用户名: 密码: 验证码:
复杂地层潜孔锤跟管钻进技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
复杂地层的钻进与取样问题一直是地矿勘探、工程勘察、岩土工程施工中的一个技术难题。由于复杂地层结构松散、无规律包裹砂卵砾石、砾石大小不均、换层频繁、软硬悬殊、颗粒级配悬殊等,存在钻进、保护孔壁、取心这三大难题,常规的钻探技术难以满足施工要求。复杂地层钻探技术先后经历了锤击跟管取芯钻进和金刚石取芯钻进两个重要阶段。现有的砂卵石层SM胶金刚石钻进取样技术解决了一些稍复杂地层的钻进与取样问题,但至今,仍无法适应较复杂的地层,钻孔质量和钻进效率仍处于低水平状态。
     论文主要从复杂地层钻探的适应性、钻进方式、钻进冲洗介质、钻进取心工具等方面开展研究工作,对于不同类型的复杂地层,提出了相适应的钻进与取样新技术、新方法。通过研究取得了以下主要成果和结论:
     (1)采用应力波理论,分析了潜孔锤跟管钻进碎岩过程及影响因素。对潜孔锤跟管钻进过程中的跟管钻压、套管自重、潜孔锤冲击功、跟管钻进速度、跟管深度、扩孔口径和钻进中的钻压值进行了理论推导,得出:
     ①潜孔锤跟管钻进速度取决于潜孔锤的冲击功、岩石的单位体积破碎功和凿岩直径三个因素;
     ②在简单和复杂工况条件下的最大跟管深度l_0、l_(max)的计算公式,包括下向垂直孔和水平孔时的最大跟管深度的计算公式;
     ③分析了跟管钻进钻压与机械钻速的相互关系,提出了跟管钻进的钻压以每厘米钻头直径0.5~0.9kN为宜。
     (2)国内外现有的空气潜孔锤跟管钻进技术主要应用于比较松散、均质、架空不严重及中等可钻性地层,均属全断面跟管钻进,效率虽高,但不能取芯。本文将空气潜孔锤跟管钻进技术和岩芯钻探技术结合,利用前者钻进速度快和护壁效果好、后者具备采集岩芯能力的技术优势,开发了新型的钻进与取样技术方法——空气潜孔锤取芯跟管钻进技术。该技术的主要特点有:
     ①钻具结构采取同步、同心跟管钻进原理;采用中心钻头(唇面)超前套管钻头的阶梯钻进原理;采用双层管和三层管两种结构方法,可以满足的取芯要求;
     ②钻具采用的外管和岩心管均为地质钻探以及石油钻井的标准管材系列,市场货源充足,互换性好;
     ③空气潜孔锤取芯跟管钻进可以取得能够客观反映地层情况(层位、包裹情况等特性)岩心;
     ④发挥潜孔锤钻进效率高的技术优势,采取取芯和跟管一次完成,钻进效率可以大幅度提高;
     此外,进行了取芯钻头和套管钻头的研制;研究制订了实用、操作性强的空气潜孔锤取芯跟管钻进技术规程。该技术配套采用当前国内地质勘察单位常用的空压机、冲击器、钻杆等,具有通用性和适应性。该技术适合于50m以内浅部复杂地层,特别是Ⅱ类复杂地层钻探取芯。
     (3)在原有的GJ型扩孔张敛式跟管钻具的基础上,研究开发了冲击式金刚石取芯跟管钻进技术。该技术特点为:
     ①组合张敛式扩孔钻头对称分布并呈锥形;
     ②钻具承压和承扭能力足以满足常规钻进要求;
     ③两级钻头的同轴度好,导向和扶正相辅相成,不会造成钻孔弯曲;
     ④泄漏通道的设置在满足扩孔钻头冷却和冲刷要求的同时,不会造成孔底钻头缺少必要的冷却液体;
     ⑤在悬挂腔设计了调节圈,通过加减调节圈确保悬挂机构承受钻具重力,消除了收敛爪异常受力情况;
     ⑥设计了排沙系统,避免颗粒物质滞留钻具内部,确保钻具张敛性能的可靠性。
     冲击式金刚石取芯跟管钻进方法适合在复杂地层钻探。该方法可减少孔内事故,降低材料消耗,提高钻进效率和钻探工程质量;简化钻孔结构;可为处理孔内事故提供条件。
     (4)国内外现有的气动潜孔锤跟管钻进技术存在四个方面的问题:第一,钻具的规格、系列不完善;第二,钻具设计不完善;第三,钻具的制造技术如材料选择、热处理工艺不能满足要求;第四,设备配套、施工操作规程亟待提高。
     小湾电站锚固和支护工程地形陡峻、地层情况较为复杂。锚固施工成孔困难的地层主要有崩塌堆积体和受构造、风化卸荷作用影响而破碎的基岩。针对小湾水电站的这一地层特点和原有技术存在的问题,设计开发出了二种类型的气动潜孔锤偏心跟管钻具。这两种偏心跟管钻具的特点有:
     ①依靠中心钻头和偏心扩孔钻头实现二级破岩、设计合理的排渣系统使排渣顺畅以及与具有足够冲击功的冲击器相适配等;
     ②具有中心钻头起导向作用的偏心跟管钻具结构对于地层复杂的小湾电站更有利于孔斜的预防,从而更大限度地满足工程设计的要求;
     ③钻具在结构上设计用键来传递扭矩,加之选用了高强度的材料,采用了特殊的热处理工艺,合理的固齿工艺,确保了钻具寿命;
     ④联接销系统为相互自锁的结构,保证了中心钻头与导正器之间连接具有良好的可靠性,解除了掉钻之忧。
     同时,针对工程特点提出了钻机、空压机、潜孔锤合理选择原则和配套型号;对钻机进行了合理的改进;编制出了具有施工指导意义的潜孔锤跟管钻进工艺规范。
     (5)套管的起拔速度直接影响着锚索的施工效率。针对工程实际,研制了起拔力为650KN的系列液压拔套管设备,其主要技术特点有:
     ①系列液压拔管机结构简单,体积小、重量轻,装拆、操作方便;
     ②操作台与液压泵站分开设置,适合于搬运、迁移困难的边坡工程使用;
     ③充分考虑了在陡坡上套管起拔的实际问题,底座和油缸采用铰接;
     ④一台设备可起拔多种规格的套管,形成系列。
     (6)潜孔锤跟管钻进技术在二郎山龙胆溪滑坡整治堆积体工程、黄金坪电站坝基覆盖层钻进成孔与灌浆试验工程、雅砻江官地水电站左岸边坡锚索工程等近十个工程的复杂地层钻进成孔和取样中应用了研制的偏心跟管钻具、液压拔管机和工艺操作规程,取得了好的钻进成孔效率和取样质量。在一定程度上解决了深厚覆盖层、卵石层、堆积体成孔与取样技术难题,有创新性。
