用户名: 密码: 验证码:
大跨度中承式拱桥风致振动研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
大跨度中承式拱桥属于柔性结构,在风振作用下很容易发生静风失稳、抖振和涡激振动等风致响应。与大跨度的悬索桥、斜拉桥等桥型不同,大跨度中承式拱桥属于三维受力结构体系,在风致振动时需要考虑主梁与主拱的协同作用。主拱风荷载比较复杂,需要考虑风速沿高度变化、荷载空间相关性以及主拱之间相互干扰等因素。并且,钝体截面的主拱在低风速下容易产生涡激振动。因此,根据大跨度中承式拱桥的上述特点,针对大跨度中承式拱桥静风稳定性、抖振以及涡激振动等方面进行了较为深入的研究。本文的工作主要有以下几个方面:
     (1)系统地分析了单拱及双拱相互干扰下的静风荷载情况。以重庆菜园坝长江大桥为例,通过单拱与双拱节段模型风洞试验与流体力学数值模拟,讨论了不同攻角、不同间距下单拱与双拱相互干扰下静力三分力系数的变化规律。分析表明,单拱阻力系数变异性较小,升力系数与力矩系数变异系数较大。双拱的静力三分力系数、变异性以及受湍流度的影响等均与两拱间距宽度比及竖向相对位移有关。
     (2)发展了大跨度中承式拱桥在静风荷载作用下的全过程位移响应分析方法,深入分析了静风作用下大跨度中承式拱桥的屈服失稳机理。分析表明,考虑静力三分力非线性使得极限风速减小,同一风速下计算的内力和位移偏大。静风初始攻角与材料的屈服强度对静风承载力影响较大。不同施工态的极限风速都由施工塔架的稳定性决定。
     (3)提出了在湍流中两榀拱相互干扰下风荷载功率谱的求解方法。通过在湍流中的双拱测压节段模型试验,深入探索了由于两榀拱之间干扰而导致两拱抖振力的变化规律。以单拱脉动风速功率谱为参照,根据均方值等效的原则确定在湍流中两拱的脉动风速功率谱。实践表明,上述求解是比较准确的。
     (4)推导了用于大跨度中承式拱桥抖振分析的运动方程。该方程考虑了风速随高度变化、主梁与主拱耦合振动以及多模态和模态耦合效应。分别采用SRSS法、CQC法以及虚拟激励法对重庆菜园坝长江大桥进行抖振分析。分析表明,SRSS法误差较大,高阶模态对结果有显著影响,水平风速谱对抖振起到主要作用,交叉风速谱在计算中可以不计,由于受干扰影响,后拱的荷载功率谱及响应结果都明显增大。
     (5)模拟了大跨度中承式拱桥的三维风场,实现了大跨度中承式拱桥的时域分析。利用谐波合成法,考虑两拱抖振力功率谱相互干扰、空间相关性等因素实现了风场模拟。对随机数生成及时间间隔取值问题给出了建议。采用FFT变换、编程优化以及功率谱插值等技术,大大提高了模拟的效率。时域分析的结果与试验吻合较
Long span half-through arch bridges belong to flexible structure. The buckling under static wind, buffet and vortex shedding vibration will take place easily. Be differ from the long span cable-stayed bridges and suspension bridges, the long span half-through arch bridges belong to 3D structure. The coupled vibration between girder and arches should be taken into account when calculating wind induced response. The wind loads on arches are complex. Some factors, such as wind speeds changing with height and loads spatial correlation and interference between two arches should be taken into account. The vortex shedding vibration will take place at the relative low wind speed because of arches blunt section. So the static stability analysis, the buffeting analysis, the vortex-excited vibration analysis are discussed according to the long span arch bridges features. The research is mainly focused on the following aspects:
     (1) The wind loads and interference of single arch and double arches are analyzed. Exampled on the Chongqing Caiyuanba Yangzi river bridge, the wind tunnel tests of single arch and double arches are carried out. The numerical simulations of tunnel tests are analyzed. The results show that drag force coefficients variability is small, and lift coefficients variability and moment variability are big. Arch forces coefficients and fluctuating buffeting forces are mainly decided by the space width ratio and the relatively vertical displacement.
