用户名: 密码: 验证码:
高应力条件下岩体强度参数研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着西南地区水利水电资源的开发,高地应力环境中的岩体力学问题日益突出。由于深部岩体工程与浅部工程所处的地应力环境明显不同,工程岩体所表现出的力学特性及其工程响应也明显不同,由此造成地下岩体工程灾害的成灾机理、工程稳定控制及其设计理论等方面也有着显著的差异。因此,有必要研究高应力条件下岩体的力学特性及其相应的岩体力学参数取值。
     论文结合“锦屏二级水电站引水隧洞高地应力条件下的岩体力学参数研究”项目,在室内进行不同应力路径下的岩石加卸载试验,在现场进行岩体直剪试验和真三轴试验,同时进行现场岩体精细描述,采用Hoek-Brown强度准则进行岩体力学参数估算,最后对不同手段获得的高应力条件下岩体强度特性研究成果进行综合分析,分析了应力路径及围压对岩体强度参数的影响,研究了高应力条件下岩体强度参数。论文的主要研究成果如下:
     ⑴各种应力路径下的岩石强度均具有围压效应。即围压对岩样的轴向承载力有较大的影响,以峰前卸围压最为敏感,峰后卸围压次之,常规三轴加载最不敏感。
     ⑵不同应力路径下的岩石强度及强度参数不同,常规三轴加载试验>峰前卸载破坏试验>峰后卸载破坏试验。
     ⑶结构面直剪试验表明峰值抗剪强度与正应力在高压下呈现很明显的非线性线关系,并且对于同一性状的结构面而言,随着法向压力增加,其摩擦系数降低而粘聚力增加。
     ⑷高应力条件岩体强度参数与常规应力条件有明显的不同。不但强度参数大小不同,强度参数特性也不一样,岩体强度在高压条件下呈现明显的非线性特征。
     ⑸现场岩体三轴卸载试验结果表明:在应力水平不高时(正应力<25MPa),Mohr-Columb强度准则与Hoek-Brown强度准则的差异不大,但在高应力水平下(正应力>25MPa),Hoek-Brown强度准则显得更为合理。⑹岩体试样受力状态对岩体强度参数具有较大的影响。现场岩体三轴卸载试验处于三向受力状态,岩体直剪试验处于二向受力状态。现场岩体三轴卸载试验获得的岩体摩擦系数与岩体直剪试验获得的岩体摩擦系数差异不大,但三轴试验获得的岩体粘聚力要明显高于直剪试验获得的岩体粘聚力。
     ⑺岩体强度与试验时试样尺寸有关系,存在尺寸效应。岩块三轴试验、岩体三轴卸载试验和通过Hoek-Brown强度准则估算岩体强度参数的结果表明,随着岩体尺寸的增加,摩擦系数及粘聚力总的来说具有逐渐减小的趋势。
With the development of hydropower resources in southwest China , the rock mechanics problem of rock mass with high geo-stress is becoming increasingly prominent . Because of the difference of geo-stress environment between deep-buried rock mass engineering and shallow rock engineering , the basic mechanical properties and engineering response of rock mass are also significantly distinct , leading to a significant difference of disaster mechanism、engineering stability and design theory . Therefore , it is necessary to research the rock mass mechanical parameters on the surrounding rock with high geo-stress and the corresponding method of rock mass mechanical parameters .
     This paper combine the project“The Research of Rock Mass Mechanical Parameters on the Surrounding Rock with High Geo-stress of Jinping II Hydropower Station”, in laboratory , we have done rock triaxial tests under different loading or unloading paths ; in field , we have done rock mass direct shear tests and true triaxial tests , at the same time , based on rock mass fine structure description , we estimate rock mass strength parameters by using Hoek-Brown strength criterion , by comparing with the strength parameters which got in different ways , we analyze the impact of stress path and confining pressure on rock mass strength parameters , research the strength parameters of rock under high stress . Some conclusions are summarized as the following :
     ⑴Rock under various stress paths have confining pressure effect . The confining pressure have a greater impact on the axial bearing capacity of rock , the pre-peak unloading confining pressure is the most sensitive , followed by the post-peak unloading confining pressure , and the conventional triaxial loading is the least sensitive .