The drilling and coring for complex stratum has always been the main and difficult problem in the geological and mining exploration, the engineering of exploration, and the geotechnical engineering. Since the complex formation of sedimentary layers generally contain clay, flow sand, egg stones, gravel, big stones, it posed difficulties and problems to the drilling, hole-wall-protecting, and coring of the stratum, which can not be simply solved by any usual drilling technology. The hydraulic and hydroelectric engineering at home has undergone two phases, the down-the-hole hammer core-drilling with casing and the diamond core drilling (the two significant breakthroughs in technology). In particular, the development and broad application of SM-gel diamond core drilling for the gravel layer has fundamentally transformed the drilling technology in this field, for it has solved to a certain degree some of the drilling and coring problems. However, till now, the SM gel diamond core drilling can not be applied to the complex stratum. As a result, the quality and efficiency of drilling remain at a very low level.
     Through the analysis and research on the drilling applicability into the complex stratum, the drilling techniques, the drilling fluid, the coring tools, etc., this paper has proposed the correspondingly new drilling methods and technology for different stratum, aiming to promote the drilling technology as such. Therefore, some major findings and conclusions are made as follows:
     (1) Heavily drawing on the stress wave theory, the paper describes and illustrates the down-the-hole hammer drilling process, analyzing especially the drilling process of rock-breaking with DTH hammer and the relative factors. With the eccentric drilling as the case in study, the paper has also generated a theoretical model for the analysis of pipe drilling pressure, case weight, percussive capacity, pipe drilling speed and depth, reaming gauge, the value of pipe drilling pressure in the process, and made the following findings:
     ①the pipe drilling speed is determined by the percussive power of DTH hammer, rock-breaking power per volume, and the diameter of aperture;
     ②in terms of different drilling conditions, the paper has proposed, respectively for simple operating mode and complicated operating mode, the formula to calculate the maximum casing depth, namely l_0 and l_(max), of both vertical and horizontal holes;
     ③based on the analysis of the relation between pipe drilling pressure and drilling speed, the paper has concluded that the most appropriate pipe drilling pressure is 0.5~0.9kN per centimeter of the casing bit diameter.
