用户名: 密码: 验证码:
等离子体增强化学气相沉积制备碳纳米管及其表征
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于碳纳米管具有独特的结构和优异的物化性质,近年来已成为纳米科技领域的研究热点。与结晶碳纳米管相比,非晶碳纳米管的无序结构使其具有了特殊的电子性质,有很广泛的应用前景。本论文采用等离子体增强化学汽相沉积方法制备了碳纳米管并进行了仔细的表征。在制备了非晶碳纳米管的基础上,又制备了具有结晶分支的非晶碳纳米管和Fe2O3纳米线填充的非晶碳纳米管,发现氧化态的催化剂对非晶碳纳米管的生长有决定作用。同时还对催化剂的化学状态、表面形貌、水蒸气和等离子体的轰击等实验条件对碳纳米管形貌和结构的影响进行了研究。上述研究对开拓制备非晶碳纳米管新方法、揭示非晶碳纳米管生长机制具有非常重要的意义。另外,实验条件对碳纳米管形貌和结构的影响的研究也为发现新颖碳纳米结构材料提供了帮助。
Since carbon nanotubes (CNTs) were discovered by S. Iijima in 1991, their synthesis, growth mechanism and application have become one of the most active issues in the research of nanoscience and nanotechnology. CNTs have widespread applications in microelectronics, composites, hydrogen storage, electron field emission, and electrochemical sensors for their unique structures and novel properties of CNT.
     Single-walled and multi-walled CNTs can be regarded as seamless tubular structure by rolling up one or more graphitic layers and they are always well-crystalline. However, amorphous carbon nanotubes (ACNTs), composed of randomly packed carbon clusters, can be regarded as long-distance disordered and short-distance ordered structures by rolling up disordered carbon layers. Because of the special amorphous structure, ACNTs have many extraordinary properties compared with crystalline CNTs. For the absence of chirality, the electronic property of ACNTs simply depends on their diameter. The defective structure of ACNTs yields a semiconductor band gap which is larger than that of crystalline CNTs and can be easily tuned by controlling the diameter of ACNTs, thus they have considerably potential applications in electronic devices. ACNTs can find applications in gas adsorbent and catalyst carrier for their porous structure and stability. ACNTs are well-functional for their coarse surfaces and large amount of defects. ACNTs with active surfaces can be filled with various solutions without any treatment, and then nanowires can be obtained through chemical reactions. ACNTs have been successfully synthesized by template method, thermal chemical vapor deposition, solvothermal route, but there are no reports on ACNTs synthesized by plasma-enhanced chemical vapor deposition (PECVD). In this study, ACNYs have been synthesized by PECVD method. The morphology, structure and composition of ACNTs have been characterized and the growth mechanism has been explored. Meanwhile, the influences of experimental conditions, such as catalyst chemical state, catalyst surface morphology after pretreatment, introduction of water vapor and bombardment of plasma on the morphology and structure of CNTs have been investigated.
     In Chapter 1, we first give a brief introduction to the discovery, unique structures, outstanding properties, applications and syntheses of CNTs. Second, we give a review on the structures, mechanisms, syntheses, properties and applications of ACNTs. At last, we simply describe the purpose and the results of our work.
     In Chapter 2, we introduce the mechanism, equipment and experimental conditions of the catalyst preparation as well as the mechanism of PECVD, synthesis and characterization of CNTs.
     In Chapter 3, ACNTs have been successfully synthesized on 20 nm Ni film and Fe-Ni film in CH4/H2 ambient by PECVD method. The obtained ACNTs consist of randomly distributed carbon clusters and show structural characteristics of short-distance order and long-distance disorder. Low catalyst activity, high thermal conductivity of H2 and the sufficient carbon supply are responsible for ACNT growth. ACNTs can be synthesized with a CH4:H2 flow ratio of 50:50 and 80:20 at a temperature of 800 and 900 oC at a pressure from 500 to 1000 Pa.
     On the basis of ACNT synthesis, we have successfully synthesized two types of novel ACNTs: ACNTs with graphitized branches and Fe2O3 nanowires-filled ACNTs (Fe2O3-NFACNTs).
     In Chapter 4, ACNTs with graphitized branches have been carefully characterized. ACNTs showing good orientation are about 5μm long and 100-150 nm wide. Many small well-crystalline multi-walled CNTs are located on the sidewalls of ACNTs. The diameter and length of the branches are both less than 100 nm. The structural difference between the ACNTs and the branches is attributed to the difference of catalyst composition. The filling material in the ACNTs is nickel oxide, which is suitable for ACNT growth for the low activity triggered by its low carbon solubility. Nevertheless, the catalyst responsible for crystalline branches is Ni particles, which are ideal catalyst to grow multi-walled CNTs.
     In Chapter 5, 80% of the obtained ACNTs are filled with Fe2O3 nanowires. This filling rate is rather high for the filled CNTs directly synthesized. The ACNTs are randomly oriented, 5μm in length and 100-150 nm in diameter. The filling material in the ACNTs is Fe2O3 nanowires, which are a few hundred nanometers to a few microns in length and 10-20 nm in diameter. Crystalline Fe2O3 nanowires are entirely enwrapped by amorphous carbon shell. We believe that Fe2O3 nanoparticles are genuine catalyst for ACNTs. At high temperature, Fe2O3 nanoparticles exist like fluid and can deform easily. The liquid Fe2O3 nanoparticles can easily diffuse into the tunnel of the ACNTs after the ACNTs begin to grow. Thus Fe2O3 nanowires-filled ACNTs come into being.
     In Chapter 6, the influences of catalyst chemical state, catalyst surface morphology after pretreatment, introduction of water vapor and bombardment of plasma on the morphology and structure of CNTs have been investigated.
     The chemical state of catalyst is controlled by heating atmosphere. Catalyst is oxidized when heated in H2 and results in the growth of ACNTs. Most of the catalyst remains metallic when heated in 10 Pa air ambient and leads to the growth of multi-walled CNTs.
     The type and structure of the product highly depend on the catalyst morphology after pretreatment. The main product is carbon thin film when catalyst film has not been broken into small islands. With the decrease of particle size after pretreatment, the CNT structure becomes more and more disordered.