     (2) The methods of long span half-through arch bridges displacement response analysis under the static wind loads are developed. The yield and static stability mechanism of long span half-through arch bridges are analyzed. The results show that the responses are bigger when the static forces nonlinear are taken into account. The internal forces and displacements are bigger at the same wind speed. The static wind initial angle and material yield value have great effects on the limited wind speed. The construction stage limited wind speeds depend on the construction towers’stability.
     (3) The method of calculating wind power spectrum density (PSD) before two arches is presented. By the fluctuated pressure tunnel tests, the fluctuating wind loads on arches are analyzed. According to the single arch buffeting forces PSD, the ratios between two arches buffeting forces PSD are calculated by equivalent root mean square (RMS), then the wind PSD before two arches are solved. The results show that the method is effective.
     (4) The finite element method of long span half-through arch bridges couple frequency domain buffeting vibration analysis is derived. The change of wind speed with the height is taken into account. The square root of the sum of squares (SRSS) and complete quadratic combination (CQC) and pseudo excited methods are adopted on the
引文
[1] 项海帆、陈艾荣等. 特大跨度桥梁抗风研究的新进展[J]. 土木工程学报,Vol.36, No.4, 2003:1~8
    [2] 项海帆. 进入 21 世纪的桥梁风工程研究[J]. 同济大学学报,2002,30(5)529-532
    [3] Alan G. Davenport.Past, present and future of wind engineering. Journal of Wind Engineering and Industrial Aerodynamics Vol.90.2002.: 1371-1380
    [4] Toshio Miyata. Historical view of long-span bridge aerodynamics. Journal of Wind Engineering and Industrial Aerodynamics. Vol.91 .2003. :1393–1410
    [5] J. Peter C. King.The foundation and the future of wind engineering of long span bridges—the contributions of Alan Davenport. Journal of Wind Engineering and Industrial Aerodynamics Vol.91 2003 :1529–1546
    [6] HiraiA, OkauchiI, ItoM, MiyataT, Studies on the critical wind velocity for suspension bridges. Proc. Int. Res. Seminar on Wind Effects on Buildings and Structures, University of Toronto Press, Ontario, Canada, 1967:81~103
    [7] 项海帆,林志兴.《桥梁抗风设计规范》的研究课题[J].结构工程师,1998,11(增刊):1—4.
    [8] V.Boonyapinyo, H.Yamada, T.Miyata. Wind-induced nonlinear lateral-torsional buckling of cable-stayed bridges [J]. Journal of Structural Engineering, ASCE, 1994, 120(2): 486—506.
    [9] Toshio Miyata, Hitoshi Yamada, Virote Boonyapinyo. Importance of Wind Load In Buckling Instabling Of Super-Long Cable-Stayed Bridges, International Conference A.I.P.C-F.I.P.Deauvilie,1994 [10 ]Xu Xie, M.Nagai, H. Yamaguchi and M.Ito. Static behaviors of self-anchored and Partially Earth Anchored Long-Span Cable-Stayed Bridges, Third Asian-Pacific Conference on Computational Mechanics:16-18, Sept. 1996. Korea
    [11]方明山.超大跨度缆索承重桥梁非线性空气静力稳定理论研究[D]. 上海:同济大学,1997.
