用户名: 密码: 验证码:
超支化聚合物的合成及其超分子封装和超分子自组装研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超支化聚合物是一类具有三维立体构造的高度支化的大分子。经过近15年的探索与发展,该领域在合成、功能化改性及应用研究等方面已取得了许多突破性成果,为超支化聚合物的开发应用打下了良好的基础。尽管如此,该领域还有许多问题亟待进一步探索。本论文在综述前人工作的基础上,针对该领域存在的一些问题进行深入研究,并发现了一些有趣的新现象。运用本课题组提出的“不等活性双组分单体对”策略,成功地合成了水溶性超支化聚酰胺胺;详细研究了超支化聚酰胺胺及其它水溶性超支化聚合物的超分子封装与超分子自组装行为,尤其是发现了超支化聚合物的协同封装现象,并利用溶剂挥发诱导自组装方法,在硅、石英、云母等固体表面上得到了规则排列的多孔膜,还将装载了染料分子的超支化聚合物进行自组装,得到了荧光多孔膜。具体研究方法和结果如下。
     1超支化聚酰胺胺的合成、改性及表征
     选用商品化且价格便宜的AB型单体丙烯酸甲酯和乙二胺(EDA)、二乙基三胺(DETA)、三乙基四胺(TETA)、四乙基五胺(TEPA)、五乙基六胺(PEHA)等Cn型单体作为原料,通过不等活性单体对法(CMM)合成了一系列具有广泛应用前景的水溶性脂肪族超支化聚酰胺胺。对反应时间、温度、压力等参数进行了条件试验,总结了通过不等活性单体对法合成超支化聚酰胺胺的切实可行的反应条件。超支化聚酰胺胺的末端基团和性质可以通过改变AB和Cn型单体的比例来调整。用FTIR、NMR、DSC、TGA等对超支化聚酰胺胺进行表征,发现随着AB和Cn的投料比的改变,聚合物的溶解性、热性能、封装性能等均发生变化。核磁结果表明,当丙烯酸甲酯和多元胺的投料比较低时,聚酰胺胺末端基团为胺基;当该投料比较高时,聚合物末端基团为甲氧基;投料比越大,产物末端的甲氧基越多,残留的胺基越少。所得的超支化聚酰胺胺在氯仿和极性溶剂(如DMF、DMAc、DMSO、水、甲醇、乙醇等)中溶解性很好,而在一些非极性溶剂和弱极性溶剂(如丙酮、THF和乙醚等)中溶解性较差;且随着投料比的提高,产物在非极性溶剂中的溶解性逐渐变好。用不同的Cn单体合成的聚合物在非极性溶剂中的溶解性也不同,用EDA作为Cn单体得到的产物在丙酮、THF和乙醚中的溶解性明显比用烷基链数目较多的TEPA和PEHA作为Cn单体得到的产物的溶解性差。随着投料比的提高,产物玻璃化转变温度呈现先增大后减小的趋势。末端基团为胺基的产物不能封装染料小分子,而末端基团为甲氧基的产物可以封装少量染料分子。
     采用苯甲酰氯和棕榈酰氯对末端为胺基的超支化聚酰胺胺进行改性,得到具有核壳型两亲性结构的超支化聚酰胺胺。酰氯对胺基进行改性后,聚合物的溶解性、热性能、荧光性能及超分子封装性能均发生了变化。所有经过酰化改性得到的产物均不溶于水。苯甲酰氯改性的产物在丙酮和THF等非极性溶剂中的溶解性比改性前好。棕榈酰氯改性的产物不能在DMF、DMAC、DMSO、甲醇等极性溶剂中溶解,但仍然可以溶解在氯仿和THF中,在乙醚中也能部分溶解。改性前的产物相比,苯甲酰氯封端产物的玻璃化转变温度明显提高。棕榈酰氯改性的产物由于长链烷基的引入会发生结晶。改性前,所有产物失重5%的温度均在200℃以下,改性后产物的热性能提高,300℃时失重仍不到5%。所得的超支化聚酰胺胺具有荧光性能,酰氯封端会改变超支化聚酰胺的荧光性质,且超支化聚酰胺胺的发射峰位置受激发光波长及溶液浓度影响。改性后,超支化聚酰胺胺对染料的封装性能也明显提高。
     特殊的结构与性能使这类超支化聚酰胺胺在药物传输、污水处理、反应催化、涂料、表面活性剂、自组装等诸多领域中有着广阔的应用前景。
     2两亲性超支化聚酰胺对染料的超分子封装行为研究
     采用两亲性核壳型超支化聚酰胺胺为主体,研究了这类聚合物对染料分子的超分子封装行为。重点考察了采用丙烯酸甲酯和二乙基三胺(投料比为1.2 : 1)制得的超支化聚酰胺胺HP(DETA-MA)1.2的棕榈酰氯改性后的产物HP(DETA-MA)1.2P对染料的超分子封装行为,测定了HP(DETA-MA)1.2P对刚果红(CR)、甲基橙(MO)、甲基蓝(MB)、荧光素钠(FSS)、酸性曙红(EY)、荧光桃红(PB)、虎红(RB)等染料的装载量(Cload),发现HP(DETA-MA)1.2P对不同染料的装载能力不同,平均每个HP(DETA-MA)1.2P分子能够装载约22.4个刚果红分子,而仅能装载0.63个甲基蓝分子。
     HP(DETA-MA)1.2P对染料的装载量随pH值的变化而变化。逐步单封装可以提高HP(DETA-MA)1.2P对染料的装载量。部分封装入HP(DETA-MA)1.2P中的小分子可以通过水洗降低水相中染料的浓度而释放出来;将染料分子释放出来后的HP(DETA-MA)1.2P氯仿溶液可以再次封装染料分子;HP(DETA-MA)1.2P具有可逆释放与重复封装的能力,封装与释放是一个可逆的过程。
     通过单封装和双封装对比实验考察了主体对客体的选择性,讨论了不同种类染料之间的相互作用对装载量的影响。实验发现当两种染料同时存在时,HP(DETA-MA)1.2P对染料的封装过程中存在协同或竞争两种现象,并设计了逐步双封装实验对协同和竞争两种情况进行了验证。当选择MO和MB作为染料对时,在MO和MB之间是协同关系,UV/vis结果表明MB的存在可以使HP(DETA-MA)1.2P对MO的装载量提高72%,并用1HNMR、TGA、DSC等测试对协同现象进行了验证。考察pH值对双封装的影响的实验表明,pH值的变化对装载量有一定的影响,但是协同封装过程中HP(DETA-MA)1.2P对MO的装载量的提高并不是pH值发生变化的结果,确实是MB的协同作用引起的。
     当MO和RB、PB、EY、FSS等四种染料分别组成染料对进行双封装实验时,染料对之间存在竞争关系。在RB或PB存在的情况下,MO不能进入HP(DETA-MA)1.2P中,而MO的存在几乎不影响HP(DETA-MA)1.2P对RB或PB的装载;当EY和MO同时存在时,Cload(MO)和Cload(EY)都会降低;当MO和FSS同时存在时,FSS不能进入HP(DETA-MA)1.2P中,且使Cload(MO)降低。
     DSC、TGA、DLS等结果表明染料分子不只是在大分子之间,确实有染料进入超支化聚合物内部的空穴中。
     3两亲性超支化聚砜胺的合成及其超分子封装行为研究
     为了验证超支化聚合物封装染料的普遍性,采用A2型单体二乙烯基砜和BB’2型单体胺乙基哌嗪反应,制得了超支化聚砜胺(HPSA),并采用不同长度的烷基酰氯(戊酰氯、壬酰氯和棕榈酰氯)对超支化聚砜胺进行封端,合成了三种不同烷基末端的两亲性核壳型超支化聚砜胺(HPSAV、HPSAN、HPSAP),并以它们作为主体进行了封装实验。发现它们对刚果红(CR)、甲基橙(MO)、虎红(RB)等水溶性染料具有很强的装载能力,且对同种染料的封装载荷随着末端亲油性烷基链的增长而增大。对于末端为棕榈酰基的HPSAP,平均每个大分子可以捕捉CR和MO分子的数目分别高达41.8和19.4个,远高于文献报道的树枝状聚合物和超支化聚合物对这些染料的装载量,这主要归因于聚砜胺内核的高度亲水性及其与亲油性烷基外壳的极性差。与HP(DETA-MA)1.2P类似,两亲性超支化聚砜胺装载的染料用纯水洗涤可以释放出来。这种高装载性能和可逆性使超支化聚砜胺在药物释放、分子识别和分离以及纳米催化剂和纳米涂料等领域中有着广阔的应用前景。
     研究了HPSAP对MO/MB、MO/RB、MO/PB、MO/EY、MO/FSS等五对染料对的双封装行为,进一步验证了在HP(DETA-MA)1.2P封装实验中出现的协同双封装和竞争双封装现象。实验证明,与HP(DETA-MA)1.2P作为主体时的情况相似,MO和MB之间存在协同作用,MO的存在大大促进了HPSAP对MB的装载,双封装过程中HPSAP对MB的装载量是单封装时的40倍以上;MO与RB、PB、EY、FSS四种染料之间存在竞争作用,竞争结果与选用HP(DETA-MA)1.2P作为主体时类似。
     4两亲性超支化聚酰胺胺封装染料前后的自组装行为研究
     采用两亲性超支化聚酰胺胺HP(DETA-MA)1.2P为自组装前驱体,在固体表面进行溶剂挥发诱导的分子自组装,制得了具有规则蜂窝状形貌的超支化聚合物多孔薄膜。运用场发射扫描电镜、原子力显微镜、透射电镜等仪器对蜂窝状结构进行了表征。蜂窝状孔大小为微米级,具有特殊的双层结构。论文对自组装膜的形貌进行了详细描述,初步提出了可能的自组装机理。膜的制备过程简单,可以在硅片、石英、玻璃、云母片多种固体基片上直接制备,重复性好。这种薄膜有望在生物学(比如生物材料)、光学、电学、模板等领域内得到应用。
     利用装载有染料的两亲性超支化聚酰胺胺进行自组装,同样得到了蜂窝状自组装多孔薄膜。所得的薄膜能够发射荧光,自组装薄膜的颜色和发光波长可以很方便地通过改变封装的染料及激发波长进行调节,膜的颜色随着所用染料的不同而不同,同一种荧光薄膜在不同激发条件下发射不同的荧光。这是首次将两亲性超支化聚合物的超分子封装与自组装相结合,实现了超分子封装在超分子自组装功能化方面的应用。超分子封装与自组装的结合使自组装更加多样化,为实现多功能性自组装提供了新的方法和策略。
     本文对超支化聚酰胺胺合成路线的探索为聚酰胺胺类高度支化聚合物的规模化生产提供了一个可行的方案,并为更深入的学术研究及更广泛的应用打下了基础;对超支化聚合物协同封装和在固体基片上的自组装现象的发现使该领域具有更吸引人的前景,启发我们去发现更多超支化聚合物的新现象。
Hyperbranched polymers are a kind of highly branched/dendritic macromolecules with three-dimensional architecture. The past 15 years witnessed the remarkable developments of hyperbranched polymers in the aspects of synthesis methods, functionalization and applications. Nevertheless, there are still many problems to be resolved, new phenomena to be found and new directions to be inaugurated in this field. On the basis of the previous works, this thesis aims at solving some of the problems, especially the facile synthesis of water-soluble hyperbranched polymers, representing new research approaches, and finding new phenomena based on the as-prepared hyperbranched polymers. The water soluble hyperbranched poly(amido amine)s (PAMAMs) are readily synthesized by the“couple-monomer methodology”(CMM). The supramolecular encapsulation and self-assembly behaviors of hyperbranched PAMAMs and other water-soluble hyperbranched polymers are investigated in details. The synergistic encapsulation phenomenon is found in the multi-dye encapsulations of hyperbranched polymers. Regular honeycomb-patterned porous films are fabricated by solvent evaporation-induced self-assembly of hyperbranched polymer on solid substrates, including silicon wafer, quartz, glass slide and mica. Encapsulation and self-assembly behavior of hyperbranched polymer are combined and photoluminescent porous films are obtained from the self-assembly of dye-loaded hyperbranched polymer. The details of research methods and results are described as follows.