     ⑵The rock strength and strength parameters under different stress paths are distinct , conventional triaxial loading test >pre-peak unloading confining pressure test>post-peak unloading confining pressure test .
     ⑶Structural plane direct shear test show that the peak shear strength and normal stress have a very clear nonlinear relationship at high stress , and for the structural planes of the same character , as the normal stress increases , the friction coefficient decreases and cohesion increases .
     ⑷The rock mass strength parameters under high stress are significantly different of which under conventional stress , not only the sizes of strength parameters , but also the characteristics of strength parameters , the rock mass strength under high stress show obvious nonlinear characteristics .
     ⑸The results of rock mass triaxial unloading test show that under low stress level (normal stress <25MPa) , the Mohr-Columb strength criterion and the Hoek-Brown strength criterion have little difference , but under high stress level (normal stress >25MPa) , the Hoek-Brown strength criterion is more reasonable than the Mohr-Columb strength criterion .
     ⑹The stress state of rock mass samples have a greater impact on the rock mass strength parameters . The rock mass triaxial unloading test is in three directions stress state , the direct shear test is in two directions . The friction coefficient is almost the same between rock mass triaxial unloading test and direct shear test , but the rock mass cohesion of triaxial unloading test is significantly greater than direct shear test .
     ⑺The rock mass strength is related to the sample size , exists scale effect . The rock mass strength parameters acquired by rock triaxial test、rock mass triaxial unloading test and the estimation with Hoek-Brown strength criterion show that with the increase of rock mass size , the friction coefficient and cohesion in general decreases .
引文
[1]古德生.金属矿床深部开采中的科学问题.科学前沿与未来[C].第175次香山科学会议,北京,2001-11.中国环境科学出版社,2002.192--201.
    [2]冯夏庭.深部大型地下工程开采与利用中的几个关键岩石力学问题[C].科学前沿与未来,第175次香山科学会议,北京,2001-11.中国环境科学出版社,2002.202--211.
    [3]何满潮.深部开采工程岩石力学现状及其展望[C].第八次全国岩石力学与工程学术大会论集.
    [4]周火明,孔祥辉.水利水电工程岩石力学参数取值问题与对策[J].长江科学院报,2006,23(4).
    [5]周火明,盛谦,熊诗湖.复杂岩体力学参数取值研究[J].岩石力学与工程学报,2002,21(增刊):2045--2048.
    [6]陶振宇,潘别桐.岩石力学原理与方法[M].武汉:中国地质大学出版社,1991.
    [7] Oda M A.Method for Evaluating the Representative Elementary Volume Based on Joint Survey of Rockmass[J].Can.Geotech.1988,25(3):281--287.
    [8] Ramamurth T. Strength and Modulus Response of Anisotropic Rocks[J]. Comprehensive Rock Mech., 1993,4(1) :23--28.
    [9]张林洪.结构面抗剪强度的一种确定方法[J].岩石力学与工程学报,2001,20(1):114--117.
    [10]李建林,孟庆义.卸荷岩体的各向异性研究[J].岩石力学与工程学报,2001, 20(3): 338--341.
    [11]张振南,茅献彪,郭广礼.松散岩块压实变形模量的试验研究[J].岩石力学与工程学报,2003,22(4): 578--581.
    [12] S. R. Swansson , W. S. Brown . An Observation of Loading Path Independence of Fracture in Rock [J]. International Journal of Rock Mechanics and Mining Science & Geomechanics ,Volume 8, Issue 3, May 1971, Pages 277--278 .
    [13]陈颙,姚孝新,耿乃光.应力途径、岩石的强度和体积膨胀[J].中国科学,1979,11:1093--1100.
    [14]吴玉山,李纪鼎.大理岩卸载特性的研究[J].岩土力学,1984,5(1):29--36.
