结构力学及其应用,1995,12(4):445-452.
    [108] 江近仁,洪峰.功率谱和反应谱的转换和人造地震波.地震工程与工程振动,1984,4(3):1-10.
    [109] Feng Q M,Hu Y X.Spatial Correlation of earthquake motion and its effect on structural response.ProCUS-PRC Bilateral Workshop On Earthquake Engineering.
    [110] 赵凤新等.地震动功率谱和反应谱的转换关系.地震工程与工程振动,2001,21(2):30-35.
    [111] 曹建华.结构抗震分析方法的荷载转换及研究:(硕士学位论文).大连:大连理工大学,2001.
    [112] 翟希梅,吴志丰.人工地震波反应谱拟合的改进.哈尔滨工业大学学报,1995,27(6):130-133.
    [113] 朱东生,虞庐松.用人工地震波分析斜拉桥的地震响应.兰州铁道学院学报,1997,16(4):1—6.
    [114] 王君杰,周晶.地震动频谱非平稳性对结构非线性反应的影响.地震工程与工程振动,1997,17(2):16-20.
    [115] 王君杰,周晶.基于演变随机过程模型的合成地震波.地震工程与工程振动,1997,17(1):11-18.
    [116] 项海帆.结构风工程研究的现状和展望.1997,10(3):258-263.
    [117] 贺德馨.我国风工程研究现状与展望.第六届全国流体力学会议论文集,上海,2001:65—73.
    [118] 项海帆.风工程力学和大跨度桥梁的空气动力学问题.中国科学基金,1994,3:232-234.
    [119] 孙东科.长跨桥梁三维风振分析:(博士学位论文).大连:大连理工大学,1999.
    [120] 曹映泓.大跨度桥梁非线性颤振和抖振时程分析:(博士学位论文).上海:同济大学,1999.
    [121] 丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析:(博士学位论文).上海:同济大学,2001.
    [122] Davenport A G. Buffeting of a suspension bridge by storm winds. Journal of Structural Engineering Division ASCE, 1962,88(6):233-264.
    [123] Davenport A G. The application of statistical concepts to the wind loading of structures. Proc ICE, 1961,19:449-472.
    
    [124] Davenport A. G. The response of slender line-like structures to a gusty wind. Proc ICE, 1962,23.
    [125] Davenport A. G. The action of wind on suspension bridges. Proc. Int'l. Symposium on Suspension Bridges, Lisbon, Portugal. 1966.
    [126] Davenport A. G. The dependence of wind load upon meteorological parameters. Proceedings of the International Research Seminar on Wind Effects on Buildings and Structures, University of Toronto Press, Toronto, 1968:19-82.
    [127] Davenport A. G., et al. A study of wind action on a suspension bridge during erection and on completion. Rep. BLWT-3-69, Boundary Layer Wind Tunnel Lab., Univ. of Western Ontario, London, Canada, May, 1969.
    [128] Scanlan R H, Gade R H. Motion of suspended bridge spans under gusty wind. Journal of Structural Engineering Division ASCE,1977,103(9):1867-1883.
    [129] Scanlan R. H. The action of flexible bridges under wind, I: flutter theory. Journal of Sound and Vibration, 1978, 60(2): 187-199.
    [130] Jain A, Jones N P, Scanlan R H. Coupled flutter and buffeting analysis of long-span bridges. Journal of Structural Engineering ASCE, 1996,122(7):716-725.
    [131] Lin Y. K., Yang J. N. Multimode bridge response to wind excitations. Journal of Engineering Mechanics ASCE, 1983,109(2): 586-603.
    [132] Scanlan R. H. On flutter and buffeting mechanism in long span bridges. Probabilistic Engineering Mechanics, 1988, 3(1):22-27.
    [133] Lain A., Jones N. P., Scanlan R. H. Coupled aeroelastic and aerodynamic response analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1996, 60:69-80.
    [134] Xu Y. L., Sun D. K., Ko J. M., et al. Buffeting analysis of long-span bridges: a new algorithm. Computers and Structures, 1998:68:303-313.