     1 Synthesis, modification and characterization of hyperbranched PAMAMs.
     A series of water soluble aliphatic hyperbranched PAMAMs with similar chemical structure of poly(amido amine) dendrimer were successfully synthesized from commercially available AB and Cn type monomers by one-pot polymerization via the couple-monomer methodology (CMM). The AB type monomer used is methyl acrylate, and Cn are multi-amino compounds such as ethylenediamine (EDA), diethylenetriamine (DETA), triethylenetetramine (TETA), tetraethylenepentamine (TEPA) and pentaethylenehexamine (PEHA). The reaction conditions, such as the reaction time, temperature, and pressure, were investigated and feasible conditions were indicated for the synthesis of hyperbranched PAMAM by CMM. Hyperbranched polymers with different terminal groups and properties can be obtained by adjusting the feed ratio of AB to Cn (Rfeed). FTIR, NMR, DSC, and TGA were used to characterize the polymers. It was found that the polymers’properties such as solubility, thermal behavior and encapsulation capability vary with changing the feed molar ratio of AB to Cn. According to the NMR spectra, when the molar ratio of MA to Cn is low, the end groups of the products are amine groups, while when the ratio is high, the end groups are methoxyl groups. The larger the feed molar ratio of MA to Cn, the more are the methoxyl groups and the less the amine groups residual in the polymer. The solubility of hyperbranched PAMAMs is good in chloroform and some polar solvents, including N,N-dimethylformamide, N,N-dimethylacetamide, dimethyl dulfoxide, water, methanol and ethanol, while poor in apolar solvents, such as acetone, tetrahydrofuran and ether. What’s more, the solubility of the products in apolar solvents increases with increasing the molar ratio of MA to Cn. In addition, the products formed from the monomers with different Cn have different solubility in apolar solvents. The products formed from EDA show worse solubility in acetone, THF and ether than those formed from TEPA and PEHA. When the chain length of the Cn type monomer rises, the solubility of its products in apolar solvents gets better. With increasing the Rfeed, Tg will rise gradually and reach the maximum, then will decrease. The products with amine groups as end groups can’t encapsulate dye molecular, while that with methoxyl groups as end groups can encapsulate some dyes molecules.
     Amphiphilic core-shell hyperbranched PAMAMs with benzoyl or palmitoyl groups were prepared by acidylation of amine groups in hyperbranched PAMAMs with benzoyl chloride or palmitoyl chloride. Modification of amine groups changes the solubility, thermal behaviour, fluorescence, and encapsulation capability of hyperbranched PAMAMs. All acylating products turn insoluble in water. The products end-capped with benzoyl groups display better solubility in apolar solvent, such as acetone and THF, than those without end-capped, and those end-capped with palmitoyl groups become insoluble in polar solvents such as DMF, DMSO, DMAC, and methanol, while soluble in chloroform and THF and partial soluble in ether. The Tgs of the benzoyl end-capped products become much higher than those before modification. The introduction of long chain alkyls endows the palmitoyl end-capped products with crystallization ability. All the PAMAMs without end-capping lost weight less than 5% till 200 oC. The products end-capped with benzoyl or palmitoyl groups showed greater thermal stability, losing no more than 5% weight even up to 300 oC. The hyperbranched PAMAMs were fluorescent and the fluorescence performances were changed after modification. The emitting wavelength can be changed by varying the concentration of the polymer solutions. The encapsulation capability was improved obviously by modification the amine groups by benzoyl or palmitoyl groups.
     It is expected that the hyperbranched PAMAMs can play an important role in the industrial application fields such as phase-transferring agents, coatings, sewage treatment agents, drug carrier, surfactant, catalyzer, self-assembly building blocks because of their versatility and availability.
     2 Supramolecular Encapsulation of Amphiphilic Hyperbranched PAMAMs to Dyes.
     Dye-encapsulation properties of amphiphilic hyperbranched PAMAMs, especially of HP(DETA-MA)1.2P, which was prepared from methyl acrylate and diethylenetriamine (molar ratio feed is 1.2 ) and modification with palmitoyl chloride, were investigated. The amphiphilic hyperbranched PAMAMs can carry water-soluble dyes, including Congo red (CR), methyl orange (MO), methyl blue (MB), fluorescein sodium (FSS), eosin Y (EY), Phloxine B (PB), and rose Bengal (RB), from aqueous solution into chloroform. The loading capacity (Cload) of HP(DETA-MA)1.2P is different to various dyes. Each HP(DETA-MA)1.2P macromolecule can encapsulate about 22.4 Congo red molecules on average, while only 0.63 methyl blue molecules.
     The loading capacity of HP(DETA-MA)1.2P is dependable on pH value to some extent. Multi-times single-dye encapsulation will help HP(DETA-MA)1.2P load more dye molecules. A part of loaded-dye molecules in the HP(DETA-MA)1.2P macromolecules can be released by reducing concentration of dye aqueous solution of upper layer and the HP(DETA-MA)1.2P chloroform solution can encapsulate dye again when mixed with high concentration dye solution. Such a liberation and encapsulation process is feasible and reversible for HP(DETA-MA)1.2P.
     The selectivity of host to guests and the influence of interaction between different dyes on loading capacity were investigated by performing comparable single-dye and double-dye experiments. It’s found that there are two kinds of encapsulation cases, synergistic encapsulation or selective encapsulation, when an aqueous solution containing two kinds of dyes is mixed with a chloroform solution of HP(DETA-MA)1.2P. Gradually double-dye encapsulation experiments were carried out to prove the synergistic or competitive interaction between different pair of dyes. There is synergistic interaction between MO and MB molecules and the Cload of HP(DETA-MA)1.2P to MO (Cload(MO)) in the double-dye encapsulations increased about 72% with the cooperation of MB. The synergistic encapsulation phenomenon was confirmed by the measurements of UV/vis, 1HNMR, DSC and TGA on the dye-encapsulated hyperbranched polymers. Investigations on the guest-host supramolecular systems with different pH indicated that the pH value has certain influence on the synergistic encapsulation Cload, but it was not the dominating factor for the synergistic encapsulation. The MB molecules did improve the Cload(MO).
     There is competitive interaction between MO and RB(or PB, EY, FSS) molecules. MO molecules can’t be encapsulated by the HP(DETA-MA)1.2P with the existence of RB or PB, while the presence of MO molecules almost have no influence on the encapsulation of HP(DETA-MA)1.2P to RB or PB. When MO and EY exist at the same time, both of Cload(MO) and Cload(EY) decrease. When MO and FSS exist at the same time, no FSS molecules can be encapsulated and the Cload(MO) decreases.
     The results of DSC, TGA and dynamic light scattering (DLS) measurements verify that the transferred dyes were not localized at the space among the macromolecules, but inside the cavity of individual hyperbranched macromolecules.
     3 Synthesis of Amphiphilic Hyperbranched Poly(sulfone-amine)s and Their Supramolecular Encapsulation Behavior to Dyes.
     In order to justify the generality of the encapsulation of hyperbranched polymer to dye molecules, hyperbranched poly(sulfone-amine) was prepared from A2 type monomer, divinyl sulfone, and BB’2 type monomer, 1-(2-aminoethyl) piperazine, and three samples of core-shell amphiphilic hyperbranched poly(sulfone-amine) (HPSA), which were synthesized by end-capping of hyperbranched poly(sulfone-amine) with valeryl chloride, nonanoyl chloride and palmitoyl chloride, were used as hosts to encapsulate dyes. They exhibit high capabilities to load water soluble dyes, such as CR, MO and RB. It is found that the longer the terminal hydrophobic chain is, the higher the loading capability would be for the same dye. For the palmitoyl-terminated HPSA, the average number of dye molecules trapped by per macromolecule achieves 41.8 of CR, 19.4 of MO, and 3.0 of RB, respectively. Such high loading capability is considered to attribute to the high water-solubility of the hyperbranched poly(sulfone-amine) core and the large polarity difference between the hydrophilic core and hydrophobic shell. Similar to HP(DETA-MA)1.2P, the loaded dyes can be released from the amphiphilic hyperbranched poly(sulfone-amine) macromolecules by mixing its chloroform solution with pure water. The high loading capability associated with the reversible releasing property would pave the way for the molecular vessels in the application of drug transfer/delivery, selective molecular recognition and separation, nanocatalysis and nanocoating.