    [12]程进, 肖汝诚, 项海帆. 大跨径桥梁静风稳定性分析方法的探讨与改进,中国公路学报. No.2.2001:30-32
    [13] 程进, 肖汝诚,夏渂. 静风荷载下大跨度钢拱桥施工稳定性分析. 同济大学学报:Vol.32.No.1:16-19
    [14]程进, 江见鲸, 肖汝诚, 夏渂. 静风荷载作用下大跨度钢拱桥施工稳定性的参数研究. 计算力学学报. Vol21.No.1:50-55
    [15] 程进,肖汝诚,项海帆. 缆索承重桥梁空气静力失稳与动力失稳(颤振)的比较. 桥梁建设.2000(3):7~10
    [16]Jin Cheng , Jian-Jing Jiang , Ru-Cheng Xiao, Min Xia. Wind-induced load capacity analysis and parametric study of a long-span steel arch bridge under construction. Computers and Structures. Vol.81 2003. 2513~2524
    [17]张建民, 郑皆连, 秦荣, 拱桥稳定性研究与发展,广西交通科技,2002 增刊(25):1~7
    [18] Theodorsen T. General theory of aerodynamics instability and mechanism of flutter. NACA Report NO.496, 1935
    [19] Halfman 著.气动弹性力学原理,沈克扬译. 上海:上海科学技术文献出版社, 1982
    [20]Scanlan R H, Sabzevari A. Experimental Aerodynamics coefficient in the analytical study of suspension bridges flutter. J of Mechanical Engineering Sciences, Vol.11, No.3, 1969
    [21] Sarker P P, Jones N P, Scanlan R H. Identification of aerolastic parameters of flexible bridges. J.Engineering Mechanics ASCE, Vol120, 1994:1718-1742
    [22]陈艾荣, 项海帆, 何宪飞, 丁泉顺. 桥梁断面 18 个颤振导数自由振动识别.同济大学学报.V30(5):544~550
    [23] C. Scruton, Aerodynamic buffeting of bridges, The Engineer 1955.
    [24] A.G. Davenport, The application of statistical concepts to the wind loading of structures, Proc. Inst.Civil Eng. Vol.19. 1961.
    [25] A.G. Davenport, The response of slender line-like structures to a gusty wind, Proc. Inst. Civil Eng. Vol.23 1962.
    [26] A.G. Davenport, Buffeting of a suspension bridge by storm winds, Proc. Amer. Soc. Civil Eng. 88(ST3) 1962.
    [27]Scanlan R H,Gade R H. Motion of suspended bridge spans under gusty wind.J.of struct, Div. ASCE, Vol.103,1977:1867-1883
    [28]Jones N P, Scanlan R H, Jain A, Katsuchi H. Advances (and challenges) in the prediction of long-span bridge response to wind. Proc of int’l Symposium on Advances in bridge Aerodynamics, 1998:59-86
    [29]陈伟. 大跨度桥梁抖振反应谱研究. 同济大学博士论文. 1993
    [30]李明水.连续大气湍流中大跨度桥梁的抖振响应. 西南交通大学博士学位论文. 1993
    [31]Jain A, Jones N P, Scanlan R H. Coupled flutter and buffering analysis of long-span bridges. J struct Engrg ASCE, 122(7), 1996:716-725
    [32]Katsuchi H, Jones N P, Scanlan R H. Multinode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. J struct Engrg ASCE, 125(1), 1999:60-70
    [33] Katsuchi H, Jones N P, Scanlan R H. Multinode coupled flutter and buffeting analysis of the Akashi-Kaikyo bridge. J struct Engrg ASCE, 125(1), 1999:60-70
    [34]Minh N N, Miyata T, Yamada H, Sanada Y. Numerical simulation of wind turbulence and buffeting analysis of long-span bridges. J wind Engineering & Industrial Aerodynamices, 1999,83:301-315
    [35]丁泉顺.大跨度桥梁耦合颤抖振响应的精细化分析.博士学位论文.同济大学,2002