     (2) The pipe drilling with air-powered DTH hammer is with limitation applied to the shallow, loose and even-grained formation with few aerial strata, which is of medium drilling characters. Though with high efficiency, it is simply a full-section drilling with casing, and not capable of coring. With the integration of air-powered DTH hammer drilling and core drilling, this research has developed a new drilling and coring method—the technology of air-powered DTH hammer and core drilling with casing, by combining the high drilling speed and efficient hole-wall protection of the former with the core gathering capacity of the latter. The drilling equipment is mainly characterized by the following features:
     ①the drill tool is structured in the way of drilling with simultaneous and concentric case; the equipment follows the mechanism of stage drilling and employs the pre-casing bit in the form of centre bit (profile); to meet the requirements of coring in either gravel or loose strata, the drilling tool is in double-piped making and tri-piped making, respectively;
     ②the outer and core barrels are in rich supply and available in market, since they are general equipment for geological and oil drilling;
     ③the core extracted by air-powered DTH hammer and core drilling can illustrate the factual state and characteristics of the formation (its position, its composition, etc.);
     ④owing to the use of highly-efficient DTH hammer drilling, coring and casing are completed simultaneously to achieve the high drilling efficiency;
     Besides, the coring bit in pipe drilling and casing bit have also been developed in the research; and practical and feasible regulations have been made for the air-powered DTH hammer and core drilling with casing. As general apparatus for geological exploration at home, such as air compressor, percussion tool, drill, the drilling equipment employed in the technology are easily available. Moreover, this technology is better applied to the drilling into shallow complex formation within 50m, especially to the core drilling into the II type complex stratum.
     (3) Based on pipe drilling with GJ reamer, the research has innovated the technology of percussive diamond core drilling with casing, which has the following characteristics:
     ①the expansive-contracted reamer is cone-like and symmetrically structured;
     ②the drilling apparatus are able to meet the demand of conventional drilling on the bearing of pressure and twist;
     ③the drilling bit and coring bit, in concentric pattern, are combined to function well in both orientation and adjustment in direction, and can avoid the hole deviation;
     ④the design of drainage outlet contributes to the cooling and flushing of reamer without reducing the necessary cooling liquid at hole bottom.
     ⑤the adjustable rings in the hanging cavity can not only help the contraction of reamer, but also guarantee the load-bearing capacity of hanging apparatus by increasing or decreasing the rings, so as to eliminate the abnormal stress on the claw.
     ⑥the sand flushing system can prevent grainy stuff from sticking to the drilling tool, so as to guarantee the expansion and contraction of core bit.
     The technology of percussive diamond core drilling with casing has been well applied to the drilling into complex stratum to achieve remarkably positive effects in technology and economics. And this method can reduce the drilling accident and the consumption of drilling material so as to enhance the efficiency and quality of drilling; it also simplify the hole structure and makes it possible to solve the backfire accident.
     (4) At home and abroad, there still remain four problems in the technology of air-powered DTH hammer drilling with casing: first, the gauge of drilling tool is not uniformed and the series of drilling products are not complete; second, there are obvious defaults in the design of drilling tool; third, the manufacturing technique of drilling tool, such as the selection of raw material and the heat treatment process, can not live up to the requirement; four, the production of complete set of drilling equipment as well as the operating regulation for the equipment need improving urgently.
     Due to the characters of the complex stratum in Xiao Wan hydropower station, the high-slope anchoring and reinforcement projects in the high slope bank have encountered the drilling difficulty mainly in the collapsed formation deposits and the foundation bed broken under the impact of geological formation and aeolian erosion. To solve the technological problems in the complex formation, this research has innovated two types of air-powered DTH hammer drilling equipment, The two types of drilling equipment have the following properties:
     ①the use of both centre bit and eccentric reaming bit forms the two-stage rock breaking; the design of slag flushing system ensures sufficient percussion impact of the percussive drilling tool;
     ②the eccentric drilling with casing that employs the centre bit can better prevent the hole deviation;
     ③the drilling equipment has high endurance, due to the design of key connection to deliver the torque, the selection of high strength material and the special heat treatment in manufacturing the drilling tool, as well as the proper techniques of fixing the gear tooth engagement;
     ④the keys are interlocking devices that strongly and reliably attach the centre bit to the adjuster to avoid the risks of bit losing.