     Double-dye encapsulation experiments also were carried out to investigate the generality of the synergistic and competitive encapsulation phenomena of hyperbranched polymers. Five pairs of dye, including MO/MB, MO/RB, MO/PB, MO/EY and MO/FSS, were also chosen as dyes pair in the double-dye encapsulation experiments. It’s found that the phenomena of synergistic and selective encapsulation also exist when an aqueous solution containing two kinds of dyes is mixed with a chloroform solution of HPSAP. There is also synergistic interaction between MO and MB molecules and Cload of MB can be raised to a 40 folds level of single-dye encapsulation without loss of MO. The interaction between MO and RB(or PB, EY, FSS) molecules is the same as the case when HP(DETA-MA)1.2P was chosen as host.
     4 Self-assembly of Amphiphilic Hyperbranched PAMAMs and dye-loaded Amphiphilic Hyperbranched PAMAMs.
     Regular honeycomb-patterned porous films were prepared from solvent evaporation-induced molecular self-assembly of the amphiphilic hyperbranched poly(amido amine), HP(DETA-MA)1.2P, on solid substrates. The organized structure was confirmed by SEM, AFM, and TEM. The honeycomb structure holes are several microns and have special double layer structure. The morphology of the films was described in details and the corresponding self-assembly mechanism was discussed. Such method to fabricate the honeycomb films was convenient and showed good reproducibility on various substrates, such as silicon wafer, quartz, glass slide, freshly cleaved mica. The ordered porous films may have potential applications in the filed of biology (biomaterials), photonics, electronics, and patterned templates.
     The similar films have also been prepared from dye-loaded amphiphilic hyperbranched PAMAM. What’s more, the films were fluorescent. The fluorescence of the assembled functional films can be adjusted by the encapsulated dyes, and the emission peak can be tuned by the excitation wavelength. This novel strategy greatly enlarges the assembling diversity, makes versatile complex patterned film easily accessible, paves the way for multi-substance non-molecular self-assembly that allows one or more substance disperse and distribute in another one at the molecular level, and opens a straightforward route to functionalization of self-assembly structures. This is the first time to combine the supramolecular encapsulation behavior with self-assembly of the amphiphilic hyperbranched polymers and make self-assembly films functionalized by encapsulation.
     The facile and large-scale synthesis of hyperbranched PAMAMs paves the way for their academic research in a deeper level and wide range of applications. The findings of synergestic encapsulation and substrate-supported self-assembly of amphiphilic hyperbranched polymers promise the fascinating future of this field and enlighten us to discovery more new phenomena based on hyperbranched polymers.
引文
1. Buhleier, E., Wehner, W., and Vogtle, F. Cascade-chain-like and nonskid-chain-like syntheses of molecular cavity topologies. Synthesis, 1978, 2, 155-158.
    2. Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P. A new class of polymers: Starburst-dendritic macromolecules. Polym. J., 1985, 17, 117-132.
    3. Tomalia, D. A., Baker, H., Dewald, J., Hall, M., Kallos, G., Martin, S., Roeck, J., Ryder, J., and Smith, P. Dendritic macromolecules: Synthesie of starburst dendrimers. Macromolecules, 1986, 19, 2466-2468.
    4. Tomalia, D. A., Naylor, A. M., and Goddard III, W. A. Starburst dendrimers: Molecular-level control of size, shape, surface chemistry, topology, and flexibility from atoms to macroscopic matter. Angew. Chem., Int. Ed., 1990, 29, 138-175.
    5. Bosman, A. W., Janssen, H. M., and Meijer, E. W. About dendrimers: Structure, physical properties, and applications. Chem. Rev., 1999, 99, 1665-1688.
    6. Fischer, M. and Vogtle, F. Dendrimers: From design to application - A progress report. Angew. Chem., Int. Ed., 1999, 38, 885-905.
    7. Dykes, G. M. Dendrimers: A review of their appeal and applications. J. Chem. Technol. Biotechnol., 2001, 76, 903-918.
    8. Klajnert, B. and Bryszewska, M. Dendrimers: Properties and applications. Acta Biochim. Pol., 2001, 48, 199-208.
    9. Tomalia, D. A. and Frechet, J. M. J. Discovery of dendrimers and dendritic polymers: A brief historical perspective. J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 2719-2728.
    10. Frechet, J. M. J. Dendrimers and supramolecular chemistry. Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 4782-4787.
    11. Frechet, J. M. J. Dendrimers and other dendritic macromolecules: From building blocks to functional assemblies in nanoscience and nanotechnology. J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 3713-3725.
    12. Flory, P. J. Molecular size distribution in three-dimensional polymers. VI. branched polymer containing A-R-Bf-1-type units. J. Am. Chem. Soc., 1952, 74, 2718-2723.
    13. Hawker, C. J., Lee, R., and Frechet, J. M. J. One-step synthesis of hyperbranched dendritic polyesters. J. Am. Chem. Soc., 1991, 113, 4583-4588.
    14. Uhrich, K. E., Hawker, C. J., Frechet, J. M. J., and Turner, S. R. One-pot synthesis of hyperbranched polyethers. Macromolecules, 1992, 25, 4583-4587.
    15. Kim, Y. H. and Webster, O. W. Hyperbranched polyphenylenes. Macromolecules, 1992, 25, 5561-5572.
    16. Kim, Y. H. Hyperbranchecs polymers 10 years after. J. Polym. Sci., Part A: Polym. Chem., 1998, 36, 1685-1698.
    17. Kim, Y. H. and Webster, O. Hyperbranched polymers (Reprinted from star and hyperbranched polymers, pg 201-238, 1999). J. Macromol. Sci.-Polym. Rev, 2002, C42, 55-89.
    18. Turner, S. R., Walter, F., Voit, B. I., and Mourey, T. H. Hyperbranched aromatic polyesters with carboxylic acid terminal groups. Macromolecules, 1994, 27, 1611-1616.
    19. Malmstrom, E. and Hult, A. Hyperbranched polymers: A review. J. Macromol. Sci.-Rev. Macromol. Chem. Phys., 1997, C37, 555-579.
    20. Shi, W. F. and Huang, H. Progress in hyperbranched polymers. Chem. J. Chin. Univ.-Chin., 1997, 18, 1398-1405.
    21. Hult, A., Johansson, M., and Malmstrom, E. Branched polymers II: Hyperbranched polymers. Adv. Polym. Sci., 1999, 143, 1-34.
    22. Inoue, K. Functional dendrimers, hyperbranched and star polymers. Prog. Polym. Sci., 2000, 25, 453-571.
    23. Jikei, M. and Kakimoto, M. A. Hyperbranched polymers: A promising new class of materials. Prog. Polym. Sci., 2001, 26, 1233-1285.
    24. Gao, C. and Yan, D. Y. Hyperbranched polymers: From synthesis to applications. Prog. Polym. Sci., 2004, 29, 183-275.
    25. Voit, B. New developments in hyperbranched polymers. J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 2505-2525.
    26. Voit, B. I. Hyperbranched polymers: A chance and a challenge. C. R. Chim., 2003, 6, 821-832.
    27. Voit, B. Hyperbranched polymers - All problems solved after 15 years of research? J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 2679-2699.
    28. Mori, H. and Muller, A. H. E. Dendrimers V: Functional and hyperbranched building blocks, photophysical properties, applications in materials and life sciences (Hyperbranched (meth)acrylates in solution, melt, and grafted from surfaces). Top. Curr. Chem., 2003, 228, 1-37.
    29. Xu, Y. Y., Gao, C., Wang, S. B., Yan, D. Y. Synthesis, properties and applications of dendronized polymers. Chemistry Online, 2004, 67, 1-8.
    30. 超支化聚合物, 谭惠民, 罗运军. 北京, 化学工业出版社, 2005, 1-1.
    31. Flory, P. J. Molecular size distribution in three-dimensional polymers. I. Gelation. J. Am. Chem. Soc., 1941, 63, 3083-3090.
    32. Flory, P. J. Molecular size distribution in three-dimensional polymers. II. Trifunctional branching units. J. Am. Chem. Soc., 1941, 63, 3091-3096.
    33. Flory, P. J. Molecular size distribution in three-dimensional polymers. III. Tetrafunctional branching units. J. Am. Chem. Soc., 1941, 63, 3096-3100.
    34. Flory, P. J. Constitution of three-dimensional polymers and the theory of gelation. J. Phys. Chem., 1942, 46, 132-140.
    35. Flory, P. J. Molecular-size distribution in three-dimensional polymers. V. Postgelation relationships. J. Am. Chem. Soc., 1947, 69, 30-35.
    36. Schaefgen, J. R. and Flory, P. J. Synthesis of multichain polymers and investigation of their viscosities. J. Am. Chem. Soc., 1948, 70, 2709-2718.
    37. Schaefgen, J. R. and Flory, P. J. Multilinked polyamides. J. Am. Chem. Soc., 1950, 72, 689-701.
    38. Newkome, G. R., Yao, Z. Q., Baker, G. R., and Gupta, V. K. Micelles. Part 1. Cascade molecules: A new approach to micelles. A [27]-arborol. J. Org. Chem., 1985, 50, 2003-2004.
    39. Newkome, G. R., Yao, Z. Q., Baker, G. R., Gupta, V. K., Russo, P. S., and Saunders, M. J. Chemistry of micelles series. Part 2. Cascade molecules. synthesis and characterization of a benzene[9]3-arborol. J. Am. Chem. Soc., 1986, 108, 849-850.
    40. Newkome, G. R., Baker, G. R., Saunders, M. J., Russo, P. S., Gupta, V. K., Yao, Z. Q., Miller, J. E., and Bouillion, K. Two-directional cascade molecules: Synthesis and characterization of [9]-n-[9] arborols. J. Chem. Soc., Chem. Commun., 1986, 752-753.
    41. Padias, A. B., Hall, H. K., Tomalia, D. A., and McConnell, J. R. Starburst polyether dendrimers. J. Org. Chem., 1987, 52, 5305-5312.