    [36]Kovacs L, Svensson H S, Jordet E. Analytical aerodynamic inbestigation of cable-stayed Helgeland bridge. J Struct Engrg ASCE. Vol 118(1),1992,147-168
    [37]Boonyapinyo V, Miyata T, Yamada H. Advanced aerodynamic analysis of suspension bridges by stat-space approach. J Struct Engrg ASCE 125(12),1999,1357-1365
    [38]Chen X, Matsumoto M, Kareem A. Tine domain flutter and buffeting response analysis of bridges. J Engrg Mech ASCE.126(1),2000,17-26
    [39]周述华.大跨度悬索桥空间非线性抖振响应仿真分析.博士学位论文.西南交通大学,1993
    [40]刘春华.大跨度桥梁抖振响应的非线性时程分析.博士学位论文.同济大学,1995
    [41]曹映泓.大跨度桥梁非线性颤振和抖振时程分析.博士学位论文.同济大学,1999
    [42]黄汉杰. 大跨度悬索桥成桥及施工态颤振、抖振时域分析. 博士学位论文. 中国空气动力研究与发展中心. 2004
    [43]Scanlan R H. Role of indicial functions in buffeting analysis of bridges. J of Struct Engrg. Vol 110,No.7,July,1984
    [44]Lin Y K. Motion of suspension bridges in turbulent winds. J. of Engineering Mechanics, ASCE, 105(6),1979:921-932
    [45]Bucher C G., Lin Y K. Stochastic stability of bridges considering coupled modes. Journal of Engineering Mechanics, Vol 114(12),1988,2055-2071
    [46]Li Q C, Lin Y K. New Stochastic theory for bridge stability in turbulent folw. J Engrg Mech. Vol 121(1),1995,102-116
    [47] Rice S O. Mathematical analysis of random noise. Selected papers on noise and stochastic process. Dover Publish Inc. New York. 1954
    [48] Shinozuka M. Simulation of multivariate and multidimensional random process[J]. Journal of the Acoustical. Society of America, 1971,49(1):357-367
    [49] Shinozuka M, Jan C M. Digital Simulation of random processes and is applications. J. of Sound and vibration, Vol.25(1), 1972:111-128
    [50] Shinozuka M, Deotatis G. Simulation of stochastic processes by spectral representation. Applied Mechanics Reviews, Vol.44, 1991:191-204
    [51] Borgman L E. Ocean wave simulation for engineering design. J.Wtrway Hard. Div., ASCE, Vol.95(4), 1969:557-583
    [52]Yang J N. Simulation of random envelope processes. J. Sound and Vibration. 25(1), 1972, 73-85
    [53]Shinozuka M. Didital simulation of random processes in engineering mechanics with the aide of FFT technique. Stochastic problems in mechanics. S.T., 1974:277-284
    [54] Yamazaki F, Shinozuka M. Digital generation of non-Gaussian stochastic fields. J. Engrg Mech ASCE,114(7),1183-1197
    [55] Deodatis G. Simulation of ergodic multivariate stochastic processes. J. Engrg Mech ASCE, 122(8),1996,778-787
    [56]曹映泓、项海帆、周颖、大跨度桥梁随机风场的模拟,土木工程学报[J],V31.3:72-79.1998.6
    [57].W.W.Yang, T.Y.P.Chang, C.C.Chang. AN EFFICIENT WIND FIELD SIMULATION TECHNIQUE FOR BRIDGES[J]. Journal of Wind Engineering and Industrial Aerodynamics 67&68(697-708).1997
    [58]Gerch W, Yonemoto J. Synthesis of multi-variate random vibration systems: a two-stage least squares ARMA model approach. J. Sound and vibration. 52(4),1977,553-565