    [15]许东俊,耿乃光.岩体变形和破坏的各种应力途径[J].岩土力学,1986,7(2):17--25.
    [16]尹光志,李贺,鲜学福,许江.工程应力变化对岩石强度特性影响的试验研究[J].岩土工程学报,1987,9(2):20--27.
    [17]李天斌,王兰生.卸荷应力状态下玄武岩变形破坏特征的试验研究[J].岩石力学与工程学报,1993,12(4):321--327.
    [18]吴刚,孙钧.卸荷应力状态下裂隙岩体的变形和强度特性[J].岩石力学与工程学报,1998,17(6):615--621.
    [19]尤明庆,华安増.岩石试样的三轴卸围压试验[J].岩石力学与工程学报,1998,17(1):24--29.
    [20]陶履彬,夏才初,陆益鸣.三峡工程花岗岩卸荷全过程特性的试验研究.同济大学学报[J].1998,26(3):330--334.
    [21]王贤能,黄润秋.岩石卸荷破坏特征与岩爆效应[J].山地研究,1998,16(4):281--285.
    [22]徐松林,吴文,王广印等.大理岩等围压三轴压缩试验全过程研究(I):三轴压缩全过程和峰前、峰后卸围压全过程试验[J].岩石力学与工程学报,2001,20(6):763--767.
    [23]沈军辉.卸荷岩体的变形破裂特征[J].岩石力学与工程学报,2003,22(12):2028--2031.
    [24]李宏哲,夏才初,蒋坤等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10).
    [25]陈秀铜,李璐.高围压、高水压条件下岩石卸荷力学性质试验研究[J].岩石力学与工程学报,2008,27(増刊1).
    [26]吕颖慧,刘泉声,胡云华.基于花岗岩卸荷试验的损伤变形特征及其强度准则[J].岩石力学与工程学报,2009,28(10).
    [27]吕颖慧,刘泉声,江浩.基于高应力下花岗岩卸荷试验的力学变形特性研究[J].岩土力学,2010,31(2).
    [28]黄润秋,黄达.高地应力条件下卸荷速率对锦屏大理岩力学特性影响规律试验研究[J].岩石力学与工程学报,2010,29(1).
    [29] Kim K, Gao H. Probabilistic Approaches to Estimating Variation in the Mechanical Properties of Rock Masses[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1995, 32(2).
    [30] Bieniawski Z T. Rock Mass Classification in Rock Engineering[A]. Explor. for Rock Eng., Proc. of the Symp., A. A. Balkema, Geotech Div, Transvaal, Cape Town, S Aft, 1976, 97--106.
    [31] Barton N, By T L, Chryssanthakis P, et al. Predicted and Messured Performance of the 62m Span Norwegian Olympic Tce Hockey Cavern at Gjovik[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1994, 31(6).
    [32] Palmstr6m A. Characterizing Rock Masses by the RMI for Use of the Rock Mass Index (RMI)[J].Tunn.&Underground Space Tech., 1996, 11(2).
    [33]聂运钧,肖国强,王法刚.声波法在三峡坝基岩石力学试验中的应用[J].岩土力学,2003,24(增刊1).
    [34] Zhang L,Einstein H.Using RQD to Estimate the Deformation Modulus of Rock Masses[J].Int J Rock Moch Min Sci,2004,(41):337--341.
    [35] Kavanagh K T, Clough R W . Finite Element Application in the Characterization of Elastic Solid[J].Int. J. Solids structures, 1972(7).
    [36] Sakulai S. Interpretation of the Result of Displacement Measurements in Cut Slopes[A]. In: Proc.2nd Int. Symp. On Field Measurement in Geom.[C]. [s.1]: [s. n.], 1987,528--540.
    [37] Sonmez H, Ulusay R, Gokceoglu C. A Practical Procedure for the Back Analysis of Slope Failure in Closely Jointed Rock[J]. Int. J. Rock Mech. Min. Sci.&Geomech. Abstr.,1998, 35(2): 219--233.