    42. Hawker, C. J. and Frechet, J. M. J. Preparation of polymers with controlled molecular architecture. A new convergent approach to dendritic macromolecules. J. Am. Chem. Soc., 1990, 112, 7638-7647.
    43. Kim, Y. H. and Webster, O. W. Hyperbranched polyphenylenes. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1988, 29, 310-311.
    44. Kim, Y. H. and Webster, O. W. Water-soluble hyperbranched polyphenylene:"a unimolecular micelle"? J. Am. Chem. Soc., 1990, 112, 4592-4593.
    45. Kim, Y. H. Lyotropic liquid crystalline hyperbranched aromatic polyamides. J. Am. Chem. Soc., 1992, 114, 4947-4948.
    46. Suzuki, M, Li, A, and Saegusa, T. Multibranching polymerization: Palladium-catalyzed ring-opening polymerization of cyclic carbamate to produce hyperbranched dendritic polyamine. Macromolecules, 1992, 25, 7071-7072.
    47. Reichert, V. R. and Mathias, L. J. Tetrahedrally-oriented four-armed star and branched aramids. Macromolecules, 1994, 27, 7024-7029.
    48. Voit, B. I. and Turner, S. R. Synthesis and characterization of high-temperature hyperbranched polyesters. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1992, 33, 184-185.
    49. Walter, F., Turner, S. R., and Voit, B. I. Hyperbranched polyesters with carboxylic acid end groups. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 1993, 34, 79-80.
    50. Wooley, K. L., Hawker, C. J., Lee, R., and Frechet, J. M. J. One-step synthesis of hyperbranched polyesters. Molecular weight control and chain end functionalization. Polym. J., 1994, 26, 187-197.
    51. Feast, W. J. and Stainton, N. M. Synthesis, structure and properties of some hyperbranched polyesters. J. Mater. Chem., 1995, 5, 405-411.
    52. Frechet, J. M. J and Hawker, C. J. Hyperbranched polyphenylene and hyperbranched polyesters: New soluble, three-dimensional, reactive polymers. React. Funct. Polym., 1995, 26, 127-136.
    53. Hult, A., Malmstroem, E., and Johansson, M. UV-curing of acrylate functional hyperbranched polyesters. Polym. Mater. Sci. Eng., 1995, 72, 528-529.
    54. Hult, A., Malmstroem, E., and Johansson, M. Synthesis and properties of aliphatic hyperbranched polyesters. Polym. Mater. Sci. Eng., 1995, 73, 173-174.
    55. Johansson, M. and Hult, A. Synthesis, characterization, and UV curing of acrylate functional hyperbranched polyester resins. J. Coat. Technol., 1995, 67, 35-39.
    56. Feast, W. J., Keeney, A. J., Kenwright, A. M., and Parker, D. Synthesis, structure and cyclics content of hyperbranched polyesters. Chem. Commun., 1997, 1749-1750.
    57. Kricheldorf, H. R. and Loehden, G. New polymer syntheses. 79. Hyperbranched poly(ester-amide)s based on 3-hydroxybenzoic acid and 3,5-diaminobenzoic acid. Macromol. Chem. Phys., 1995, 196, 1839-1854.
    58. Chu, F. K. and Hawker, C. J. A versatile synthesis of isomeric hyperbranched poly(etherketones). Polym. Bull., 1993, 30, 265-272.
    59. Hawker, C. J. and Chu, P. K. Hyperbranched poly(ether ketones): Manipulation of structure and physical properties. Macromolecules, 1996, 29, 4370-4380.
    60. Kim, C., Cho, S. Y., Kim, J. S., and Chang, Y. Y. Hyperbranched poly(ether ketones) with the heterocyclic triazine moiety. Polym. Mater. Sci. Eng., 1997, 77, 191-192.
    61. Morikawa, A. Preparation and properties of hyperbranched poly(ether ketones) with a various number of phenylene units. Macromolecules, 1998, 31, 5999-6009.
    62. Shu, C. F., Leu, C. M., and Huang, F. Y. Synthesis, modification, and characterization of hyperbranched poly(ether ketones). Polymer, 1999, 40, 6591-6596.
    63. Mathias, L. J. and Carothers, T. W. Hyperbranched poly(siloxysilanes). J. Am. Chem. Soc., 1991, 113, 4043-4044.
    64. Miravet, J. F. and Frechet, J. M. J. New hyperbranched poly(siloxysilanes) from AB2 AB4 and AB6 monomers: Variation of the branching pattern and end-functionalization. Polym. Mater. Sci. Eng., 1997, 77, 141-142.
    65. Gong, C. G., Miravet, J. F., and Frechet, J. M. J. Hyperbranched poly(siloxysilane)s: Control of growth and end functionalization with polyolefins. Polym. Mater. Sci. Eng., 1999, 80, 139-140.
    66. Si, Q. F., Wang, X., Fan, X. D., and ang, S. J. Synthesis and characterization of ultraviolet-curable hyperbranched poly(siloxysilane)s. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 1883-1894.
    67. Spindler, R. and Frechet, J. M. J. Synthesis and characterization of hyperbranched polyurethanes prepared from blocked isocyanate monomers by step-growth polymerization. Macromolecules, 1993, 26, 4809-4813.
    68. Wooley, K. L., Hawker, C. J., Lee, R., and Frechet, J. M. J. One-step synthesis of hyperbranched polyesters - Molecular weight control and chain end functionalization. Polym. J., 1994, 26, 187-197.
    69. Huber, T., Voit, B., and Wolf, D. Perfectly branched and hyperbranched poly(ether amide)s. Macromol. Symp., 1999, 142, 133-143.
    70. Monticelli, O., Mariani, A., Voit, B., Komber, H., Mendichi, R., Pitto, V., Tabuani, D., and Russo, S. Hyperbranched aramids by the A2+B3 versus AB2 approach: Influence of the reaction conditions on structural development. High Perform. Polym., 2001, 13, S45-S59.
    71. Muller, A. H. E., Yan, D. Y., and Wulkow, M. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization .1. Molecular weight distribution. Macromolecules, 1997, 30, 7015-7023.
    72. Yan, D. Y., Muller, A. H. E., and Matyjaszewski, K. Molecular parameters of hyperbranched polymers made by self-condensing vinyl polymerization .2. Degree of branching. Macromolecules, 1997, 30, 7024-7033.
    73. Yan, D. Y., Zhou, Z. P., and Muller, A. H. E. Molecular weight distribution of hyperbranched polymers generated by self-condensing vinyl polymerization in presence of a multifunctional initiator. Macromolecules, 1999, 32, 245-250.
    74. Litvinenko, G. I., Simon, P. F. W., and Muller, A. H. E. Molecular parameters of hyperbranched copolymers obtained by self-condensing vinyl copolymerization, 2. Non-equal rate constants. Macromolecules, 2001, 34, 2418-2426.
    75. Malmstroem, E., Johansson, M., and Hult, A. Hyperbranched aliphatic polyesters.Macromolecules, 1995, 28, 1698-1703.
    76. Malmstrom, E., Johansson, M., and Hult, A. A review of hyperbranched polyesters. Polymer News, 1997, 22, 128-133.
    77. Lee, H. S., Takeuchi, M., Kakimoto, M. A., and Kim, S. Y. Hyperbranched poly(arylene ether phosphine oxide)s. Polym. Bull., 2000, 45, 319-326.
    78. Yang, G., Jikei, M., and Kakimoto, M. A. Synthesis and properties of hyperbranched aromatic polyamide. Macromolecules, 1999, 32, 2215-2220.
    79. Hao, J. J., Jikei, M., and Kakimoto, M. A. Preparation of hyperbranched aromatic polyimides via A2+B3 approach. Macromolecules, 2002, 35, 5372-5381.
    80. Kim, K. M., Jikei, M., and Kakimoto, M. A. Preparation and properties of novel hyperbranched poly(dimethylsiloxane)s. Polym. J., 2002, 34, 275-279.
    81. Hawker, C. J., Frechet, J. M. J., Grubbs, R. B., and Dao, J. Preparation of hyperbranched and star polymers by a living, self-condensing free-radical polymerization. J. Am. Chem. Soc., 1995, 117, 10763-10764.
    82. Wooley, K. L., Hawker, C. J., and Frechet, J. M. J. Hyperbranched macromolecules via a novel double-stage convergent growth approach. J. Am. Chem. Soc., 1991, 113, 4252-4261.
    83. Bolton, D. H. and Wooley, K. L. Synthesis and characterization of hyperbranched polycarbonates. Macromolecules, 1997, 30, 1890-1896.
    84. Cheng, C., Wooley, K. L., and Khoshdel, E. Hyperbranched fluorocopolymers by atom transfer radical self-condensing vinyl copolymerization. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 4754-4770.
    85. Holter, D., Burgath, A., and Frey, H. Degree of branching in hyperbranched polymers. Acta Polym., 1997, 48, 30-35.
    86. Holter, D. and Frey, H. Degree of branching in hyperbranched polymers .2. Enhancement of the DB: scope and limitations. Acta Polym., 1997, 48, 298-309.
    87. Frey, H. and Holter, D. Degree of branching in hyperbranched polymers. 3 Copolymerization of AB(m)-monomers with AB and AB(n)-monomers. Acta Polym., 1999, 50, 67-76.
    88. Kumar, A. and Meijer, E. W. Novel hyperbranched polymer based on urea linkages. Chem. Commun., 1998, 1629-1630.
    89. Yan, D. Y. and Zhou, Z. P. Molecular weight distribution of hyperbranched polymers generated from polycondensation of AB(2) type monomers in the presence of multifunctional core moieties. Macromolecules, 1999, 32, 819-824.
    90. Yan, D. Y. and Gao, C. Hyperbranched polymers made from A(2) and BB '(2) type monomers. 1. Polyaddition of 1-(2-aminoethyl)piperazine to divinyl sulfone. Macromolecules, 2000, 33, 7693-7699.
    91. Gao, C. and Yan, D. Y. Synthesis of hyperbranched polymers from commercially available A(2) and BB '(2) type monomers. Chem. Commun., 2001, 107-108.