    [59] Samaras E, Shinozuka M, Tsurui A. ARMA representation of random processes. J. Engrg Mech. ASCE Vol 113(3),1985,449-461
    [60]Miao B. Recursive parameter estimation for ARMA simulations. J. Engrg Mech.Vol 120(8),1994
    [61]Reed A, Scanlan R H. Time series analysis of cooling tower wind loading. J. Struct Engrg. Div ASCE 109(2),1983,538-554
    [62]Iazzunni A, Spinell P. Artificial wind generation and structural response. J. Struct Engrg Div ASCE 113(12),1987,2383-2397
    [63]Huang Z, Chalabi Z S. Bedford U.K. Use of time-series analysis to model and forecast wind speed Joumal of Wind Engineering And Industrial Aerodynamics.56.1995,311-322
    [64]Hartlen R.T, Currie I.G. Lift-Oscillator Model of Vortex-Induced Vibration. J.Eng. Mech. Div. ASCE. 96(1970). 577-591
    [65] Indranil Goswami, Robert H. Scanlan, Nicholas P. Jones. Vortex-Induced Vibration of Circular Cylinders. I: Experimental Data. Journal of Engineering Mechanics. Vol 119, No.11, 1993(11).2271~2287
    [66] Indranil Goswami, Robert H. Scanlan, Nicholas P. Jones. Vortex-Induced Vibration of Circular Cylinders.Ⅱ : New Model. Journal of Engineering Mechanics. Vol 119, No.11, 1993 (11).2287~2303
    [67]埃米尔·希缪,罗波特·H·斯坎伦著,刘尚培,项海帆,谢荠明译,风对结构的作用——风工程导论,同济大学出版社 上海. 1992
    [68] Allan Larsen. A generalized model for assessment of vortex-induced vibrations of flexible structures. Journal of Wind Engineering and Industrial Aerodynamics Vol.57.1995.281~294
    [69]K.YUSUF RAZEE BILLAH. A STUDY OF VORTEX-INDUCED VIBRATION. A dissertation presented to the faculty of Princeton University in candidacy for the degree of Doctor of Philosophy[M]. 1989.6
    [70]Fazl Ehsan, R H Scanlan. Vortex-induced vibrations of flexible bridges[J]. engineering mechanics, 1990,116(6): 1392-1411.
    [71]H Barhoush, A H Namini, R A Skop. analysis by finite elements[J]. J. Sound & vibration, 1995,184(1): 111-127.
    [72]李立,廖锦翔. 涡激振动问题的有限元计算研究. 工程力学. Vol20.No.5:201~203
    [73]李立,廖锦翔,郑忠. 有限元方法计算桥梁涡激振动响应. 公路交通科技. Vol20.No.3:69~72
    [74] J. Peter C. King,The foundation and the future of wind engineering of long span bridges—the contributions of Alan Davenport. Journal of Wind Engineering and Industrial Aerodynamics. Vol.91 2003: 1529–1546
    [75]张伯荫、钮珍南,诸乾康等.中国第一座桥梁风洞的研制. 空气动力学报. Vol.15.No.2.:161~168
    [76]贺德馨,朱国琳,王橄勋,周瑜平.中国空气动力研究与发展中心风工程研究试验近况.第五届全国风工程及工业空气动力学学术会议论文集[M],2002
    [77]周述华,廖海黎,李永乐,王晋栋. 大跨度拱桥全桥气动弹性模型风洞试验研究,第五届全国风工程及工业空气动力学学术会议论文集[M].2002
    [78]李会知,陈忻,李明水等. 大跨度悬索桥施工状态气动弹性模型风洞试验研究[J]. 西南交通大学学报,1997,36(1)8-11
    [79]顾明,项海帆,陈伟,陈艾荣. 广东汕头海湾大桥全桥气动弹性模型风洞试验研究[J].1994,22(4)439-444
    [80]陈艾荣,项海帆. 大跨度钢构桥梁气动弹性试验及分析[J].振动工程学报, 1999,12(4)535-538
    [81]余光志. 斜拉桥模型风振试验研究[J]. 气动研究与试验,1997,14(3)58-64