    [38] Xu W Y, Shao J F. Feedback Design Methodology and Artificial Neural Network Theory Application in Rock Slope Engineering[A]. Computer Methods and Advances in Geomechanics. A.A. Balkema.Rotterdam. 1998(4): 2 569--2 576.
    [39]徐卫亚,蒋晗,谢守益.三峡永久船闸高边坡变形的人工神经网络预测法[J].岩土力学,1999,20(2):108--112.
    [40]陈益峰,周创兵.隔河岩坝基岩体在运行期的弹塑性力学参数反演[J].岩石力学与工程学报,2002,21(7):968--975.
    [41]杨志法,张路青,曾庆利等.可用于确定水平地应力分量和围岩弹性模量的TBA位移反分析法[J].岩石力学与工程学报,2004,23(23):4000--4005.
    [42]江权,冯夏庭,苏国韶等。基于松动圈-位移增量监测信息的高地应力下洞室群岩体力学参数的智能反分析[J].岩石力学与工程学报,2007,26(増刊1).
    [43]倪绍虎,肖明.基于围岩松动圈的地下工程参数场位移反分析[J].岩石力学与工程学报,2009,28(7).
    [44]张征,程祖锋,王思样等.岩土参数随机场空间最优估计精度分析与特异值研究[J].岩土工程学报,1999,21(5): 586--590.
    [45] Yan C F, Zhang J H. The use of Bayes Method to Infer Distribution of Mechanical Parameters[A].In: Proc. Rock Mech.&Env. Geotech., EMRG'97 [C]. Chongqing: Chongqing University Press, 1997,61(6).
    [46]熊文林,李胡生.岩石样本力学参数值的随机模糊处理方法[J].岩土工程学报,1992, 14(6):101--108.
    [47] Nawari N O, Liang R. Fuzzy-Based Approach for Determination of Characteristic Values of Measured Geotechnical Parameters[J].Canadian Geotech. J., 2000, 37: 1131--1140.
    [48]徐卫亚,蒋中明.岩土样本力学参数的模糊统计特征研究[J].岩土力学,2004, 25(3): 342--346.
    [49] Brown E T. Analytical and Computational Methods in Engineering Rock Mechanics[M]. London:London Press, 1987, 129--163.
    [50] Kawamoto T . , Ichikawa . Deformation and Fracturing Behaviour of Discontinuous Rock Mass and Damage Mechanics Theory[J]. Inl.J.Mun.Anal.Method in Geomech. ,1988,12(1).
    [51]徐光黎,潘别桐,晏同珍.节理岩体变形模量估算新方法[J].地球科学,1991,16(5).
    [52]周维垣,杨延毅.节理岩体力学参数取值研究[J].岩土工程学报,1992,14(5).
    [53]凌建明.节理裂隙岩体损伤力学研究中的若干问题[J].力学进展,1994,25(2).
    [54]朱维申,王平.节理岩体的等效连续模型与工程应用[J].岩土工程学报,1992,14(2).
    [55]周火明,盛谦等.三峡工程永久船闸边坡岩体宏观力学参数的尺寸效应研究[J].岩石力学与工程学报,2001,25(5).
    [56]和满潮等.工程岩体力学参数确定方法的研究[J].岩石力学与工程学报,2001,20(2).
    [57]晏石林,黄玉盈等.贯通节理岩体等效模型与弹性参数确定[J].华中科技大学学报:自然科学版,2001,29(6).
    [58]朱东林.节理岩体的REV及变形与强度的数值估算[D].武汉:中国科学院武汉岩土力学研究所,2003.
    [59]李世海,汪远年.三维离散元计算参数选取方法研究[J].岩石力学与工程学报,2004,23(21).
    [60]杨圣奇,苏承东,徐卫亚.大理岩常规三轴压缩下强度和变形特性的试验研究[J].岩土力学,2005,26(3).
    [61]李宏哲,夏才初,杨林德等.锦屏水电站大理岩在高应力条件下的卸荷力学特性研究[J].岩石力学与工程学报,2007,26(10).