    92. Gao, C., Yan, D. Y., and Tang, W. Hyperbranched polymers made from A(2-) and BB '(2-)type monomers. 3. N-methyl-1,3-propanediamine to divinyl sulfone. Macromol. Chem. Phys., 2001, 202, 2623-2629.
    93. Gao, C., Yan, D. Y., Zhu, X. Y., and Huang, W. Preparation of water-soluble hyperbranched poly(sulfone-amine)s by polyaddition of N-ethylethylenediamine to divinyl sulfone. Polymer, 2001, 42, 7603-7610.
    94. Gao, C., Yan, D. Y., and Tang, W. Hyperbranched copolymers made from A(2), B-2 and BB'(2) type monomers, 3 - Comparison of copoly(sulfone-amine)s containing piperazine and 4,4 '-trimethylenedipiperidine units. Macromol. Chem. Phys., 2001, 202, 3035-3042.
    95. Gao, C., Tang, W., Yan, D. Y., Wang, Z. J., Zhu, P. F., and Tao, P. Hyperbranched copolymers made from A(2), B-2 and BB '(2) type monomers (iv) - Copolymerization of divinyl sulfone with 4, 4 '-trimethylenedipiperidine and N-ethylethylenediamine. Sci. China Ser. B-Chem., 2001, 44, 207-215.
    96. Gao, C. and Yan, D. Y. Polyaddition of B(2) and BB '(2) type monomers to A(2) type monomer. 1. Synthesis of highly branched copoly(sulfone-amine)s. Macromolecules, 2001, 34, 156-161.
    97. Gao, C., Tang, W., Yan, D. Y., Zhu, P. F., and Tao, P. Hyperbranched polymers made from A(2), B-2 and BB '(2) type monomers, 2. Preparation of hyperbranched copoly(sulfone-amine)s by polyaddition of N-ethylethylenediamine and piperazine to divinylsulfone. Polymer, 2001, 42, 3437-3443.
    98. Gao, C., Tang, W., and Yan, D. Y. Synthesis and characterization of water-soluble hyperbranched poly(ester amine)s from diacrylates and diamines. J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 2340-2349.
    99. Gao, C., Xu, Y. M., Yan, D. Y., and Chen, W. Water-soluble degradable hyperbranched polyesters: Novel candidates for drug delivery? Biomacromolecules, 2003, 4, 704-712.
    100. Gao, C., Hou, J., Yan, D. Y., and Wang, Z. J. Preparation and characterization of fluorescent hyperbranched polyether. React. Funct. Polym., 2004, 58, 65-72.
    101. Ji, B., Liu, C. H., Huang, W., and Yan, D. Y. Novel hyperbranched predominantly alternating copolymers made from a charge transfer complex monomer pair of p-(chloromethyl)styrene and acrylonitrile via controlled living radical copolymerization. Polym. Bull., 2005, 55, 181-189.
    102. Liu, C. H., Gao, C., and Yan, D. Y. Aliphatic hyperbranched poly(amido amine)s (PAMAMs): Preparation and modification. Chem. Res. Chin. Univ., 2005, 21, 345-354.
    103. Lu, Y., Lin, D., Wei, H. Y., and Shi, W. F. Synthesis and charaterization of hyperbranched poly(amine-ester). Acta Polym. Sin., 2000, 411-414.
    104. Lin, D., Kou, H. G., Shi, W. F., Yuan, H. Y., and Chen, Y. L. Photopolymerizaton of hyperbranched aliphatic acrylated poly(amide ester). II. Photopolymerization kinetics. J. Appl. Polym. Sci., 2001, 82, 1637-1641.
    105. Wei, H. Y., Lu, Y., Shi, W. F., Yuan, H. Y., and Chen, Y. L. UV curing behavior of methacrylated hyperbranched poly(amine-ester)s. J. Appl. Polym. Sci., 2001, 80, 51-57.
    106. Zhu, S. W., Kou, H. G., Wei, H. Y., Lin, D., and Shi, W. F. Study on UV curable powder coatings based on hyperbranched polymers. Chin. J. Polym. Sci., 2001, 19, 155-160.
    107. Asif, A., Huang, C. Y., and Shi, W. F. UV curing behaviors and hydrophilic characteristics of UV curable waterborne hyperbranched aliphatic polyesters. Polym. Adv. Technol., 2003, 14, 609-615.
    108. Kou, H. G., Asif, A., and Shi, W. F. Hyperbranched acrylated aromatic polyester used as a modifier in UV-curable epoxy acrylate resins. Chin. J. Chem., 2003, 21, 91-95.
    109. Wei, H. Y., Kou, H. G., Shi, W. F., Nie, K. M., and Zhan, Y. C. Photopolymerizable hyperbranched (meth)acrylated poly(amine ester). J. Appl. Polym. Sci., 2003, 87, 168-173.
    110. Zou, J. H., Zhao, Y. B., Shi, W. F., Shen, X. F., and Nie, K. M. Preparation and characters of hyperbranched polyester-based organic-inorganic hybrid material compared with linearpolyester. Polym. Adv. Technol., 2005, 16, 55-60.
    111. Xu, R. L., Liu, H. W., and Shi, W. F. Photofluorescence of hyperbranched poly(phenylene sulfide). J. Polym. Sci., Part B: Polym. Phys., 2006, 44, 826-831.
    112. Hong, C. Y., Pan, C. Y., Huang, Y., and Xu, Z. D. Synthesis of hyperbranched polymethacrylates in the presence of a tetrafunctional initiator. Polymer, 2001, 42, 6733-6740.
    113. Hong, C. Y. and Pan, C. Y. Synthesis and characterization of hyperbranched polyacrylates in the presence of a tetrafunctional initiator with higher reactivity than monomer by self-condensing vinyl polymerization. Polymer, 2001, 42, 9385-9391.
    114. Hong, C. Y., Zou, Y. F., and Pan, C. Y. Hyperbranched polyacrylates prepared by self-condensing vinyl copolymerization in the presence of a tetrafunctional initiator. Polym. Int., 2003, 52, 257-264.
    115. Wang, D., Liu, Y., Hong, C. Y., and Pan, C. Y. Preparation and characterization of novel hyperbranched poly(amido amine)s from Michael addition polymerizations of trifunctional amines with diacrylamides. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5127-5137.
    116. Tang, L. M., Zhang, X. L., Li, W., and Liu, D. S. Studies on modification of end groups of aliphatic hyperbranched polyester. Chem. J. Chin. Univ.-Chin., 2000, 21, 1950-1952.
    117. Qiu, T., Tang, L. M., Tuo, X. L., Zhang, X. L., and Liu, D. S. Study on self-assembly properties of aryl-alkyl hyperbranched polyesters with carboxylic end groups. Polym. Bull., 2001, 47, 337-342.
    118. Zhang, X. L., Tang, L. M., Qiu, T., Fu, Y. Z., and Liu, D. S. Synthesis and application of a novel aromatic hyperbranched polyester. Chem. J. Chin. Univ.-Chin., 2001, 22, 1761-1763.
    119. Tang, L. M., Qu, T., Tuo, X. L., Zhang, X. L., and Liu, D. S. Synthesis, morphology and application of alkylaryl hyperbranched polyesters. Polym. J., 2002, 34, 112-116.
    120. Fu, Z. W., Tang, L. M., Guo, B. H., and Liu, D. S. Studies on synthesis of a hyperbrached poly(ester-amide) and its application as rheological modilficator. Acta Polym. Sin., 2003, 754-756.
    121. Qiu, T., Tang, L. M., Tuo, X. L., You, H., Wang, X. G., and Liu, D. S. Effect of the end-group structure of hyperbranched polymers on their electrostatic self-assembly behavior. Chem. J. Chin. Univ.-Chin., 2004, 25, 971-974.
    122. Qiu, T., Tang, L. M., Tuo, X. L., and Liu, D. New phase transfer agent for dye: Application for hyperbranched poly (ester-amine). Chin. Chem. Lett., 2004, 15, 931-934.
    123. Chen, H. and Yin, J. Synthesis and characterization of hyperbranched polyimides with good organosolubility and thermal properties based on a new triamine and conventional dianhydrides. J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 3804-3814.
    124. Chen, H. and Yin, J. Preparation of fully imidized hyperbranched photosensitive polyimide with excellent organosolubility and thermal property based on 4,4 '(Hexafluoroisopropylidene) diphthalic anhydride (A(2)) and 1,3,5-tris(4-aminophenoxy)benzene (B-3). Polym. Bull., 2003, 49, 313-320.
    125. Chen, H., Yin, J., and Xu, H. J. Synthesis of arenesulfonated hyperbranched polyimide from A2 + B3 monomers. Polym. J., 2003, 35, 280-285.
    126. Chen, H. and Yin, J. Synthesis and characterization of negative-type photosensitive hyperbranched polyimides with excellent organosolubility from an A(2)+B-3 monomer system. J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 1735-1744.
    127. Wang, X. L., Chen, J. J., Hong, L., and Tang, X. Z. Synthesis and ionic conductivity of hyperbranched poly(glycidol). J. Polym. Sci., Part B: Polym. Phys., 2001, 39, 2225-2230.
    128. Hong, L., Cui, Y. J., Wang, X. L., and Tang, X. Z. Synthesis of a novel one-pot approach of hyperbranched polyurethanes and their properties. J. Polym. Sci., Part A: Polym. Chem., 2002, 40, 344-350.
    129. Yang, X. H., Sun, X. Y., Chen, J. J., Liu, Y. H., and Wang, X. L. Study of hyperbranched poly(glycidol) sulfate electrolyte. J. Appl. Polym. Sci., 2003, 90, 1185-1190.
    130. Li, M., Yang, X. H., Liu, Y. H., and Wang, X. L. Synthesis and characterization of new hyperbranched polymers with only inner functional groups modified. J. Appl. Polym. Sci., 2006, 101, 317-322.
    131. Lin, T., He, Q. G., Bai, F. L., and Dai, L. M. Design, synthesis and photophysical properties of a hyperbranched conjugated polymer. Thin Solid Films, 2000, 363, 122-125.
    132. Zhai, J., Bai, F. L., He, Q. G., Li, Y. S., Jiang, L., and Lin, T. Novel covalently linked self-assembled films from a functional hyperbranched conjugated poly (phenylene vinylene). Chin. Chem. Lett., 2000, 11, 819-822.