     The partial pressure of water vapor has significant influence on the products. The structure of the product is most disordered when the partial pressure of water is 250 Pa. The CNT structure becomes more ordered with the increase of water pressure. Novel carbon nanostructures, nodule-like CNTs, carbon nano-necklaces and CNT knots have been synthesized under the water partial pressure of 750 Pa. The growth of such structures is promoted by the oxidation effect of water.
     The effect of plasma bombardment on the morphology and structure of CNTs has been investigated. The weak bombardment results in little structural changes of CNTs when the length of CNTs is less than 2μm, while for the CNTs longer than 3μm, the structure of the CNTs under severe bombardment of plasma has been destroyed. At the same time, some novel structures such as ACNTs with graphtized branches and carbon thorns have been obtained.
     Above all, two types of novel ACNTs, ACNTs with graphtized branches and Fe2O3-NFACNTs have been successfully synthesized. Their formation greatly depends on the catalyst in oxidized state. These results provide a novel method to synthesize ACNTs and reveal the growth mechanism of ACNTs. In addition, it is helpful for the synthesis of novel carbon nanostructures to investigate the influences of catalyst chemical state, catalyst surface morphology after pretreatment, introduction of water vapor and bombardment of plasma on the morphology and structure of CNTs.
引文
[1] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smally. Buckyminister-fullerene. Nature 1985; 318: 162.
    [2] A. Oberlin, M. Endo, T. Koyama. Filamentous growth of carbon through benzene decomposition. J. Cryst. Growth 1976; 32: 335.
    [3] S. Iijima. Helical microtubules of graphite carbon. Nature 1991; 354: 56.
    [4] S. Iijima, T. Ichihashi. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363: 603.
    [5] D.S. Bethune, C.H. Kiang, M.S. de Vries, G. Gorman, R. Savoy, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993; 363: 605.
    [6] P.M. Ajayan, S. Iijima. Capillarity-induced filling of carbon nanotubs. Nature 1993; 361: 333.
    [7] A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, et al. Crystalline ropes of metallic carbon nanotubes. Science 1996; 273: 483.
    [8] W.Z. Li, S.S. Xie, L.X. Qian, B.H. Chang, B.S. Zou, W.Y. Zhou, et al. Large-scale synthesis of aligned carbon nanotubes. Science 1996; 274: 1701.
    [9] A.C. Dillon, K.M. Jones, T.A. Bekkendahl, C.H. Kiang, D.S. Bethune, M.J. Heben. Storage of hydrogen in single-walled carbon nanotubes. Nature 1997; 386: 377.
    [10] Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998; 282: 1105.
    [11] B.W. Smith, M. Monthioux, D.E. Luzzi. Encapsulated C60 in carbon nanotubes. Nature 1998; 396: 323.
    [12] C. Liu, H.T. Cong, F. Li, P.H. Tan, H.M. Cheng, K. Lu, et al. Semi-continuous synthesis of single-walled carbon nanotubes by a hydrogen arc discharge method. Carbon 1999; 37: 1865.
    [13] C. Liu, Y.Y. Fan, M. Liu, H.T. Cond, H.M. Cheng, M.S. Dresselhaus. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999; 286: 1127.
    [14] J. Kong, N.R. Franklin, C.W. Zhou, M.G. Chapline, S. Peng, K.J. Cho, et al. Nanotube molecular wires as chemical sensors. Science 2000; 287: 622.
    [15] P.C. Collins, M.S. Arnold, P. Avouris. Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 2001; 292: 706.
    [16] M. Kociak, A.Yu. Kasumov, S. Guéron, B. Reulet, I.I. Khodos, Y.B. Gorbatov, et al. Superconductivity in ropes of single-walled carbon nanotubes. Phys. Rev. Lett 2001; 86: 2416.
    [17] S. Helveg, C. Lopez-Cartes, J. Sehested, P.L. Hansen, B.S. Clausen, J.R. Rostrup-Nielsen, et al. Atomic-scale imaging of carbon nanofibre growth. Nature 2004; 427: 426.
    [18] R. Saito, G. Dresselhaus, M.S. Dresselhaus. Physical properties of carbon nanotubes. Imperial College Press 1998.
    [19] M.S. Dresselhaus, G. Dresselhaus, A. Jorio. Unusual properties and structure of carbon nanotubes. Annu. Rev. Mater. Res. 2004; 34: 247.
    [20] M. Terrones. Science and thechnology of the twenty-first century: Synthesis, Properties, and Applications of Carbon Nanotubes. Annu. Rev. Mater. Res. 2003; 33: 419.
    [21] 朱宏伟,吴德海,徐才录,碳纳米管,机械工业出版社,2003 年。
    [22] B.I. Yakobson, C.J. Brabec, J. Bernholc. Nanomechanics of carbon tubes: instabilities beyond linear response. Phys. Rev. Lett. 1996; 76: 2511.
    [23] J.P. Salvetat, G.A.D. Briggs, J.M. Bonard, R.R. Bacsa, A.J. Kulik, T. St?ckli, et al. Elastic and shear moduli of single walled carbon nanotube ropes. Phys. Rev. Lett. 1999; 82: 944.
    [24] Z.L. Wang, P. Poncharal, W.A. de Heer. Measuring physical and mechanical properties of individual carbon nanotubes by in situ TEM. J. Phys. Chem. Solids 2000; 61; 1025.
    [25] S. Xie, W. Li, Z. Pen, B. Chang, L. Sun. Mechanical and physical properties on carbon nanotube. J. Phys. Chem. Solids 2000; 61: 1153.
    [26] M.S. Dresselhaus, G. Dresselhaus, R. Saito. Carbon fibers based on C60 and theirsymmetry. Phys. Rev. B 1992; 45: 6234.
    [27] T.W. Odom, J.L. Huang, P. Kim, C.M. Lieber. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998; 391: 62.
    [28] Y. Saito, M. Fujita, G. Dresselhaus, M.S. Dresselhaus. Electronic structure of chiral graphene tubules. Appl. Phys. Lett. 1992; 60: 2204.
    [29] H. Dai, E.W. Wong, C.M. Lieber. Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes. Science 1996; 272: 523.
    [30] W.A. de Heer, W.S. Bacsa, A. Chatelain, T. Gerfin, R.H. Baker, L. Forro, et al. Aligned carbon nanotubes films: production and optical and electrical properties. Science 1995; 268: 845.
    [31] Y.H. Huang, M. Okada, K. Tanaka, T. Yamabe. Estimation of superconducting transition temperature in metallic carbon nanotubes. Phys. Rev. B 1996; 53: 5129.