    [135] Sun D. K. Zhi H. Zhang W. S., et al. Highly efficient and accurate buffeting analysis of complex structures. Communication in numerical methods in engineering 14. 1998, 559-567.
    [136] Lin J. H. A fast CQC algorithm of PSD matrices for random seismic responses. Computers and structures, 1992,144(3): 683-87.
    [137] Xu Y L., Sun D. K., Ko J. M., et al. Fully coupled buffeting analysis of Tsing Ma suspension bridge. Journal of Wind Engineering and Industrial Aerodynamics,2000(85): 97-117.
    [138] Chen X, Matsumoto M, Kareem A. Aerodynamic coupled effects on flutter and buffeting of bridges. Journal of Engineering Mechanics, ASCE,2000,126(1):17-26.
    [139] Kiviluoma R. Coupled-mode buffeting and flutter analysis of bridges. Computers and structures, 1998,70(3): 219-228.
    [140] Thorbek L! T. Hansen S. O. Coupled buffeting response of suspension bridges. Journal of Wind Engineering and Industrial Aerodynamics,1998:836-847.
    [141] Minh N. N., Miyata T, Yamada H, et al. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges. Journal of Wind Engineering and Industrial Aerodynamics, 1999, 83:301-315.
    
    [142] 陈伟.大跨度桥梁抖振反映谱研究:(博士学位论文).上海:同济大学,1993.
    [143] Scanlan R. H., Role of indicial functions in buffeting analysis of bridges. Journal of Structural Engineering ASCE, 1984,110(7).
    [144] Scanlan R. H. et al. Indicial functions for bridges decks. Engineering Mechanics Division. ASCE, 1974,100(4): 657-672.
    [145] Bucher C. G., Lin Y K. Stochastic stability of bridges considering coupled modes. Journal of Engineering Mechanics, 1988,114(12): 2055-2071.
    [146] Li Q. C., Lin Y K. New Stochastic theory for bridge stability in turbulent flow. Journal of Engineering Mechanics, 1995,121 (1), 1995, 102-116.
    [147] Kovacs L, Svensson H. S. Jordet E. Analytical aerodynamic investigation of cable-stayed Helgeland bridge. Journal of Structural Engineering ASCE, 1992,118(1): 147-168.
    [148] 周述华.大跨度悬索桥空间非线性抖振响应仿真分析:(博士学位论文).成都:西南交通大学,1993.
    [149] 刘春华.大跨度桥梁抖振响应的非线性时程分析:(博士学位论文).上海:同济大学,1995.
    [150] Boonyapinyo V, Miyata T., Yamada H. Advanced aerodynamic analysis of suspension bridges by state-space approach. Journal of Structural Engineering ASCE, 1999,125(12): 1357-1365.
    [151] Chen X, Matsumoto M, Kareem A. Time domain flutter and buffeting response analysis of bridges. Journal of Engineering Mechanics, ASCE, 2000,125(1): 7-16.
    [152] Chen X. Kareem A. et al. Nonlinear aerodynamic analysis of bridges under turbulent winds: the new frontier bridge aerodynamics. Advance in structural dynamics. 2000, 1:475-482.
    [153] 曾宪武,韩大建.大跨桥梁风致抖振时域分析及在ANSYS中的实现.桥梁建设,2004,1:4-12.
    [154] 杨咏漪,廖海黎,李永乐.基于ANSYS的斜拉桥抖振时域实用分析方法.空气动力学学报,2004,22(4):457-460.
    [155] 孙焕纯,曲乃泗,林家浩编著.计算结构动力学,北京:高等教育出版社,1989.
    [156] 克拉夫R W(王光远译).结构动力学.北京:科学出版社,1981.
    [157] 曾攀,钟铁毅,闫贵平.大跨径斜拉—悬吊协作体系桥动力分析.计算力学学报,2002,19(4):472-476.
    [158] 张新军,孙炳南,陈艾荣等.斜拉—悬吊协作体系桥的颤振稳定性研究.土木工程学报,2004,37(7):106—110.
    [159] 王勖成,邵敏.有限单元法基本原理和数值方法.北京:清华大学出版社,1997.