    133. Yang, J. L., He, Q. G., Lin, H. Z., Fan, J. J., and Bai, F. L. Characteristics of twisted intramolecular charge-transfer state in a hyperbranched conjugated polymer. Macromol. Rapid Commun., 2001, 22, 1152-1157.
    134. Yang, J. L., Lin, H. Z., He, Q. G., Ling, L. S., Zhu, C. F., and Bai, F. L. Composition of hyperbranched conjugated polymers with nanosized cadmium sulfide particles. Langmuir, 2001, 17, 5978-5983.
    135. Zhong, B., Li, S. Y., Li, H., He, L. M., Bai, F. L., He, Q. G., and Yang, G. Q. High pressure effects on the photophysical properties of a new type of hyperbranched conjugated copolymer. Acta Chim. Sin., 2002, 60, 1768-1772.
    136. Bai, F. L., He, Q. Q., Huang, H. M., Lin, H. Z., and Yang, J. L. A hyperbranched dendritic sensory oligomer based on dibenzo-18-crown-6 receptors. Synth. Met., 2003, 137, 971-972.
    137. He, Q. G., Huang, H. M., Sun, Q. J., Lin, H. Z., Yang, J. L., and Bai, F. L. A novel hyperbranched conjugated polymer for light emitting devices. Polym. Adv. Technol., 2004, 15, 43-47.
    138. Lin, H. Z., He, Q. G., Wang, W. L., and Bai, F. L. Preparation and photophysical properties of a hyperbranched conjugated polymer-bound gold nanoassembly. Res. Chem. Intermed., 2004, 30, 527-536.
    139. Qiao, J., Yang, C. H., He, Q. G., Bai, F. L., and Li, Y. F. Hyperbranched conjugated polymers for photovoltaic applications. J. Appl. Polym. Sci., 2004, 92, 1459-1466.
    140. Frechet, J. M. J., Henmi, M., Gitsov, I., Aoshima, S., Leduc, M. R., and Grubbs, R. B. Self-condensing vinyl polymerization - An approach to dendritic materials. Science, 1995, 269, 1080-1083.
    141. Bednarek, M., Biedron, T., Helinski, J., Kaluzynski, K., Kubisa, P., and Penczek, S. Branched polyether with multiple primary hydroxyl groups: Polymerization of 3-ethyl-3-hydroxymethyloxetane. Macromol. Rapid Commun., 1999, 20, 369-372.
    142. Chang, H. T. and Frechet, J. M. J. Proton-transfer polymerization: A new approach to hyperbranched polymers. J. Am. Chem. Soc., 1999, 121, 2313-2314.
    143. Jikei, M., Chon, S. H., Kakimoto, M. A., Kawauchi, S., Imase, T., and Watanebe, J. Synthesis of hyperbranched aromatic polyamide from aromatic diamines and trimesic acid.Macromolecules, 1999, 32, 2061-2064.
    144. Emrick, T., Chang, H. T., and Frechet, J. M. J. An A(2)+B(3) approach to hyperbranched aliphatic polyethers containing chain end epoxy substituents. Macromolecules, 1999, 32, 6380-6382.
    145. 高超. 超支化聚合物的分子设计、合成、表征及功能化研究. 上海交通大学博士学位论文, 2001.
    146. Froehling, P. and Brackman, J. Properties and applications of poly(propylene imine) dendrimers and poly(esteramide) hyperbranched polymers. Macromol. Symp., 2000, 151, 581-589.
    147. van Benthem, R. A. T. M., Meijerink, N., Gelade, E., de Koster, C. G., Muscat, D., Froehling, P. E., Hendriks, P. H. M., Vermeulen, C. J. A. A., and Zwartkruis, T. J. G. Synthesis and characterization of bis(2-hydroxypropyl)amide-based hyperbranched polyesteramides. Macromolecules, 2001, 34, 3559-3566.
    148. Magnusson, H., Malmstrom, E., and Hult, A. Synthesis of hyperbranched aliphatic polyethers via cationic ring-opening polymerization of 3-ethyl-3-(hydroxymethyl)oxetane. Macromol. Rapid Commun., 1999, 20, 453-457.
    149. Malmstroem, E. and Hult, A. Kinetics of formation of hyperbranched polyesters based on 2,2-bis(methylol)propionic acid. Macromolecules, 1996, 29, 1222-1228.
    150. Frey, H., Lach, C., and Lorenz, K. Heteroatom-based dendrimers. Adv. Mater., 1998, 10, 279-293.
    151. Hobson, L. J., Kenwright, A. M., and Feast, W. J. A simple 'one pot' route to the hyperbranched analogues of Tomalia's poly(amido amine) dendrimers. Chem. Commun., 1997, 1877-1878.
    152. Hobson, L. J. and Feast, W. J. Poly(amido amine) hyperbranched systems: Synthesis, structure and characterization. Polymer, 1999, 40, 1279-1297.
    153. Londergan, T. M., You, Y. J., Thompson, M. E., and Weber, W. P. Ruthenium catalyzed synthesis of cross-conjugated polymers and related hyperbranched materials. Copoly(arylene/1,1-vinylene)s. Macromolecules, 1998, 31, 2784-2788.
    154. Lach, C. and Frey, H. Enhancing the degree of branching of hyperbranched polymers by postsynthetic modification. Macromolecules, 1998, 31, 2381-2383.
    155. Matyjaszewski, K., Gaynor, S. G., and Muller, A. H. E. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization .2. Kinetics and mechanism of chain growth for the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate. Macromolecules, 1997, 30, 7034-7041.
    156. Matyjaszewski, K., Gaynor, S. G., Kulfan, A., and Podwika, M. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization .1. Acrylic AB* monomers in ''living'' radical polymerizations. Macromolecules, 1997, 30, 5192-5194.
    157. Matyjaszewski, K. and Gaynor, S. G. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization .3. Effect of reaction conditions on the self-condensing vinyl polymerization of 2-((2-bromopropionyl)oxy)ethyl acrylate. Macromolecules, 1997, 30, 7042-7049.
    158. Matyjaszewski, K., Pyun, J., and Gaynor, S. G. Preparation of hyperbranched polyacrylates by atom transfer radical polymerization, 4 - The use of zero-valent copper. Macromol. Rapid Commun., 1998, 19, 665-670.
    159. Simon, P. F. W., Radke, W., and Muller, A. H. E. Hyperbranched methacrylates by self-condensing group transfer polymerization. Macromol. Rapid Commun., 1997, 18, 865-873.
    160. Simon, P. F. W. and Muller, A. H. E. Synthesis of hyperbranched and highly branched methacrylates by self-condensing group transfer copolymerization. Macromolecules, 2001, 34, 6206-6213.
    161. Sunder, A., Hanselmann, R., Frey, H., and Mulhaupt, R. Controlled synthesis of hyperbranched polyglycerols by ring-opening multibranching polymerization. Macromolecules, 1999, 32, 4240-4246.
    162. Sunder, A., Kramer, M., Hanselmann, R., Mulhaupt, R., and Frey, H. Molecular nanocapsules based on amphiphilic hyperbranched polyglycerols. Angew. Chem., Int. Ed., 1999, 38, 3552-3555.
    163. Emrick, T., Chang, H. T., and Frechet, J. M. J. The preparation of hyperbranched aromatic and aliphatic polyether epoxies by chloride-catalyzed proton transfer polymerization from AB(n) and A(2)+B(3) monomers. J. Polym. Sci., Part A: Polym. Chem., 2000, 38, 4850-4869.
    164. Fang, J. H., Kita, H., and Okamoto, K. Hyperbranched polyimides for gas separation applications. 1. Synthesis and characterization. Macromolecules, 2000, 33, 4639-4646.
    165. Gao, C. and Yan, D. Y. "A(2)+CBn" approach to hyperbranched polymers with alternating ureido and urethano units. Macromolecules, 2003, 36, 613-620.
    166. Bo, Z. and Schluter, A. D. "AB(2)+AC(2)" approach to hyperbranched polymers with a high degree of branching. Chem. Commun., 2003, 2354-2355.
    167. Radke, W., Litvinenko, G., and Muller, A. H. E. Effect of core-forming molecules on molecular weight distribution and degree of branching in the synthesis of hyperbranched polymers. Macromolecules, 1998, 31, 239-248.
    168. Litvinenko, G. I. and Muller, A. H. E. Molecular weight averages and degree of branching in self-condensing vinyl copolymerization in the presence of multifunctional initiators. Macromolecules, 2002, 35, 4577-4583.
    169. Maier, G., Zech, C., Voit, B., and Komber, H. Hyperbranched polymers with a degree of branching of 100%. Macromol. Symp., 2001, 163, 75-86.
    170. Mai, Y. Y., Zhou, Y. F., and Yan, D. Y. Effect of degree of branching on glass transition temperature for hyperbranched polyether. Chem. J. Chin. Univ.-Chin., 2004, 25, 1373-1374.
    171. 贾志峰. 超支化聚合物的制备与功能化研究, 上海交通大学博士学位论文. 2005.
    172. Gooden, J. K., Gross, M. L., Mueller, A., Stefanescu, A. D., and Wooley, K. L. Cyclization in hyperbranched polymer syntheses: Characterization by MALDI-TOF mass spectrometry. J. Am. Chem. Soc., 1998, 120, 10180-10186.
    173. Feast, W. J., Hamilton, L. M., and Rannard, S. The influence of laser power on the observed MALDI-TOF mass spectra of poly(diethyl 3-hydroxyglutarate), an AB(2) hyperbranched aliphatic polyester; Mn from MALDI-TOF MS? Caveat emptor. Polym. Bull., 1997, 39, 347-352.
    174. Frechet, J. M. J., Hawker, C. J., Gitsov, I., Leon, J. W., Vogl Otto, and Albertsson, A. Dendrimers and hyperbranched polymers: Two families of three-dimensional macromolecules with similar but clearly distinct properties. J. Macromol. Sci., Pure Appl. Chem., 2006, 33, 1399-1425.
    175. Yates, C. R. and Hayes, W. Synthesis and applications of hyperbranched polymers. Eur. Polym. J., 2004, 40, 1257-1281.