     At the same time, in accordance with the drilling characters in Xiao Wan, the selection of the drilling tool, the air compressor, and the DTH hammer has followed the principle of mutual adaptation and matching, and the innovation of drilling tool has also been made. Moreover, the operation specifications and regulations for DTH hammer drilling with casing have also been proposed.
     (5) Since the pulling speed has direct effects on the anchoring efficiency, the research has developed a series of hydraulic pull casing that has the pulling force of 65t. The technical features are as follows:
     ①the series of pull casing are simple, small, and light, easy to be assembled, dissembled, and operated;
     ②the separation of operating board from the hydraulic pump unit is better applicable to the high slope drilling projects suffering from difficult delivering and shifting;
     ③for the sake of pull casing in high slope, the foundation of operating board and the petrol cylinder have been joined on hinges;
     ④each device can pull out a series of casing pipes of different gauges.
     (6) The technology of DTH hammer drilling with casing has been successfully applied to the drilling and coring into the complex stratum in more than ten projects, such as the project of slope rectification and anchoring in the Sichuan-Tibet Highway at Longdan River of Mt. Erlang, the cover curtain grouting test of the foundation in Gold Ping Power Station, the project of pre-stressing anchoring for the cable platform on the slope of the left bank of the Guandi Power Station of Yalong River. The application of the innovated eccentric drilling tool with casing, the hydraulic pull casing device, and the operation specifics and regulations has been proved efficient in both drilling and coring. The new drilling technology has been able to solve the drilling problems to a certain extent in the complex stratum with deep covering, cobble and pebble layers, and formation deposits.
引文
[1] 李海石,符国强.钻井取心技术.北京:石油工业出版社 1993.
    [2] 吴隆杰等.《钻井液处理剂胶体化学原理》,成都科技大学出版社,1992年
    [3] 李世忠.《钻探工艺学(中册)-钻孔冲洗与护壁堵漏》,地质出版社,1989年11月
    [4] PW植物胶在钻探泥浆中的应用资料汇编,成都地质学院泥浆研究室,1986年2月
    [5] 李祥麟.潜孔锤钻进技术[M].地质出版社.1988,10.
    [6] 武汉地质学院.钻探工艺学[M].地质出版社.1980,10.
    [7] 刘广志,中国古代钻探科学技术史.北京:地质出版社 1998.
    [8] 张春波,刘峰.中国绳索取心钻探技术现状.探矿工程,1996.(4).
    [9] 石永泉.冲击回转钻进中的静压力[J].地质与勘探.1984,2.
    [10] 张泽业.影响空气潜孔锤跟管钻进速度和跟管深度因素分析.西部探矿工程[J].1997,10.
    [11] 李世忠.钻探工艺学[M].地质出版社.1994.10.
    [12] 刘晓阳.松辽盆地上第三系含砾石砂岩、砂砾石层取心技术研究[R].北京核工业局科研报告.2000.
    [13] 吉林大学建设工程学院.多工艺空气钻探[R].1987,10.
    [14] 张国忠.气动冲击设备及设计[M].机械出版社.1989,12.
    [15] 张永群.多介质反循环复合钻探技术的研究[J].探矿工程,2000,(4).
    [16] 柴世丁.空气潜孔锤钻进工艺在基岩水井中的应用[J].探矿工程,1998,(6).
    [17] 耿瑞伦.多工艺空气钻探[M].地质出版社出版.1995,10.
    [18] 蒋荣庆.大直径硬岩潜孔锤钻具系统研制与实验[J].吉林科学技术出版社出版.1992.
    [19] 蒋荣庆.贯通式潜孔锤反循环连续取心样钻进在水文井中的应用.探矿工程,1991,(4).
    [20] 蒋荣庆.潜孔锤钻进在复杂地层中应用[J].地质与勘探.1999,(3).
    [21] 蒋荣庆.贯通式潜孔锤反循环连续取心钻头[P].中国专利,91205924.9、ZL91102114.4.
    [22] 楼日新.钻探新技术的开发和应用[R].国家电力公司成都勘测设计研究院科研报告,2000.
    [23] 黄培云.《粉末冶金原理》,冶金工业出版社,1997。
    [24] 郭志猛 宋月清 陈宏霞 贾成厂.《超硬材料与工具》,冶金工业出版社,1996。
    [25] J.D.Downs, et al, Novel Drilling and Completion Fluids for Demanding Environments, SPE 25177, 1993.
    [26] 张国忠.《气动冲击设备及其设计》,机械工业出版社,1984.