    [160] 苏成,韩大建,王乐文.大跨度斜拉桥三维有限元动力模型的建立.华南理工大学学报(自然科学版),1999,22(11):51—56.
    [161] 张启伟,冯敏袆.自锚式混凝土悬索桥的动力分析.同济大学学报,2004,12:1562-1566.
    [162] 刘春城,张哲,石磊.自锚式悬索桥的纵向地震反应研究.武汉理工大学学报,2002,26(5):607-610
    [163] Miyazaki M., et al. Stay-cable systems of long span suspension bridges for coupled flutter. In:2EACWE,Genova, Italy, 1997,1529-1536.
    [164] Yoneda M., Ohno K., Nakazaki S., Effects of asymmetrically added temporary mass on the windward side of the deck on the compound flutter speed of an ultra long span suspension bridge. New construction technologies. Session 2, 1996.
    [165] 黄海新,张哲.自锚式斜拉—悬吊协作体系桥的动力分析.大连理工大学学报,(已录用).
    [166] Ernesto H Z, Vanmarcke E H. Closure on the discussion. ASCE, Journal of Engineering Mechanics, 1995, 121:1038.
    [167] Carassale L, Tubino F, Solari G. Seismic response of multi-supported structures by proper orthogonal decomposition. Int Conference on Advances in Structural Dynamics(ASD2000), Hong Kong: Elsevier Science Ltd, 2000:827-834.
    [168] Lin Y K, Zhang R, Yong Y. Multiply supported pipeline under seismic wave excitations. ASCE, Journal of Engineering Mechanics, 1990,116:1094-1108.
    [169] 庄表中,王行新.随机振动概论. 北京:地震出版社,1982.
    [170] Housner G W. Characteristic of strong motion earthquakes.Bull. Seism.Soc.Am., 1947,37:17-31.
    [171] Kanai K. Semi-empirical formula for seismic characteristic of the ground..东京大学地震研究所汇报, 1957,35(2).
    [172] 胡聿贤,周锡元.弹性体系在平稳和平稳化地面运动下的反应.地震工程研究所报告集,第一集,1962.
    [173] Ruiz P,Penzien J. Probabilistic study of the behavior of structures during earthquakes. Earthquake engineering. C.,UCB, CA, Report No. EERC69-03,1969.
    [174] 欧进萍,牛荻涛.地震地面运动随机模型的参数及其结构效应.哈尔滨建筑工程学院学报,1990,10(2):70-76.
    [175] Kaul M K. Stochastic characterization of earthquake through response spectrum. Earthquake Engineering and Structure Dynamics. 1978,6(5):497-510.
    [176] 孙景江,江近仁.与规范反应谱对应的金井清谱的谱参数.世界地震工程,1990,8(1):42-48.
    [177] European Committee for standardization, Eurocode 8: Structural responses to arbitrarily inhomogeneous random fields, Earthquake Engineering structure Dynamics,1988,112(2):154-175.
    [178] 陈艳.中大跨度桥梁抗震设计规范的算法和参数研究:(硕士学位论文).大连:大连理工大学,2005。
    [179] 林家浩,张亚辉.随机振动的虚拟激励法.北京:科学出版社,2004.
    [180] 王君杰.多点多维地震随机模型结构的反应谱分析方法:(博士学位论文).哈尔滨:国家地震工程力学研究所,1992.
    [181] Oliveira C S, Hao H, Penjien J. Ground motion modeling for multiple-input structural analysis, Structural Safety, 1991,10:79-93.
    [182] Harichandran R S. Estimating the spatial variation of earthquake ground motion from dense array recordings, Structural Safety, 1991, 10:219-233.
    [183] 冯启民,胡聿贤.空间相关地面运动的数学模型.地震工程与工程振动,1981,1(2):1—8.
    [184] Loh C.H,Yeh Y.T. Spatial variation and stochastic modeling of seismic differential ground movement. EESD, 1988,16:583-596.
    [185] 张亚辉,赵岩,张春宇.大跨度桥梁抗震分析的空间效应.中国铁道科学,2002,23(6):90-94.
    [186] Davernport A G. Note on the distribution of the largest value of a random function with application to gust loading. Proc. Inst. Civil Eng., 1961,28(2): 87-196.