    176. Nagale, M., Kim, B. Y., and Bruening, M. L. Ultrathin, hyperbranched poly(acrylic acid) membranes on porous alumina supports. J. Am. Chem. Soc., 2000, 122, 11670-11678.
    177. Fang, J. H., Kita, H., and Okamoto, K. Gas permeation properties of hyperbranched polyimide membranes. J. Membr. Sci., 2001, 182, 245-256.
    178. Liu, C. Q., Naismith, N., Huang, Y. Q., and Economy, J. Synthesis and characterization of novel hyperbranched poly(imide silsesquioxane) membranes. J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 3736-3743.
    179. Suzuki, T. and Yamada, Y. Physical and gas transport properties of novel hyperbranched polyimide-silica hybrid membranes. Polym. Bull., 2005, 53, 139-146.
    180. Wei, X. Z., Zhu, B. K., Xiao, L., Xu, Y. Y., and Geckeler, K. E. Novel cross-linked films prepared from hyperbranched poly(amine-ester). Macromol. Rapid Commun., 2005, 26, 1224-1227.
    181. Zhang, Y. D., Wada, T., and Sasabe, H. A new hyperbranched polymer with polar chromophores for nonlinear optics. Polymer, 1997, 38, 2893-2897.
    182. Zhang, X., Wang, P., Zhu, P. W., Ye, C., and Xi, F. Second order non-linear optical materials based on poly(p-chloromethyl styrene). Macromol. Chem. Phys., 2000, 201, 1853-1857.
    183. Lee, J. H. and Lee, K. S. Synthesis and characterization of hyperbranched polymer for second-order nonlinear optics. Mol. Cryst. Liquid Cryst., 2001, 371, 341-344.
    184. Tajbakhsh, A., Moratti, S. C., Koch, A., and Warner, M. Hyperbranched architectures for NLO polymers. Mol. Cryst. Liquid Cryst., 2001, 356, 175-183.
    185. De Jesus, O. L. P., Ihre, H. R., Gagne, L., Frechet, J. M. J., and Szoka, F. C. Polyester dendritic systems for drug delivery applications: in vitro and in vivo evaluation. Bioconjugate Chem., 2002, 13, 453-461.
    186. Kannan, S., Kolhe, P., Raykova, V., Glibatec, M., Kannan, R. M., Lieh-Lai, M., and Bassett, D. Dynamics of cellular entry and drug delivery by dendritic polymers into human lung epithelial carcinoma cells. J. Biomater. Sci., Polym. Ed., 2004, 15, 311-330.
    187. Kolhe, P., Misra, E., Kannan, R. M., Kannan, S., and Lieh-Lai, M. Drug complexation, in vitro release and cellular entry of dendrimers and hyperbranched polymers. Int. J. Pharm., 2003, 259, 143-160.
    188. Liu, M. J., Kono, K., and Frechet, J. M. J. Water-soluble dendritic unimolecular micelles: Their potential as drug delivery agents. J. Control. Release, 2000, 65, 121-131.
    189. Patri, A. K., Majoros, I. J., and Baker, J. R. Dendritic polymer macromolecular carriers for drug delivery. Curr. Opin. Chem. Biol., 2002, 6, 466-471.
    190. Zou, J. H., Shi, W. F., Wang, J., and Jun, B. Encapsulation and controlled release of a hydrophobic drug using a novel nanoparticle-forming hyperbranched polyester. Macromol. Biosci., 2005, 5, 662-668.
    191. Johansson, M., Malmstom, E., Jansson, A., and Hult, A. Novel concept for low temperature curing powder coatings based on hyperbranched polyesters. J. Coat. Technol., 2000, 72, 49-54.
    192. Fogelstrom, L., Antoni, P., Malmstrom, E., and Hult, A. UV-curable hyperbranched nanocomposite coatings. Prog. Org. Coat., 2006, 55, 284-290.
    193. Voit, B., Beyerlein, D., Eichhorn, K. J., Grundke, K., Schmaljohann, D., and Loontjens, T.Functional hyper-branched polyesters for application in blends, coatings, and thin films. Chem. Eng. Technol., 2002, 25, 704-707.
    194. Schmaljohann, D., Voit, B. I., Jansen, J. F. G. A., Hendriks, P., and Loontjens, J. A. New coating systems based on vinyl ether- and oxetane-modified hyperbranched polyesters. Macromol. Mater. Eng., 2000, 275, 31-41.
    195. van Benthem, R. A. T. M. Novel hyperbranched resins for coating applications. Prog. Org. Coat., 2000, 40, 203-214.
    196. van Benthem, R. A. T. M., Hofland, A., Peerlings, H. W. I., and Meijer, E. W. Ideally selective diisocyanate building blocks new perspectives for dendrimers and coating binders. Prog. Org. Coat., 2003, 48, 164-176.
    197. Staring, E., Dias, A. A., and van Benthem, R. A. T. M. New challenges for R&D in coating resins. Prog. Org. Coat., 2002, 45, 101-117.
    198. Gudipati, C. S., Greenlief, C. M., Johnson, J. A., Prayongpan, P., and Wooley, K. L. Hyperbranched fluoropolymer and linear poly(ethylene glycol) based amphiphilic crosslinked networks as efficient antifouling coatings: An insight into the surface compositions, topographies, and morphologies. J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 6193-6208.
    199. Gudipati, C. S., Finlay, J. A., Callow, J. A., Callow, M. E., and Wooley, K. L. The antifouling and fouling-release perfomance of hyperbranched fluoropolymer (HBFP)-poly(ethylene glycol) (PEG) composite coatings evaluated by adsorption of biomacromolecules and the green fouling alga Ulva. Langmuir, 2005, 21, 3044-3053.
    200. Gan, D. J., Mueller, A., and Wooley, K. L. Amphiphilic and hydronhobic surface patterns generated from hyperbranched fluoropolymer/linear polymer networks: Minimally adhesive coatings via the crosslinking of hyperbranched fluoropolymers. J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 3531-3540.
    201. Zhu, S. W. and Shi, W. F. Hyperbranched polyurethane acrylate applied to UV curable flame retardant coatings. Chem. Res. Chin. Univ., 2001, 17, 331-333.
    202. Zhu, S. W. and Shi, W. F. Synthesis and photopolymerization of hyperbranched polyurethane acrylates applied to UV curable flame retardant coatings. Polym. Int., 2002, 51, 223-227.
    203. Zhu, S. W. and Shi, W. F. Flame retardant mechanism of hyperbranched polyurethane acrylates used for UV curable flame retardant coatings. Polym. Degrad. Stabil., 2002, 75, 543-547.
    204. Asif, A., Huang, C. Y., and Shi, W. F. Structure-Coproperty study of waterborne, polyurethane acrylate dispersions based on hyperbranched aliphatic polyester for UV-curable coatings. Colloid Polym. Sci., 2004, 283, 200-208.
    205. Xu, G. and Shi, W. F. Synthesis and characterization of hyperbranched polyurethane acrylates used as UV curable oligomers for coatings. Prog. Org. Coat., 2005, 52, 110-117.
    206. Edmunds, J. M. Ink or paint composition comprising a hyperbranched anionic polyesteramide and a combination with a substrate comprising a hyperbranched cationic polyesteramide. WO2004074389-A1, 2 September 2004.
    207. Caldararu, H. Structural aspects in self-assembled systems of polyoxyethylene surfactants, as studied by the spin probe technique. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 1998, 54, 2309-2336.
    208. Hong, Y., Cooper-White, J. J., Mackay, M. E., Hawker, C. J., Malmstrom, E., and Rehnberg, N. A novel processing aid for polymer extrusion: Rheology and processing of polyethyleneand hyperbranched polymer blends. J. Rheol., 1999, 43, 781-793.
    209. Hong, Y., Coombs, S. J., Cooper-White, J. J., Mackay, M. E., Hawker, C. J., Malmstrom, E., and Rehnberg, N. Film blowing of linear low-density polyethylene blended with a novel hyperbranched polymer processing aid. Polymer, 2000, 41, 7705-7713.
    210. Mulkern, T. J. and Tan, N. C. B. Processing and characterization of reactive polystyrene/hyperbranched polyester blends. Polymer, 2000, 41, 3193-3203.
    211. Schmaljohann, D., Potschke, P., Hassler, R., Voit, B. I., Froehling, P. E., Mostert, B., and Loontjens, J. A. Blends of amphiphilic, hyperbranched polyesters and different polyolefins. Macromolecules, 1999, 32, 6333-6339.
    212. Huber, T., Potschke, P., Pompe, G., Hassler, R., Voit, B., Grutke, S., and Gruber, F. Blends of hyperbranched poly(ether amide)s and polyamide-6. Macromol. Mater. Eng., 2000, 280, 33-40.
    213. Hsieh, T. T., Tiu, C., and Simon, G. P. Melt rheology of aliphatic hyperbranched polyesters with various molecular weights. Polymer, 2001, 42, 1931-1939.
    214. Hsieh, T. T., Tiu, C., and Simon, G. P. Rheological behaviour of polymer blends containing only hyperbranched polyesters of varying generation number. Polymer, 2001, 42, 7635-7638.
    215. Nunez, C. M., Chiou, B. S., Andrady, A. L., and Khan, S. A. Solution rheology of hyperbranched polyesters and their blends with linear polymers. Macromolecules, 2000, 33, 1720-1726.
    216. Kil, S. B., Augros, T., Leterrier, Y., Manson, J. A. E., Christel, A., and Borer, C. Rheological properties of hyperbranched polymer/poly(ethylene terephthalate) reactive blends. Polym. Eng. Sci., 2003, 43, 329-343.
    217. Burkinshaw, S. M., Froehling, P. E., and Mignanelli, M. The effect of hyperbranched polymers on the dyeing of polypropylene fibres. Dyes Pigment., 2002, 53, 229-235.
    218. Massa, D. J., Shriner, K. A., Turner, S. R., and Voit, B. I. Novel blends of hyperbranched polyesters and linear polymers. Macromolecules, 1995, 28, 3214-3220.