    [82]项海帆. 风工程力学和大跨度桥梁的空气动力学问题. 中国科学基金. 1994
    [83] Guy L_ Larose. The dynamic action of gusty winds on long_span bridges. DEPARTMENT OF STRUCTURAL ENGINEERING AND MATERIALS. TECHNICAL UNIVERSITY OF DENMARK Ph.D Thesis April 1997
    [84] 蒋永林. 斜拉桥抖振响应分析. 西南交通大学博士学位论文. 2000.3
    [85] 廖海黎.杭州市钱江四桥风洞模型试验与分析研究[J].西南交通大学风工程试验研究中心. 2003
    [86]葛耀君, 宋锦忠, 曹丰产, 项海帆, 凌明, 应振翔. 上海卢浦大桥风荷载及抗风稳定性研究. 第十五届全国桥梁学术会议论文集[M], 2002
    [87]R. Panneer Selvam. Finite element modeling of flow around a circular cylinder using LES. Journal of Wind Enginneering and Industrial Aerodynamics67&68.1997:129~139
    [88].项海帆、陈艾荣等. 特大跨度桥梁抗风研究的新进展[J]. 土木工程学报,Vol.36, No.4, 2003:1~8
    [89]楼小峰. 桥梁断面气动特性的数值模拟.同济大学硕士学位论文.2002.5
    [90] Anita Coulter Flowe, Ashok kumar, Analysis of velocity "elds and dispersive cavity parameters as a function of building width to building height ratio using a 3-D computer model for squat buildings. Journal of Wind Engineering and Industrial Aerodynamics 86. 2000: 87~122
    [91] Sung-Eun. Kim. Application of CFD to environmental flows. Journal of Wind Engineering and Industrial Aerodynamics 81 1999: 145-158
    [92] S.Reichrath, T.W.Davis, Computational .uid dynamics simulations and validation of the pressure distribution on the roof of a commercial multi-span Venlo-type glasshouse. Journal of Wind Engineering and Industrial Aerodynamics 90 2002: 139–149
    [93]Berand, M.Leilal, P.Kastner-klein. Concentration and flow distributions in the vicinity of U-shaped buildings:Wind-tunnel and computational data. Journal of Wind Engineering and Industrial Aerodynamics 67&68.1997: 745-755
    [94] 秦云,张耀春,王春刚. 数值风洞模拟结构静力风荷载的可行性研究. 哈尔滨工业大学学报. Vol.36 No.12:1593~1597
    [95] 林志兴,葛耀君,曹丰产,庞加斌. 钢箱梁桥的抗风问题及其对策研究[J].同济大学学报,2002,30(5)614-617
    [96] 杨伟,黄鹏,顾明. 高层建筑风致静力干扰效应的试验和数值研究[J].同济大学学报. 2004, 32(2)152-156
    [97] 刘沛清, 工程中的一些复杂流动试验研究与数值模拟, 北京航空航天大学 博士学位论文. 1997.3
    [98] A.S.Nazmy. Stability and Load-carrying capacity of three-dimensional long-span steel arch bridges. Computers&Structures Vol.65(6).857~868,1997
    [99] Kuranishi, S. Yabuki, T. Laterlal load effect on steel arch bridge design. Journal of Structural Engineering, ASCE, 1984,110,2263~2274
    [100] Fang M-S. Nonlinear aerostatic stability theory of super-longspan cable-supported bridges, PhD thesis, Tongji University Shanghai, China (in Chinese), 1997.
    [101] 方明山,项海帆,肖汝诚.大跨径缆索承重桥梁非线性空气静力稳定理论. 土木工程学报.Vol.33(2):73-79
    [102] 方明山,项海帆,肖汝诚. 超大跨径悬索桥空气静力非线性行为研究. 重庆交通学院学报. Vol.18(2):1-7
    [103] 程进,江见鲸,肖汝诚,项海帆.大跨度桥梁空气静力失稳机理研究.土木工程学报. Vol.35.No.1:35-39
    [104] 于向东,陈政清,桥梁主梁断面颤振导数的强迫振动识别法,中国公路学报,V14(2):36~44
    [105] Scanlan R.H, OmkoJJ. Airfoil and bridge deck flutter derivatives[J]. J. Eng. Mech, 1979, 97(6):1717-1737.