    [32] Y. Murakami, T. Shibata, K. Okuyama, T. Arai, H. Suematsu, Y. Yoshida. Structural, magnetic and superconducting properties of graphite nanotubes and their encapsulation compounds. J. Phys. Chem. Solids 1993; 54: 1861.
    [33] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben. Storage of hydrogen in single - walled carbon nanotubes. Nature 1997; 386: 377.
    [34] V.H. Crespi, M.L. Coben, A. Rublo. In Situ Band Gap Engineering of Carbon Nanotubes. Phys. Rev. Lett. 1997; 79: 2093.
    [35] A.G. Rinzler, J.H. Hafner, P. Nikolaev, et al. Unraveling nanotubes: field emission from an atomic wire. Science 1995; 269: 1550.
    [36] W. Zhu, C. Bower, G.P. Kochanski, S. Jin. Electron field emission from nanostructured diamond and carbon nanotube. J. Solid-State Electr. 2001; 45: 921.
    [37] Y.R. Cho, H.L. Jin, Y.H. Song, S.Y. Kang, C.S. Hwang, M.Y. Jung. Photolithography-based carbon nanotube pattering for field emission displays. J. Mater. Sci. Eng. 2001; B79: 128.
    [38] W. Zhu, C. Bower, O. Zhou, G. Kochanski, S. Jin. Large current density from carbon nanotube field emitters. Appl. Phys. Lett. 1999; 75: 873.
    [39] W.A, de Heer, A. Chatelain, D. Ugarte. A carbon nanotube field-emission electron source. Science 1995; 270: 1179.
    [40] Y. Saito, S. Uemura, K. Hamaguchi. Cathode ray tube lighting elements with carbon nanotube field emitters. Jpn. J. Appl. Phys. 1998; 37: 346.
    [41] 朱屯等,国外纳米材料技术进展与应用,化学工业出版,2002。
    [42] H.D. Wagner, O. Lourie, Y. Feldman, R. Tenne. Stress-induced fragmentation of multiwall carbon nanotubes in a polymer matrix. Appl. Phys. Lett. 1998; 72: 188.
    [43] P.M. Ajayan, O. Zhou. Carbon Nanotubes. Springer, 2001.
    [44] J. Appenzeller, R. Martel, P. Avouris, H. Stahl, B. Lengeler. Optimized contact configuration for the study of transport phenomena in ropes of single-wall carbon nanotubes. Appl. Phys. Lett. 2001; 78: 3313.
    [45] V.H. Crespi, M.L. Coben, A. Rublo. In situ band gap engineering of carbon nanotubes. Phys. Rev. Lett. 1997; 79: 2093.
    [46] S.J. Tans, A.R.M. Verschueren, C. Dekker. Room-temperature transistor based on a single nanotubes. Nature 1998; 393: 49.
    [47] S. Kuwahara, S. Akita, M. Shirakihara, T. Sugai, Y. Nakayama, H. Shinohara. Fabrication and characterization of high-resolution AFM tips with high-quality double-wall carbon nanotubes. Chem. Phys. Lett. 2006; 429: 581.
    [48] R.H. Baughman, A.A. Zakhidov, W.A.de Heer. Carbon Nanotubes—the Route Toward Applications. Science 2002; 297: 787.
    [49] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben. Storage of hydrogen in single - walled carbon nanotubes. Nature 1997; 386: 377.
    [50] Y. Ye, C.C. Ahn, C. Witham, J. Liu, A. G. Rinzler, D. Colbertet, et al. Hydrogen adsorption and cohesive energy of single-walled carbon nanotubes. Appl. Phys. Lett. 1999; 74; 2307.
    [51] C. Liu, Y.Y. Fan, M. Liu, H.T. Cong, H.M. Cheng, M. S. Dresselhaus.. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999; 286; 1127.
    [52] T.W. Ebbesen, P.M. Ajayan. Large-scale synthesis of carbon nanotubes. Nature 1992; 358: 220.
    [53] H.M. Cheng, F. Li, S.D.M. Brown, M.A. Pimenta, A. Marucci, G. Dresselhaus, et al. Bulk morphology and diameter distribution of single-walled carbon nanotubes synthesized by catalytic decomposition of hydrocarbons. Chem. Phys. Lett. 1998; 289: 602.
    [54] P. Nikolaev, M.J. Bronikowski, R.K. Bradley, F. Rohmund, D.T. Colbert, K.A. Smith, et al. Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide. Chem. Phys. Lett. 1999; 313: 91.
    [55] M. Yudasaka, R. Kikuchi, T. Matsui, Y. Ohki, S. Yoshimura, E. Ota. Specific conditions for Ni catalyzed carbon nanotube growth by chemical vapor deposition. Appl. Phys. Lett. 1995; 67: 2477.
    [56] D.S. Bethune, C.H. Kiang, M.S.de Vries, G. Gorman, R. Savoy, J. Vazquez, et al. Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993; 363: 605.
    [57]C.H. Kiang, W.A. Goddard, R. Beyers. J.R. Salem, D.S. Bethune. Catalytic effects of heavy metals on the growth of carbon nanotubes and nanoparticles. J. Phys. Chem. Solids 1996; 57: 35.
    [58] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Samlley. Catalytic growth of single- walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995; 243: 49.
    [59] A.C. Dupuis. The catalyst in the CCVD of carbon nanotubes—a review. Prog. in Mater. Sci. 2005; 50: 929.
    [60] T. Guo, P. Nikolaev, A. Thess, D.T. Colbert, R.E. Smalley Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 1995;243: 49.
    [61] A. Thess, R. Lee, P. Nikolaev, H.J. Dai, P. Petit, J. Robert, et al. Crystalline ropes ofmetallic carbon nanotubes. Science 1996; 273: 483.
    [62] W. Wang, W. Lu, S. Yang, X. Li. Amorphous carbon nanotube; the growth intermediates of graphitic carbon nanotube? Electrochem. Soc. Proc. 1997; 97–14: 814.
    [63] Y.H. Tang, N. Wang, Y.F. Zhang, C.S. Lee, I. Bello, S.T. Lee. Synthesis and characterization of amorphous carbon nanowires. Appl. Phys. Lett. 1999; 75: 2921.