    [62]汪斌,朱杰兵,邬爱清等.锦屏大理岩加卸载应力路径下力学性质试验研究[J].岩石力学与工程学报,2008,27(10).
    [63]黄润秋,黄达.卸荷条件下花岗岩力学特性试验研究[J].岩石力学与工程学报,2008,27(11).
    [64]胡云华.高应力下花岗岩力学特性试验及本构模型研究[D].武汉:中国科学院武汉岩土力学研究所,2008.
    [65] R.E.古德曼著,北方交通大学隧道与地质教研室译.不连续岩体中的地质工程方法[M]北京:中国铁道出版社,1980.
    [66]伍法权.统计岩体力学原理[M].武汉:中国地质大学出版社,1993.
    [67]范雷,王亮清,唐辉明.节理岩体结构面产状的动态聚类分析[J].岩土力学,2007,28(11).
    [68]徐海清.贵州省鱼简河水库坝基岩体力学参数研究[D].武汉:中国地质大学工程学院, 2004.
    [69]卢书强,许模.基于GSI系统的岩体变形模量取值及应用[J].岩石力学与工程学报,2009,28(増刊1).
    [70] Paul Marinos,Evert Hoek.GSI:A Geologically Friendly Tool for Rock Mass Strength Estimation[J].
    [71]韩现民,李晓,孙喜书.GSI在节理化岩体力学参数评价中的应用—以金川二矿区水平矿柱为例[J].金属矿山,2009,391.
    [72]韩凤山.大体积节理化岩体强度与力学参数[J]岩石力学与工程学报,2004,23(5).
    [73]苏永华,封立志,李志勇等.Hoek-Brown准则中确定地质强度指标因素的量化[J].2009,28(4).
    [74] Jerry Szymakowski,Chris Haberfield. A Comparison of Jointed Rock Mass Strength Envelopes Using Hoek-Brown GSI and Direct Shear Results[C].ISRM2003-Technology roadmap for rock mechanics, South African Institute of Mining and Metallurgy,2003.
    [75] Evert Hoek. Strength of Jointed Rock Masses[R]. 1983 Rankine Lecture. Geotechnique,1983,vol.33,no.186.
    [76] Hoek,E and Brown,E.T. The Hoek-Brown Failure Criterion—A 1988 Update[R]. Proceeding of the 15th Canadian Rock Mechanics Symposium,1988.
    [77] Catrin Edelbro. Rock Mass Strength A Review[R]. Department of Civil Engineering Division of Rock Mechanics.2003
    [78] Evert Hoek. A Brief History of the Hoek-Brown Failure Criterion[R]. Soils and Rocks 2007.
    [79] Evert Hoek. Practical Rock Engineering[M].
    [80]宋建波,张倬元.岩体经验强度准则在地质工程中研究和应用现状[J]地球科学进展,2004,19(增刊).
    [81]宋建波,于远忠岩.体经验强度准则及其强度参数m,s的确定方法[J].西南工学院学报,2001,16(1).
    [82]李同录,罗世毅,何剑等.节理岩体力学参数的选取与应用[J].岩石力学与工程学报,2004,23(13).
    [83] Hoek,E and Brown,E.T. Practical Estimates of Rock Mass Strength [J]. Rock Mech.&Mining Sci.&Geomechanics ,34(8).
    [84] Evert Hoek , Carranza-Torres. Hoek-Brown Criterion[C]. TAC Conference ,Toronto,2002.
    1汪斌,李维树,范雷等.《锦屏二级水电站引水隧洞高地应力条件下的岩体力学参数研究阶段成果报告》,长江科学院岩基室,2010,90.
    2汪斌,李维树,范雷等.《锦屏二级水电站引水隧洞高地应力条件下的岩体力学参数研究阶段成果报告》,长江科学院岩基室,2010,85—86.
    3汪斌,李维树,范雷等.《锦屏二级水电站引水隧洞高地应力条件下的岩体力学参数研究阶段成果报告》,长江科学院岩基室,2010,108—109.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700