    [27] 黄万志.冲击回转钻进能量传递和参数选择,《西南石油学院学报》,1997.4
    [28] 鄢捷年.《钻井液工艺原理》,石油大学出版社,2001.
    [29] 黄汉仁等.《泥浆工艺原理》,石油工业出版社,1984,1.
    [30] 黎建良等.《固体中的波》,1995.
    [31] 新型孕镶金刚石碎岩工具的研制[硕士论文],中国地质大学,1996。
    [32] Evan Oort, Manipulation of Coupled Osmotic Flows for Stabilisation of Shales Exposed to Water-Based Drilling Fluids, SPE 30499.
    [33] B.Engser. 1990.Die Kernbohrstrategie fuer die KTB Hauptbohrung. Erdoel Erdgas Kohle, (12): 496~500.
    [34] 鲁凡.钻进极坚硬地层的孕镶金刚石钻头,中南工业大学学报,1995,(5)。
    [35] 王殿江.孕镶金刚石钻头胎体磨损的几何效应,地质与勘探,1994,(8)。
    [36] 段隆臣.新型镀膜金刚石碎岩工具的研制(博士论文),中国地质大学,1997。
    [37] 李晓苗.热乐温度确定原则及低温活化烧法,地质与勘探,1999,1。
    [38] Vijayaraghavan M R, et al, Histochemical, Structure, and Ultrastructural Features of Endosperm in Alyssum Marittimum Lain, Actabol Neerl.
    [39] 李耕.金刚石与胎体嵌镶状况分析,磨料磨具与磨削,1992,(2)。
    [40] 张伟.大直径硬岩钻孔中液动锤全面钻进,中国地质大学学报,2004,2
    [41] 谢文卫,苏长寿,孟义泉.YZX127液动滞孔锤在CCSD科钻1井先导孔中的应用.地球科学,2005.30(增刊).
    [42] Milchem Co·Drilling Fluids Reference Manual, 1980.
    [43] 北京大学数学力学系数学专业概率统计组,《正交设计》,人民教育出版社,1976年.
    [44] 李世忠.《钻探工艺学(上册)》,地质出版社,1992,11.
    [45] 北京大学数学力学系数学专业概率统计组.《正交设计》,人民教育出版社,1976.
    [46] 便质合金矿山、地质工具制品(YB883—77)
    [47] 地质钻探用管材标准(YB235-70)、(YB-235-63、YB-236-63)
    [48] 赵金洲,张桂林.钻井工程技术手册.北京:中国石化出版社 2005.
    [49] 高德利等.复杂地质条件下深井超深井钻井技术.北京:石油工业出版社 2004.
    [50] P·L·Moore, Drilling Practies Manual, The Petroleum Publishing Co.Tulsa,1974.
    [51] 林冉.岩石破碎机理在孕镶头设计中的应用,西部探矿工程,1994(6)。
    [52] 金刚石岩芯钻探用无缝钢管(GB3423-82)
    [53] 石油油管螺纹(YB690—70)
    [54] 冶金地质系统金刚石岩芯钻探钻具级配系列
    [55] 机械制图(DB4457~4460,GB131—83)
    [56] 公著与配合(GB1800~1804—79)
    [57] 刘广志.《金刚石钻探手册》 地质出版社 1991 第一版
    [58] 谭跃麟.“钻孔下套管方法综述” 《地质与勘探》91.6
    [59] 包根源.“复杂地层钻探套管使用”《地质与勘探》92.9
    [60] 王人杰等.《液动冲击回转钻探》 地质出版社 1988 第一版
    [61] 赵建勤.潜孔锤的研制与应用前景.全国第四届坑探与隧道会议论文,1997.4
    [62] 程良奎等.岩土锚固.中国建筑出版社,2003.1
    [63] 汪彦枢等.长江三峡链子崖危岩体防治工程中的锚固钻孔工艺.中国地质灾害与防治学报,1998.1
    [64] 孙建华等.岩土锚固施工技术介绍.工程勘察与施工信息,1996.7-8
    [65] 施世久.滑坡治理中预应力锚索施工技术.西部探矿工程,2001.1
    [66] 孟庆鸿.预应力锚索施工实践.探矿工程,1997.2
    [67] 刘治德等.铁路高边坡的预应力锚索施工.西部探矿工程,2000.5
    [68] 张祖培,殷琨,蒋荣庆,孙友宏.岩土钻掘工程新技术[M].北京:地质出版社,2003.