    [64] A. Rakitin, C. Papadopoulos, J.M. Xu. Electronic properties of amorphous carbon nanotubes. Phys. Rev. B 2000; 61: 5793.
    [65] L.J. Ci, B.Q. Wei, C.L. Xu, J. Liang, D.H. Wu, S.S. Xie, et al. Crystallization behavior of the amorphous carbon nanotubes prepared by the CVD method. J. Cryst. Growth 2001; 233: 823.
    [66] H. Nishino, C. Yamaguchi, N. Haruyuki, N. Ryoichi. Carbon nanotube with amorphous carbon wall: a-CNT. Carbon 2003; 41: 2165.
    [67] Z.D. Hu, Y.F. Hu, Q. Chen, X.F. Duan, L.M. Peng. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. J. Phys. Chem. B 2006; 110: 8263.
    [68] T. Zhao, Y. Liu, J. Zhu. Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 2005; 43: 2907.
    [69] Y.N. Liu, X.L. Song. An electric arc furnace for producing carbon nanotube. Patent No.: ZL01240373.3, 2002 (China).
    [70] W.M. Rohsenow, J.P. Hartnett, E.N. Ganic. Handbook of heat transfer fundamentals. 2nd ed. McGraw-Hill Press, 1985.
    [71] H. Nishino, R. Nishida, T. Matsui, et al. Growth of amorphouscarbon nanotube from poly(tetrafluoroethylene) and ferrous chloride. Carbon 2003; 41: 2819.
    [72] R.Y. Li, X.C. Sun, X.R. Zhou, M. Cai, X.L. Sun. Aligned Heterostructures of Single-Crystalline Tin Nanowires Encapsulated in Amorphous Carbon Nanotubes. J. Phys. Chem. C 2007; 111: 9130.
    [73] A.H. Lu, W. Schmidt, S.D. Tatar, B. Spliethoff, J. Popp, W. Kiefer, et al. Formation of amorphous carbon nanotubes on ordered mesoporous silica support. Carbon 2005; 43: 1811.
    [74] L.F. Liu, S.C. Mu, S.S. Xie, W.Y. Zhou, L. Song, D.F. Liu, et al. Template synthesis, characterization and magnetic property of Fe nanowires-filled amorphous carbon nanotubes array. J. Phys. D: Appl. Phys. 2006; 39(18): 3939.
    [75] J.T. Chen, K. Shin, J.M. Leiston-Belanger, M.F. Zhang, T.P. Russell. Amorphous carbon nanotubes with tunable properties via template wetting. Adv. Funct. Mater. 2006; 16: 1476.
    [76] Y. Yang, Z. Hu, Q. Wu, Y.N. Lv, X.Z. Wang, Y. Chen. Templateconfined growth and structural characterization of amorphous carbon nanotubes. Chem. Phys. Lett. 2003; 373: 580.
    [77] J. Dinesh, M. Eswaramoorthy, C.N.R. Rao. Use of amorphous carbon nanotube brushes as template to fabricate GaN nanotube brushes and related materials. J. Phys. Chem. C 2007; 111: 510.
    [78] N.Q. Zhao, C.N. He, X.W. Du, C.S. Shi, J.J. Li, L. Cui. Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition. Carbon 2006; 44: 1859.
    [79] G. Hu, M.J. Cheng, D. Ma, X.H. Bao. Synthesis of Carbon Nanotube Bundles with Mesoporous Structure by a Self-Assembly Solvothermal Route. Chem. Mater. 2003; 15: 1470.
    [80] T. Luo, L.Y. Chen, K.Y. Bao, W.C. Yu, Y.T. Qian. Solvothermal preparation of amorphous carbon nanotubesand Fe/C coaxial nanocables from sulfur, ferrocene, and benzene. Carbon 2006; 44: 2844.
    [81] B.Y. Liu, D.C. Jia, Y. Zhou, H.B. Feng, Q.C. Meng. Low temperature synthesis of amorphous carbon nanotubes in air. Carbon 2007; 45: 1696.
    [82] L.J. Ci, H.W. Zhu, B.Q. Wei, C.L. Xu, D.H. Wu. Annealing amorphous carbon nanotubes for their application in hydrogen storage. Appl. Surf. Sci. 2003; 205: 39.
    [83] J.Y. Huang, S. Chen, Z.F. Ren, G. Chen, M.S. Dresselhaus. Real-Time Observation of Tubule Formation from Amorphous Carbon Nanowires under High-Bias Joule Heating. Nano Lett. 2006; 8: 1699.
    [84] C.C. Chuang, J.H. Huang, W.J. Chen, C.C. Lee, Y.Y. Chang. Role of amorphous carbon nanowires in reducing the turn-on field of carbon films prepared by microwave-heated CVD. Diam. Relat. Mater. 2004; 13: 1012.
    [85] J. Robertson. Mechanisms of electron field emission from diamond, diamond-like carbon, and nanostructured carbon. J. Vac. Sci. Technol. B 1999; 17: 659.
    [86] J.B. Cui, J. Ristein, L. Ley. Electron Affinity of the Bare and Hydrogen Covered Single Crystal Diamond (111) Surface. Phys. Rev. Lett. 1998; 81: 429.
    [87] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, R.S. Ruoff. Chemical Vapor Deposition Based Synthesis of Carbon Nanotubes and Nanofibers Using a Template Method. Chem. Mater. 1998; 10: 260.
    [88] H. Orikasa, N. Inokuma, S. Okubo, O. Kitakami, T. Kyotani. Template Synthesis of Water-Dispersible Carbon Nano "Test Tubes" without Any Post-treatment. Chem. Mater. 2006; 18: 1036.
    [89] J. Luo, Z.P. Huang, Y.G. Zhao, L. Zhang, J. Zhu. Arrays of heterojunctions of Ag nanowires and amorphous carbon nanotubes. Adv. Mater. 2004; 16: 1512.
    [90] Y.H. Wey. Surface of amorphous semiconductors and their contacts with metals. Phys. Rev. B 1976; 13: 3495.
    [91] J. Luo, Y.J. Xing, J. Zhu, D.P. Yu, Y.G. Zhao, Lu Zhang, et al. Structure and Electrical Properties of Ni Nanowire/Multiwalled-Carbon Nanotube/Amorphous Carbon Nanotube Heterojunctions. Adv. Funct. Mater. 2006; 16: 1081.