    [106] Shinozuka. Identification of linear structural dynamic system[J]. J Eng. Mech,1982, 108(6): 1371-1390.
    [107] Yamada H, MiyataT, Ichikawa H. Identification of aerodynamic parameters of a bridge deck[A]. Proc. 11th Nat. Symp on Wind Engineering.[C]. Tokyo: [s.n.],1990.55-60
    [108] Sarkar PP, Jones NP, Scanlan R. H. System identification for estimation of flutter derivatives[J]. J. Wind Eng &Ind Aerodynamics, 1992.(41-44):1243-1254
    [109] 廖海黎. 大跨度悬索桥风致振动研究. 西南交通大学博士学位论文. 1996.2
    [110] 张若雪. 桥梁结构气动参数识别的理论和试验研究[D]. 上海:同济大学博士学位论文. 1998
    [111] GUMing, Zhang Ruo-xue, Xiang Hai-fan. Identification of flutter deriavatives of bridge decks[J]. 2000,84(2):151-162.
    [112] 李永乐、廖海黎、强士中等. 桥梁断面颤振导数识别的加权整体最小二乘法. 土木工程学报. Vol.37 (3)
    [113] 胡晓红. 大跨度拱桥等效风荷载试验研究. 同济大学硕士学位论文. 2002.6
    [114] 丁泉顺,陈艾荣,项海帆,大跨度桥梁耦合抖振分析的有限元正交组合方法[J], 同济大学学报, 13(5):557~562
    [115] 钟万勰. 一个高效的结构随机响应算法系列—虚拟激励法. 自然科学进展—国家重点实验室通讯. 1996.7:394~401
    [116] 林家浩. 张亚辉著. 随机振动的虚拟激励法. 科学出版社. 北京,2002
    [117] 李永乐,周述华,强士中,大跨度斜拉桥三维脉动风场模拟. 土木工程学报[J]. Vol.36 No.10. Oct,2003.
    [118] 韩大建、邹小江,苏成,大跨度桥梁考虑桥塔风效应的随机风场模拟,工程力学[J],vol.20 No.6,2003.10
    [119] Spanos P D, Zeldin B A. Monte Carlo treatment of random fields: a broad perspective. Appl Meoh Rev. Vol 51(3),1998,219-237
    [120] Li Y, Kareem A. ARMA representation of wind field. J Wind Engrg Indust Aerodyn. Vol 121(1),1995,415-427
    [121] 陈兆国.时间序列及其谱分析.科学出版社,1988
    [122] 舒新玲,周岱.风速时程 AR 模型及其快速实现.空间结构,2003,12(9):27-32
    [123]李元齐,董石麟.大跨度空间结构风荷载模拟技术研究及程序编制.空间结构,2001,9(7):3-11
    [124] 张树京,齐立心.时间序列分析简明教材.清华大学出版社,北方交通大学出版社,2003
    [125] 曾宪武,韩大建. 大跨度桥梁风场模拟方法对比研究 地震工程与工程振动[J].Vo124 (1): 135~140
    [126] William H.Press,Saul A. Teukolsky, William T.Vetterling Brian P.Flannery. 傅祖芸等译,C数值算法(第二版)[M].北京:电子工业出版社,2004.
    [127] 吴晓菡. 面向对象结构分析程序设计. 北京. 科学出版社. 2002
    [128] Ge Y J, Tanaka H. Aerodynamic stability of long-span suspension bridges under erection. J. of Structural Engineering, Vol.126, No.12. 2000. 1404-1412
    [129] R.Lewandowski. Non-Linear Steady State Vibrations of Beams Excited by Vortex Shedding. Journal of Sound and Vibration. 2002. 252(4),675-696

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700