    [69] 殷琨,蒋荣庆.潜孔锤反循环钻进技术及其应用[J].探矿工程[岩土钻掘工程],1996(5)
    [70] 蒋荣庆,殷琨.潜孔锤多工艺钻进在水文水井及工程中的应用[J].水文地质工程地质.1998(6)
    [71] 殷琨,蒋荣庆等.嵌岩桩施工用大直径潜孔锤,探矿工程科技进步100例[M].北京:地震出版社,1998
    [72] 吴光琳 齐瑞忱 胥建华 楼日新 张道云.YDX-1型岩心定向器的研制和应用,《探矿工程》,1997年第5期,49-52页。
    [73] 季米特拉雪克等(丁方维译).用定向取心器采取定向岩心,《国外探矿工程 情报》,1988年第4期,168-170页。
    [74] 马明 刘桢荣.三峡岩心定向技术综述,内部资料,1994年。
    [75] 马克新.YCO-Ⅱ型岩心定向钻具的工作原理及应用,《地质与勘探》,1999年第2期,59-60页。
    [76] 苏子义 刘普选,套钻与定向取心技术,会议交流文件,1988年。
    [77] 吴光琳.利用定向岩心确定地下岩层产状的方法,《成都地质学院学报》,1984年第4期,79-86页。
    [78] 汤国起 季伟峰.非磁性钻杆在钻孔定向和测斜中的应用,《探矿工程》,1985年第6期,31-35页。
    [79] 地质岩芯钻探管材螺纹(DZI.1~1.3—84)
    [80] 形状和位置公差(GB1182~1184—80)
    [81] 鄢捷年.《钻井液工艺原理》,石油大学出版社,2001年
    [82] 地质钻探金刚石扩孔器(DZ2.2—87)
    [83] 地质钻杆锁接头(DZ25~83)
    [84] 地质钻探金刚石钻头(DZ2.1—87)
    [85] An Zhisheng, Ai Lietal. 2006. Lake Qinghai Scientific Drilling Project. Scientific Drilling, (2):
    [86] G·R·Gsay, H·C·H·Dorley, W·F·Rogers, Composition and properties of Oil well Drilling Fluids (4-Edition), 1980.
    [87] 方啸虎主编.《超硬材料科学与技术》(上、下),中国建材工业出版社,1992。
    [88] Savins G, Drag Reducing Additives Improve Drilling Fluid Hydraulics, Oil & Gas Journal, 1995.3.
    [89] 郑宋本.如何确定金刚石钻头结构参数,地质与勘探,1989,(11)。
    [90] J.D.Downs, et al, Development of Enviromentaily Formate-based Drilling and Completion Fluids, SPE 27143, 1994.
    [91] 石昆山.岩石物理力学性质与孕镶金刚石钻头结构参数的优选,探矿工程,91,(1)。
    [92] Brannon H D, Ault M G, New, Delayted Borate-Crosslinked Fluids Provided Improved Fracture Conductivity in Hight-Temperture Applications. SPE22838, 1991.
    [93] 罗超 李世忠.人造金刚石孕镶钻头磨损特征的研究,地质与勘探,1995,(2)。
    [94] Kooiman P, Structures of the Galactomannans from Seeds of Annina Muricata, Cocos Nucifera, and Sophoriaiaponica, Carbonhudrate Research, 1975.
    [95] 王中华.高分子处理剂的结构与性能分析,钻井液与完井液,1987年第3期
    [96] 张宝泽.田菁和碱苋菜耐盐性能的研究,山东师大学报(自然科学版),1997年03期
    [97] 崔军文等.中国大陆科学钻探主孔2000米以上脆性变形构造应力场.岩石学报,2004.20(1)
    [98] Dubois M, Ciolorimetric Methods for Determination of Sugars and Related Substances, Anylytical Chemistry, 1956.
    [99] 贾军,杨凯华.中国大陆科学钻探先导孔钻井液的固控与润滑对取心钻进的影响.地球科学,2005,30(增刊).
    [100] Brannon H D, Ault M G, New, Delayted Borate-Crosslinked Fluids Provided Improved Fracture Conductivity in Hight-Temperture Applications. SPE22838, 1991.
    [101] 袁公昱 方啸虎 王殿江等.《人造金刚石与金刚石工具制造》,中南工业大学出版社,1992。
    [102] Drink Lynnette, Structural Studies on Galactomannans and their Complexs, Phytochemistry, 1995
    [103] 张伟,谢文卫.大直径硬岩钻孔中的液动锤全面钻进.地球科学,2005.30(增刊).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700