    [92] J. Luo, J. Zhu, Z.P. Huang, L. Zhang. Arrays of Ni nanowire/multiwalled carbon nanotube/amorphous carbon nanotube heterijunctionscontaining Schottky contacts. Appl. Phys. Lett. 2007; 90: 033114.
    [1] M. Meyyappan, L. Delzeit, A. Cassell, D. Hash. Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 2003; 12: 205.
    [2] 郑伟涛,薄膜材料与薄膜技术,化学工业出版社,2004。
    [3] D.B. Hash,M. S. Bell,K. B. K. Teo, B.A. Cruden, W.I. Milne, M. Meyyappan. An investigation of plasma chemistry for dc plasma enhanced chemical vapor deposition of carbon nanotubes and nanofibres. Nanotechnology 2005; 16: 925.
    [4] Y. Yabe, Y. Ohtake, T. Ishitobi. Synthesis of well-aligned carbon nanotubes by radio frequency plasma enhanced CVD method. Diam. Relat. Mater. 2004; 13: 1292.
    [5] Y.C. Choi, D.J. Bae, Y.H. Lee, B.S. Lee, I.K. Han, W.B. Choi, et al. Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition. Synthetic Metals 2000; 108: 159.
    [6] Iijima S. Helical microtubules of graphite carbon. Nature 1991; 354: 56.
    [7] 成会明,碳纳米管-制备、结构、物性及应用,化学工业出版社,2002。
    [8] H. Hiura, T.W. Ebbesen, K. Tanigaki, H. Takahashi. Raman studies of carbon nanotubes. Chem. Phys. Lett. 1993; 202: 509.
    [9] A.M. Rao, E.Richter, S. Bandow, B. Chase, P.C. Eklund, K.A. Williams, et al. Diameter-Selective Raman Scattering from Vibrational Modes in Carbon Nanotubes. Science, 1997; 275: 187.
    [10] A.C. Ferrari, J. Robertson..Interpretion of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000; 61: 14095.
    [11] 汪兆平,韩和相,李国华。碳纳米管的拉曼散射研究。光散射学报 1999;11:1。
    [12] Hiura, T.W. Ebbesen, K. Tanigaki, G. Dresselhaus. Phonon modes in carbon nanotubules. Chem. Phys. Lett. 1993; 209: 77.
    [13] 梁映秋,赵文运,分子振动和振动光谱,北京大学出版社,1990。
    [1] S. Iijima. Helical microtubules of graphite carbon. Nature 1991; 354: 56.
    [2] Carbon nanotubes: properties and applications. Edited by M.J. O'Connell, Taylor & Francis, 2006.
    [3] R. Saito, G. Dresselhaus, M.S. Dresselhaus. Physical Properties of Carbon Nanotubes. Imperial College Press 1998.
    [4] A. Loiseau, et al. Understanding carbon nanotubes: from basics to application. Springer, 2006.
    [5] Carbon nanotubes: from basic research to nanotechnology, Edited by V. N. Popov and P. Lambin. Springer, 2006.
    [6] A. Rakitin, C. Papadopoulos, J.M. Xu. Electronic properties of amorphous carbon nanotubes. Phys. Rev. B 2000; 61: 5793.
    [7] J. Luo, J. Zhu, Z.P. Huang, L. Zhang. Arrays of Ni nanowire/multiwalled carbon nanotube/amorphous carbon nanotube heterijunctionscontaining Schottky contacts. Appl. Phys. Lett. 2007; 90: 033114.
    [8] T.K. Zhao, Y.N. Liu, J.W. Zhu. Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 2005; 43: 2907.
    [9] N.Q. Zhao, C.N. He, X.W. Du, C.S. Shi, J.J. Li, L. Cui. Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition. Carbon 2006; 44: 1859.
    [10] B.Y. Liu, D.C. Jia, Y. Zhou, H.B. Feng, Q.C. Meng. Low temperature synthesis of amorphous carbon nanotubes in air. Carbon 2007; 45: 1696.
    [11] M.H. Ruemmeli, E. Borowiak-Palen, T. Gemming, T. Pichler, M. Knupfer, M. Kalbac, et al. Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes. Nano Lett. 2005; 5: 1209.
    [12] H. Nishino, C. Yamaguchi, N. Haruyuki, N. Ryoichi. Carbon nanotube with amorphouscarbon wall: a-CNT. Carbon 2003; 41: 2165.
    [13] F. Tuinstra, J.L. Koeng. Raman Spectrum of Graphite. J. Chem. Phys 1970; 53: 1126.
    [14] A.C. Ferrari, J. Robertson. Interpretion of Raman spectra of disordered and amorphous carbon. J. Phys. Rev. B 2000; 61: 14095.
    [15] L. Delzeit, I. McAninch, B.A. Cruden, D. Hash, B. Chen, J. Han, et al. Growth of multiwall carbon nanotubes in an inductively coupled plasma reactor. J. Appl. Phys. 2002; 91: 6027.
    [16] W.M. Rohsenow, J.P. Hartnett, E.N. Ganic. Handbook of heat transfer fundamentals. 2nd ed. McGraw-Hill Press. 1985.
    [1] T.K. Zhao, Y.N. Liu, J.W. Zhu. Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 2005; 43: 2907.
    [2] N.Q. Zhao, C.N. He, X.W. Du, C.S. Shi, J.J. Li, L. Cui. Amorphous carbon nanotubes fabricated by low-temperature chemical vapor deposition. Carbon 2006; 44: 1859.
    [3] B.Y. Liu, D.C. Jia , Y. Zhou, H.B. Feng, Q.C. Meng. Low temperature synthesis of amorphous carbon nanotubes in air. Carbon 2007; 45: 1696.
    [4] F. Tuinstra, J.L. Koeng. Raman Spectrum of Graphite. J. Chem. Phys. 1970; 53: 1126.
    [5] A.C. Ferrari, J. Robertson, Interpretion of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000; 61: 14095.
    [6] W.Z. Li, H. Zhang, C.Y. Wang, Y. Zhang, L.W. Xu, K. Zhu, et al. Raman characterization of aligned carbon nanotubes produced by thermal decomposition of hydrocarbon vapor. Appl. Phys. Lett. 1997; 70; 2684.
    [7] Y. Yang, Z. Hu, Q. Wu, Y.N. Lu, X.Z. Wang, Y. Chen. Templateconfined growth and structural characterization of amorphous carbon nanotubes. Chem. Phys. Lett. 2003; 373: 580.