    [187] 中华人民共和国国家标准.建筑抗震设计规范(GB50011-2001).北京:中国建筑工业出版社,2001.
    [188] Yuan W, Wang S and Fan L. Response spectrum method for a seismic design of suspension bridges. Proceeding of Bridge into 21th Century, Hongkong, 1995,10.
    [189] 周述华,廖海黎,郑史雄,李永乐.丫鬟沙大桥抗风性能模型体验研究.第十三届全国桥梁学术会议论文集,上海,1998,11:586—571.
    [190] 宋锦忠,毛鸿银,吴晓琰.汕头宕石大桥全桥气弹模型试验研究.第十三届全国桥梁学术会议论文集,上海,1998,11:600—604.
    [191] 张大康,陈忻,李明水,周述华.武汉白沙洲大桥气动弹性模型风洞试验报告.第五届全国风工程及工业空气动力学学术会论文集,张家界,1998:178—183.
    [192] 李明水,贺德馨,王卫华.大跨度桥梁抖振响应的频域分析.空气动力学学报,2000,18(1):74—80.
    [193] 丁泉顺,陈艾荣,项海帆.大跨度桥梁结构耦合抖振响应频域分析.土木工程学报,2003,36(4):86—93.
    [194] 丁泉顺,陈艾荣,项海帆.大跨度桥梁耦合抖振分析的有限元正交组合方法.同济大学学报,2002,30(5):557—562.
    [195] 刘志刚,陈艾荣,项海帆.桥梁抖振反应谱研究.土木工程学报,2002,35(1):28—34.
    [196] 韩大建,谭学民,颜全盛,苏成.香港汀九大桥抖阵响应时程分析.华南理工大学学报,1999,27(11):44—50.
    [197] Lin Y K, Li Q C. New stochastic theory for bridge stability in turbulent flow, Journal Journal of Engineering Mechanics, 1993,119(1): 113-127.
    [198] 刘春华,项海帆,顾明.大跨度桥梁抖振响应的空间非线性时程分析方法.同济大学学报,1996,24(4):380—385.
    [199] Q. Ding, P K. K. Lee and S H. Lo. Time domain buffeting analysis of suspension bridges subjected to turbulent wind with effective attack angle. Journal of Sound and Vrbriation,2000,233(2):311-327.
    [200] 项海帆,陈艾荣.特大跨度桥梁抗风研究的新进展.土木工程学报,2003,36(4):1—8.
    [201] 楼庄鸿,丁明杰.Tacoma海峡桥的空气动力学—60年后.2001,21(3):18—23.
    [202] 武岳,沈世钊.膜结构风振分析的数值风洞方法.空间结构,2003,9(2):38—43.
    [203] Mignolet P M, Spanos P D. Recursive simulation of stationary multivariate random process. Transactions of the ASMP, Journal of Applied Mechanics, 1987, 54: 674-680.
    [204] Deodatis G, Shinozuka M. Auto-regressive model for nonstationary stochastic process. Journal of Engineering Mechanics, ASCE, 1988, 114(11):1995-2012.
    [205] Oven J S et al. The application of auto regressive time series modeling for the time frequency analysis of civil engineering structures. Engineering Structures, 2001, 23:521-536.
    [206] Deodatis G. Simulation of ergodic multivariate stochastic process. Journal of Engineering Mechanics, ASCE, 1996, 122(8):778-787.
    [207] K. Aas-Jakobsen. Time domain buffeting response calculations of slender structures. Journal of Wind Engineering and industry aerodynamics,2001,89:341-364.
    [208] Shinozuka M, Jan C M. Digital simulation of random process and its application. Journal of Sound and Vibration, 1972, 25 (1):111-128.
    [209] Li Y, Kareem A. Simulation of multivariate random processes: hybrid DFT and digital filtering approach. Journal of Engineering Mechanics, ASCE, 1993, 119(5): 1078-1098.
    [210] 王之宏.风荷载的模拟研究.建筑结构学报,1994,15(2):41—52.
    [211] Rice S. O. Mathematic analysis of random noise. Selected papers on noise and stochastic processes, N. Wax. ed.. Dover publish Inc., New York, N.Y., 1954, 133-294.