    [8] A.N. Andriotis, M. Menon. Are electrical switching and rectification inherent properties of carbon nanotube Y junctions? Appl. Phys. Lett. 2006; 89: 132116.
    [9] G. Treboux. Symmetry Effects on the Conductance of Nanotube Junctions. J. Phys. Chem. B 1999; 103: 10378.
    [10] B.C. Satishkumar, P. John Thomas, A. Govindaraj, C.N.R. Rao. Y-junction carbon nanotubes. Appl. Phys. Lett. 2000; 77: 2530.
    [11] B.O. Boskovic, V. Stolojan, D.A. Zeze, R.D. Forrest, S.R.P. Silva, S. Haq. Branched carbon nanofiber network synthesis at room temperature using radio-frequency supported microwave plasmas. J. Appl. Phys. 2004; 96: 63443.
    [12] Y.C. Choi, W.B. Choi. Synthesis of Y-junction single-wall carbon nanotubes. Carbon2005; 43: 2737.
    [13] C. Papadopoulos, A. Rakitin, J. Li, A.S. Vedeneev, J.M. Xu. Electronic Transport in Y-Junction Carbon Nanotubes. Phys. Rev. Lett. 2000; 85: 3476.
    [14] J.H. Park, S.B. Sinnott, N.R. Aluru. Ion separation using a Y-junction carbon nanotube. Nanotechnology 2006; 17: 895.
    [15] J. Park, C. Daraio, S. Jin, P.R. Bandaru, J. Gaillard, A.M. Rao. Three-way electrical gating characteristics of metallic Y-junction carbon nanotubes. Appl. Phys. Lett. 2006; 88: 243113.
    [16] F. Banhart .The formation of a connection between carbon nanotubes in an electron beam. Nano Lett. 2001; 1: 329.
    [17] N. Gothard, C. Daraio, J. Gaillard, R. Zidan, S. Jin, A.M. Rao. Controlled Growth of Y-Junction Nanotubes Using Ti-Doped Vapor Catalyst. Nano Lett. 2004; 4: 213.
    [18] J.F. AuBuchon, L.H. Chen, C. Daraio, S. Jin. Multibranching carbon nanotubes via self-seeded catalysts. Nano Lett. 2006; 6: 24.
    [19] R.G. Agostino, T. Caruso, G. Chiarello, A. Cupolillo, D. Pacile, R. Filosa, et al. Thermal annealing and hydrogen exposure effects on cluster-assembled nanostructured carbon films embedded with transition metal nanoparticles. Phys. Rev. B 2003; 68: 035413.
    [20] R. Anton. In situ transmission electron microscopy study of the growth of Ni nanoparticles on amorphous carbon and of the graphitization of the support in the presence of hydrogen. J. Mater. Res. 2005; 20: 1837.
    [21] W.B. Mi, Z.Q. Li, P. Wu, E.Y. Jiang, H.L. Bai. TEM observation on the microstructure of Co doped C films. phys. stat. sol. (a) 2005; 202: 1980.
    [22] H. Nishino, R. Nishida, T. Matsui, N. Kawase. Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride. Carbon 2003; 41: 2819.
    [23] R. Li, X. Sun, X. Zhou, M. Cai, X. Sun. Aligned Heterostructures of Single-Crystalline Tin Nanowires Encapsulated in Amorphous Carbon Nanotubes. J. Phys. Chem. C 2007; 111: 9130.
    [24] A. Moisala, A.G. Nasibulin, E.I. Kauppinen. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J. Phys.: Condens. Matter 2003; 15: S3011.
    [2] C. Guerret-Piecourt, Y. Le Bouar, A. Loiseau, H. Pascard. Relation between metal electronic-structure and morphology of metal-compounds inside carbon nanotubes. Nature 1994; 372: 761.
    [3] A. Loiseau, H. Pascard. Synthesis of long carbon nanotubes filled with Se, S, Sb and Ge by the arc method. Chem. Phys. Lett. 1996; 256: 246.
    [4] D. Bera, S.C. Kuiry, M. McCutchen, A. Cruize, H. Heinrich, M. Meyyappan, et al. In-situ synthesis of palladium nanoparticles-filled carbon nanotubes using arc-discharge in solution. Chem. Phys. Lett. 2004; 386: 364.
    [5] S.C. Tsang, Y.K. Chen, P.J.F. Harris, M.L.H. Green. A simple chemical method of opening and filling carbon nanotubes. Nature 1994; 372: 159.
    [6] D. Ugarte, A. Chatelain, W.A. de Heer. Nanocaplillarity and Chemistry in Carbon Nanotubes. Science 1996; 274: 1897.
    [7] N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Walton. Enhanced magnetic coercivities in Fe nanowires. Appl. Phys. Lett. 1999; 75: 3363.
    [8] A. Leonhardt, M. Ritschel, R. Kozhuharova, A. Graff, T. Muhl, R. Huhle, et al. Synthesis and properties of filled carbon nanotubes. Diam. Relat. Mater. 2003; 12: 790.
    [9] G.Y. Zhang, E.G. Wang. Cu-filled carbon nanotubes by simultaneous plasma-assisted copper incorporation. Appl. Phys. Lett. 2003; 82: 1926.
    [10] H. Murakami, M. Hirakawa, C. Tanaka, H. Yamakawa. Field emission from well-aligned, patterned, carbon nanotube emitters. Appl. Phys. Lett. 2000; 76: 1776.
    [11] A.L. Elias, J.A. Rodriguez-Manzo, M.R. McCartney, D. Golberg, A. Zamudio, S.E. Baltazar, et al. Production and Characterization of Single-Crystal FeCo Nanowires Inside carbon nanotubes. Nano Lett. 2005; 5: 467.
    [12] M.C. Schnitzler, M.M. Oliveira, D. Ugarte, A.J.G. Zarbin. One-step route to iron oxide-filled carbon nanotubes and bucky-onions based on the pyrolysis of organometallic precursors. Chem. Phys. Lett. 2003; 381: 541.
    [1] P.M. Ajayan, S. Iijima. Capillarity-induced filling of carbon nanotubs. Nature 1993; 361: 333.
    [13] B.T. Hang, H. Hayashi, S.H. Yoon, S. Okada, J. Yamaki. Fe2O3-filled carbon nanotubes as a negative electrode for an Fe–air battery. Journal of Power Sources 2008; 178: 393.
    [14] C.E. Cava, R. Possagno, M.C. Schnitzler, P.C. Roman, M.M. Oliveira, C.M. Lepiensky, et al. Iron- and iron oxide-filled multi-walled carbon nanotubes: Electrical properties and memory devices. Chem. Phys. Lett. 2007; 444: 304.
    [15] J. Luo, Z. Huang, Y. Zhao, L. Zhang, J. Zhu. Arrays of heterojunctions of Ag nanowires and amorphous carbon nanotubes. Adv. Mater. 2006; 16: 1512.
    [16] Y.F. Hu, X.L. Liang, Q. Chen, L.M. Peng, Z.D. Hu. Electrical characteristics of amorphous carbon nanotube and effects of contacts. Appl. Phys. Lett. 2006; 86: 063113.
    [17] Z.D. Hu, Y.F. Hu, Q. Chen, X.F. Duan, L.M. Peng. Synthesis and characterizations of amorphous carbon nanotubes by pyrolysis of ferrocene confined within AAM templates. J. Phys. Chem. B 2006; 110: 8263.
    [18] L.F. Liu, S.C. Mu, S.S. Xie, W.Y. Zhou, L. Song, D.F. Liu, et al. Template synthesis, characterization and magnetic property of Fe nanowires-filled amorphous carbon nanotubes array. J. Phys. D: Appl. Phys. 2006; 39: 3939.
    [19] R.Y. Li, X.C. Sun, X.R. Zhou, M. Cai, X.L. Sun. Aligned Heterostructures of Single-Crystalline Tin Nanowires Encapsulated in Amorphous Carbon Nanotubes. J. Phys. Chem. C 2007; 111: 9130.
    [20] J. Dinesh, M. Eswaramoorthy, C.N.R. Rao. Use of Amorphous Carbon Nanotube Brushes as Templates to Fabricate GaN Nanotube Brushes and Related Materials. J. Phys. Chem. C 2007; 111: 510.
    [21] W. Chen, X.L. Pan, X.H. Bao. Tuning of Redox Properties of Iron and Iron Oxides via Encapsulation within Carbon Nanotubes. J. Am. Chem. Soc. 2007; 129: 7421.
    [22] A.C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000; 61: 14095.
    [23] T. Arcos, M.G. Garnier, J.W. Seo, P. Oelhafen, V. Thommen, D. Mathys. The Influenceof Catalyst Chemical State and Morphology on Carbon Nanotube Growth. J. Phys. Chem. B 2004; 108: 7728.
    [24] Z. Kónya, I. Vesselényi, J. Kiss, A. Farkas, A. Oszkó, I. Kiricsi. XPS study of multiwall carbon nanotube synthesis on Ni-, V-, and Ni, V-ZSM-5 catalysts. Appl. Catal. A: General 2004; 260: 55.
    [25] A. Moisala, A.G. Nasibulin, E.I. Kauppinen. The role of metal nanoparticles in the catalytic production of single-walled carbon nanotubes—a review. J. Phys: Condens. Matter 2003; 15: S3011.
    [26] H. Nishino, R. Nishida, T. Matsui, N. Kawase. Growth of amorphous carbon nanotube from poly(tetrafluoroethylene) and ferrous chloride. Carbon 2003; 41: 2819.
    [27] M.H. Ruemmeli, E. Borowiak-Palen, T. Gemming, T. Pichler, M. Knupfer, M. Kalbac, et al. Novel Catalysts, Room Temperature, and the Importance of Oxygen for the Synthesis of Single-Walled Carbon Nanotubes. Nano Lett. 2005; 5: 1209.
    [28] C.N.R. Rao, R. Sen, B.C. Satishkumar, A. Govindaraj. Large aligned-nanotube bundles from ferrocene pyrolysis. Chem. Commun. 1998; 15: 1525.
    [29] N. Grobert, W.K. Hsu, Y.Q. Zhu, J.P. Hare, H.W. Kroto, D.R.M. Walton, et al. Enhanced magnetic coercivities in Fe nanowires. Appl. Phys. Lett. 1999; 75: 3363.
    [1] Z.F. Ren, Z.P.Huang, J.W.Xu, J.H.Wang, P.Bush, M.P.Siegal, et al. Synthesis of large arrays of well-aligned carbon nanotubes on glass. Science 1998; 282: 1105-7.
    [2] K.Hata, D .N.Futaba, K.Mizuno, T.Namai, M.Yumura, S.Iijima. Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes. Science 2004; 306: 1362.
    [3] Y.G.Zhang, D.Mann, L.Zhang, A.Javey, Y.M.Li, E.Yenilmez, et al. Ultra-high-yield growth of vertical single-walled carbon nanotubes: Hidden roles of hydrogen and oxygen. PNAS 2005; 102; 16141.
    [4] S.Helveg, C.Lopez-Cartes, J.Sehested, P.L.Hansen, B.S.Clausen, J.R.Rostrup-Nielsen, et al. Atomic-scale imaging of carbon nanofibre growth. Nature 2004; 427: 426.
    [5] S.Hofmann, R.Sharma, C.Ducati, G.Du, C. Mattevi, C.Cepek, et al. In situ observations of catalyst dynamics during surface-bound carbon nanotube nucleation. Nano Lett 2007; 7: 602.
    [6] M. Lin, J.P.Y. Tan, C. Boothroyd, K.P. Loh, E.S. Tok, Y.L. Foo. Dynamical Observation of Bamboo-like Carbon Nanotube Growth. Nano Lett. 2007; 7: 2234.
    [7] C. Bower, O. Zhou, W. Zhu, D.J. Werder, S. Jin. Nucleation and growth of carbon nanotubes by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2000; 77: 2767.
    [8] P.E. Anderson, N.M. Rodriguez. Growth of graphite nanofibers from the decomposition of CO/H2 over silica-supported iron-nickel particles. J. Mater. Res. 1999; 14: 2912.
    [9] A. Okita, Y. Suda, A. Oda, J. Nakamura, A. Ozeki, K. Bhattacharyya, et al. Effects of hydrogen on carbon nanotube formation in CH4/H2 plasmas. Carbon 2007; 45: 1518.
    [10] Z.P. Huang, D.Z. Wang, J.G. Wen, M. Sennett, H. Gibson, Z.F. Ren. Effect of nickel, iron and cobalt on growth of aligned carbon nanotubes. Appl. Phys. A 2002; 74: 387.