    [212] Shinozuka. M. Simulation of multivariate and multidimensional random processes. Journal of the Acoustical Society of America, 1971, 49(1), part 2:357-367.
    [213] Shinozuka M., Jan C. M. Digital simulation of random processes and its application. Journal of Sound and Vibration, 1972,25(1): 111-128.
    [214] Shinozuka M., Deodatis G. Simulation of stochastic processes by spectral representation. Application Mechanics Review, 1991,44(4) : 191-203.
    [215] Shinozuka M., Yun C-S., Seya H. Stochastic methods in wind engineering. Journal of Wind Engineering and Industry Aerodynamics, 1990,36: 829-843.
    [216] Borgman L. E. Ocean wave simulation for engineering design. Journal of Wtrway Hard. Div., ASCE,1969,95(4):557-583.
    [217] Yang J. N. Simulation of random envelope processes. Journal of Sound and Vibration, 1972,25(1): 73-85.
    [218] Yang J. N. On the normality and accuracy of simulated random processes. Journal of Sound and Vibration, 1973, 26(3):417-428.
    [219] Karpel M. Design for active flutter suppression and gust alleviation using state-space aeroelastic modeling. AIAA paper, 1980:80-0766.
    [220] Hino M. Spectrum of gusty wind. Proceedings of International Conference on Wind Effects on Buildings and Structures, Tokyo, 1971,Septemper.
    [221] Panofsky H. A., McCormick R. A. The spectrum of vertical velocity near the surface. Coll. Of Mineral Industries, Pennsylvania State University, University Park, P.A. 1959.
    [222] Lumley J. L., Panofsky H. A. The Structure of Atmospheric Turbulence. Wiley. New York, N.Y, 1964.
    [223] 靳欣华,项海帆,陈艾荣.桥梁结构气动导纳研究回顾及其新进展.重庆交通学院学报,2003,22(2):1—4.
    [224] 蒋永林,廖海黎,强士中.关于桥梁结构的气动导纳.西南交通大学学报,2001,36(3):299—302.
    [225] Aas-Jakobsena K, Strommen E. Time domain buffeting response calculations of slender structures. Journal of Wind Engineering and Industrial Aerodynamics,2001,89: 341-364.
    [226] Scanlan, R. H., Sabzevari A. Experimental aerodynamics coefficients in the analytical study of suspension bridge flutter. Journal of Mechanical Engineering Science, 1969,11 (3)
    [227] Sing L., Jones N P, Scanlan R. H., et al., Identification of lateral flutter derivatives of bridge decks. Journal of Wind Engineering and Industrial Aerodynamics, 1996,60:69-80.
    [228] Scanlan R H., Tomko J, Airfoil and bridge deck flutter derivatives. Journal of Engineering Mechanics, ASCE, 1971, 97(6), 1717-1737.
    [229] Lin Y. K., Motion of suspension bridges in turbulent winds. Journal of Engineering Mechanics, ASCE, 1979, 105(6): 921-932.
    [230] 王德人.非线性方程组解法与最优化方法.北京:人民教育出版社,1979.
    [231] ANSYS7.1在线帮助
    [232] Miyata T., Tada K., Sato H., et al. New findings of coupled flutter in full model wind tunnel tests on the Akashi Kaiko Bridge. Proceeding of Symposium on Cable-stayed and Suspension Bridge, 1994,Deauville,France: 163-170.
    [233] 曹映泓,项海帆,周颖.大跨度桥梁随机风场的模拟.土木工程学报,1998.3 1(3):72—79.
    [234] Sankaran R., Jancauskas E D. Direct measurement of the aerodynamic admittance of two dimensional rectangular cylinders in smooth and turbulent flows. Journal of Wind Engineering and Industrial Aerodynamics, 1992,44(1):601-611.
    [235] Li M S., He D X, Aerodynamic admittance of bridge deck sections.2 EACWE, Genova, Italy,1997:1585-1592.
    [236] Li M S. Aerodynamic admittance of airfoil and bluff bodies. Journal of Wind Engineering 2000,89(10): 485-488.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700