    [11] L. Valentini, I. Armentano, J.M. Kenny, L. Lozzi, S. Santucci. Effect of catalyst layer thickness and Ar dilution on the plasma deposition of multi-walled carbon nanotubes. Diam. Relat. Mater. 2003; 12: 821.
    [12] W.K. Wong, C.S. Lee, S.T. Lee. Uniform-diameter, aligned carbon nanotubes from microwave plasma-enhanced chemical-vapor deposition. J. Appl. Phys. 2005; 97: 084307-1.
    [13] B.R. Huang, J.F. Hsu, C.S. Huang. The effects on the field emission properties of silicon nanowires by different pre-treatment techniques of Ni catalysts layers. Diam. Relat. Mater. 2005; 14: 2105.
    [14] H.M. Christen, A.A. Puretzky, H. Cui, K. Belay, P.H. Fleming, D.B. Geohegan, et al. Rapid Growth of Long, Vertically aligned carbon nanotubes through efficient catalyst optimization using metal film gradients. Nano Lett. 2004; 4: 1939.
    [15] T.K. Zhao, Y.N. Liu, J.W. Zhu. Temperature and catalyst effects on the production of amorphous carbon nanotubes by a modified arc discharge. Carbon 2005; 43: 2907.
    [16] J.W. Liu, X. Wang, W.T. Zheng, J.X. Li, Q.F. Guan, Y.D. Su, et al. Alignment of amorphous carbon nanotubes with graphitized branches grown by radio frequency plasma-enhanced chemical vapor deposition. Carbon 2007; 45: 681.
    [17] S. Iijima. Helical microtubules of graphite carbon. Nature 1991; 354: 56.
    [18] K.Hata, D.N. Futaba, K. Mizuno, T. Namai, M. Yumura, S. Iijima. Water-Assisted Highly Efficient Synthesis of Impurity-Free Single-Walled Carbon Nanotubes. Science 2004; 306: 1362.
    [19] L. Zhu, Y. Xiu, D.W. Hess, C.P. Wong. Aligned Carbon Nanotube Stacks by Water-Assisted Selective Etching. Nano Lett. 2005; 5: 2641.
    [20] Y.S. Min, E.J. Bae, B.S. Oh, D. Kang, W. Park. Low-Temperature Growth of Single-Walled Carbon Nanotubes by Water Plasma Chemical Vapor Deposition. J. Am. Chem. Soc. 2005; 127: 12498.
    [21] Y.H. Yun, V. Shanov, Y. Tu, S. Subramaniam, M.J. Schulz. Growth Mechanism of Long Aligned Multiwall Carbon Nanotube Arrays by Water-Assisted Chemical Vapor Deposition. J. Phys. Chem. B 2006; 110: 23920.
    [22] D.N. Futaba, K. Hata, T. Yamada, K. Mizuno, M. Yumura, S. Iijima. Kinetics ofWater-Assisted Single-Walled Carbon Nanotube Synthesis Revealed by a Time-Evolution Analysis. Phys. Rev. Lett. 2005; 95: 056104.
    [23] D.N. Futaba, K. Hata, T. Namai, T. Yamada, K. Mizuno, Y. Hayamizu, et al. 84% Catalyst Activity of Water-Assisted Growth of Single Walled Carbon Nanotube Forest Characterization by a Statistical and Macroscopic Approach. J. Phys. Chem. B 2006; 110: 803.
    [24] A. Cao, X. Zhang, C. Xu, J. Liang, D. Wu. Aligned carbon nanotubes growth under oxidative ambient. J. Mater. Res. 2001; 16: 3107.
    [25] M. Lin, J.P.Y. Tan, C. Boothroy, K.P. Loh, E.S. Tok, Y.L. Foo. Dynamical Observation of Bamboo-like Carbon Nanotube Growth. Nano Lett. 2007; 7: 2234.
    [26] H. Okuno, E. Grivei, F. Fabry, T.M. Gruenberger, J. Gonzalez-Aguilar, A. Palnichenko, et al. Synthesis of carbon nanotubes and nano-necklaces by thermal plasma process. Carbon 2004; 42; 2543.
    [27] V.D. Blank, I.G. Gorlova, J.L. Hutchison, N.A. Kiselev, A.B. Ormont, E.V. Polyakov, et al. The structure of nanotubes fabricated by carbon evaporation at high gas pressure. Carbon 2000; 38; 1217.
    [28] V. Jourdain, H. Kanzow, M. Castignolles, A. Loiseau, P. Bernier. Sequential catalytic growth of carbon nanotubes. Chem. Phys. Lett. 2002; 364; 27.
    [29] C. Bower, W. Zhou, S. Jin, O. Zhou. Plasma-induced alignment of carbon nanotubes. Appl. Phys. Lett. 2000; 77: 830.
    [30] V.I. Merkulov, A.V. Melechko, M.A. Guillorm, D.H. Lowndes, M.L. Simpson. Alignment mechanism of carbon nanofibers produced by plasma-enhanced chemical-vapor deposition. Appl. Phys. Lett. 2001; 79: 2970.
    [31] M. Meyyappan, L. Delzeit, A. Cassell, D. Hash. Carbon nanotube growth by PECVD: a review. Plasma Sources Sci. Technol. 2003; 12: 205.
    [32] T. Hirata, N. Satake, G.-H. Jeong, T. Kato, R. Hatakeyama, K. Motomiya, et al. Magnetron-type radio-frequency plasma control yielding vertically well-aligned carbonnanotube growth. Appl. Phys. Lett. 2003; 83: 1119.
    [33] B.B. Wang, W.L. Wang, K.J. Liao. Experimental and theoretical studies of diamond nucleation on silicon by biased hot filament chemical vapor deposition. Phys. Rev. B 2001; 63: 085412.
    [34] Y. Qin, J.H. Xia, T. Staedler, X. Jiang. Effects of ion bombardment on the morphology and microstructure of carbon nanomaterials grown by microwave plasma chemical vapor deposition. Appl. Phys. Lett. 2007; 90: 243109.
    [35] Y.H. Wu, B.J. Yang, B.Y. Zong, H. Sun, Z.X. Shen, Y.P. Feng. Carbon nanowalls and related materials. J. Chem. Mater. 2004; 14: 469.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700