    219. Ratna, D. and Simon, G. P. Thermal and mechanical properties of a hydroxyl-functional dendritic hyperbranched polymer and trifunctional epoxy resin blends. Polym. Eng. Sci., 2001, 41, 1815-1822.
    220. Zhang, J. F. and Sun, X. Z. Mechanical properties and crystallization behavior of poly(lactic acid) blended with dendritic hyperbranched polymer. Polym. Int., 2004, 53, 716-722.
    221. Diao, J. Z., Zhang, J. M., Zhao, Q., and Yang, H. F. Mechanical properties and morphology of blends of hyperbranched polymer with polypropylene and poly(vinvl chloride). Iran. Polym. J., 2006, 15, 91-98.
    222. Ratna, D. and Simon, G. P. Thermomechanical properties and morphology of blends of a hydroxy-functionalized hyperbranched polymer and epoxy resin. Polymer, 2001, 42, 8833-8839.
    223. Cicala, G., Recca, A., and Restuccia, C. Influence of hydroxyl functionalized hyperbranched polymers on the thermomechanical and morphological properties of epoxy resins. Polym. Eng. Sci., 2005, 45, 225-237.
    224. Mezzenga, R. and Manson, J. A. E. Thermo-mechanical properties of hyperbranched polymer modified epoxies. J. Mater. Sci., 2001, 36, 4883-4891.
    225. Li, A. J., Chang, J. Y., Wang, K. Q., Lu, L. D., Yang, X. J., and Wang, X. Melt flow properties, mechanical properties, thermal properties and morphology ofpolycarbonate/highly branched polystyrene blends. Polym. Int., 2006, 55, 565-569.
    226. Mezzenga, R., Plummer, C. J. G., Boogh, L., and Manson, J. A. E. Morphology build-up in dendritic hyperbranched polymer modified epoxy resins: Modelling and characterization. Polymer, 2001, 42, 305-317.
    227. Pionteck, J., Potschke, P., Proske, N., Zhao, H. Y., Malz, H., Beyerlein, D., Schulze, U., and Voit, B. Morphology of reactive PP/PS blends with hyperbranched polymers. Macromol. Symp., 2003, 198, 209-220.
    228. Lehn, J. M. Supramolecular chemistry -scope and perspectives: Molecules -supermolecules -molecular devices. J. Incl. Phenom. Macrocycl. Chem. (Historical Archive), 1988, 6, 351-396.
    229. Lehn, J. M.著, 沈兴海等译, 超分子化学——概念与展望, 北京, 北京大学出版社. 2002, 1-7.
    230. Lehn, J. M. Perspectives in supramolecular chemistry - From molecular recognition towards molecular information processing and self-Organization. Angew. Chem., Int. Ed. Engl., 1990, 29, 1304-1319.
    231. Lehn, J. M. Perspectives in supramolecular chemistry: From molecular recognition towards self-organisation. Pure Appl. Chem., 1994, 66, 1961-1966.
    232. Zimmerman, S. C. Dendrimers in molecular recognition and self-assembly. Curr. Opin. Colloid Interface Sci., 1997, 2, 89-99.
    233. Zeng, F. W. and Zimmerman, S. C. Dendrimers in supramolecular chemistry: From molecular recognition to self-assembly. Chem. Rev., 1997, 97, 1681-1712.
    234. Lehn, J. M. Supramolecular chemistry: From molecular information towards self-organization and complex matter. Rep. Prog. Phys., 2004, 67, 249-265.
    235. Schalley, C. A. Molecular recognition and supramolecular chemistry in the gas phase. Mass Spectrom. Rev., 2001, 20, 253-309.
    236. 童林荟, 申宝剑. 超分子化学研究中的物理方法, 北京, 科学出版社, 2004.
    237. Maciejewski, M. Concepts of trapping topologically by shell molecules. J. Macromol. Sci. Chem., 1982, A17, 689-703.
    238. Dubin, P. L., Edwards, S. L., Kaplan, J. I., Mehta, M. S., Tomalia, D. A., and Xia, J. L. Carboxylated starburst dendrimers as calibration standards for aqueous size exclusion chromatography. Anal. Chem., 1992, 64, 2344-2347.
    239. Baars, M. W. P. L. and Meijer, E. W. Dendrimers II (Host-guest chemistry of dendritic molecules). Top. Curr. Chem., 2000, 210, 131-182.
    240. Naylor, A. M., Goddard III, W. A., Kiefer, G. E., and Tomalia, D. A. Starburst dendrimers. 5. Molecular shape control. J. Am. Chem. Soc., 1989, 111, 2339-2341.
    241. Newkome, G. R., Moorefield, C. N., Baker, G. R., Saunders, M. J., and Grossman, S. H. Unimolecular micelles. Angew. Chem., Int. Ed. Engl., 1991, 30, 1178-1180.
    242. Seebach, D., Lapierre, J. M., kobridis, K., and eiveldinger, G. Chiral Dendrimers from tris(hydroxymethyl)methane derivatives. Angew. Chem., Int. Ed. Engl., 1994, 33, 440-442.
    243. Jansen, J. F. G. A., de Brabander-van den Berg, E. M. M., and Meijer, E. W. Encapsulation of guest molecules into a dendritic box. Science, 1994, 266, 1226-1229.
    244. Jansen, J. F. G. A., Peerlings, H. W. I., de Brabander-van den Berg, E. M. M., and Meijer, E. W. Optical activity of chiral dendritic surfaces. Angew. Chem., Int. Ed. Engl., 1995, 34, 1206-1209.
    245. Jansen, J. F. G. A., Janssen, R. A. J., de Brabander-van den Berg, E. M. M., and Meijer, E. W. Triplet radical pairs of 3-carboxyproxyl encapsulated in a dendritic box. Adv. Mater., 1995, 7, 561-563.
    246. Jansen, J. F. G. A., Meijer, E. W., and de Brabander-van den Berg, E. M. M. The dendritic box: Shape-selective liberation of encapsulated guests. J. Am. Chem. Soc., 1995, 117, 4417-4418.
    247. Stevelmans, S., van Hest, J. C. M., Jansen, J. F. G. A., van Boxtel, D. A. F. J., de Brabander-van den Berg, E. M. M., and Meijer, E. W. Synthesis, characterization, and guest-host properties of inverted unimolecular dendritic micelles. J. Am. Chem. Soc., 1996, 118, 7398-7399.
    248. Baars, M. W. P. L., Froehling, P. E., and Meijer, E. W. Liquid-liquid extractions using poly(propylene imine) dendrimers with an apolar periphery. Chem. Commun., 1997, 1959-1960.
    249. Cooper, A. I., Londono, J. D., Wignall, G., McClain, J. B., Samulski, E. T., Lin, J. S., Dobrynin, A., Rubinstein, M., Burke, A. L. C., Frechet, J. M. J., and DeSimone, J. M. Extraction of a hydrophilic compound from water into liquid CO2 using dendritic surfactants. Nature, 1997, 389, 368-371.
    250. Numata, M., Ikeda, A., Fukuhara, C., and Shinkai, S. Dendrimers can act as a host for [60]fullerene. Tetrahedron Lett., 1999, 40, 6945-6948.
    251. Balzani, V., Ceroni, P., Gestermann, S., Gorka, M., Kauffmann, C., and Vogtle, F. Fluorescent guests hosted in fluorescent dendrimers. Tetrahedron, 2002, 58, 629-637.
    252. Watkins, D. M., SayedSweet, Y., Klimash, J. W., Turro, N. J., and Tomalia, D. A. Dendrimers with hydrophobic cores and the formation of supramolecular dendrimer-surfactant assemblies. Langmuir, 1997, 13, 3136-3141.
    253. Chechik, V., Zhao, M. Q., and Crooks, R. M. Self-assembled inverted micelles prepared from a dendrimer template: Phase transfer of encapsulated guests. J. Am. Chem. Soc., 1999, 121, 4910-4911.
    254. Holley, A. K., Chai, M. H., and Morgan, R. J. Encapsulation of fluorescein dye within a PPI-3/adipic acid self-assembly. Polym. Prepr. (Am. Chem. Soc., Div. Polym. Chem.), 2003, 44, 283-284.
    255. SayedSweet, Y., Hedstrand, D. M., Spinder, R., and Tomalia, D. A. Hydrophobically modified poly(amido amine) (PAMAM) dendrimers: Their properties at the air-water interface and use as nanoscopic container molecules. J. Mater. Chem., 1997, 7, 1199-1205.
    256. Zhao, M. Q. and Crooks, R. M. Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis. Adv. Mater., 1999, 11, 217-220.
    257. Zhao, M. Q. and Crooks, R. M. Intradendrimer exchange of metal nanoparticles. Chem. Mat., 1999, 11, 3379-3385.
    258. Zhao, M. Q. and Crooks, R. M. Homogeneous hydrogenation catalysis with monodisperse, dendrimer-encapsulated Pd and Pt nanoparticles. Angew. Chem., Int. Ed., 1999, 38, 364-366.
    259. Zhao, M. Q., Sun, L., and Crooks, R. M. Preparation of Cu nanoclusters within dendrimer templates. J. Am. Chem. Soc., 1998, 120, 4877-4878.
    260. Crooks, R. M., Zhao, M. Q., Sun, L., Chechik, V., and Yeung, L. K. Dendrimer-encapsulated metal nanoparticles: Synthesis, characterization, and applications to catalysis. Accounts Chem. Res., 2001, 34, 181-190.
    261. Niu, Y. H., Yeung, L. K., and Crooks, R. M. Size-selective hydrogenation of olefins by dendrimer-encapsulated palladium nanoparticles. J. Am. Chem. Soc., 2001, 123, 6840-6846.
    262. Balogh, L. and Tomalia, D. A. Poly(amido amine) dendrimer-templated nanocomposites. 1. Synthesis of zerovalent copper nanoclusters. J. Am. Chem. Soc., 1998, 120, 7355-7356.
    263. Balogh, L., Swanson, D. R., Tomalia, D. A., Hagnauer, G. L., and McManus, A. T. Dendrimer-silver complexes and nanocomposites as antimicrobial agents. Nano Lett., 2001, 1, 18-21.
    264. Esumi, K, Suzuki, A, Aihara, N, Usui, K, and Torigoe, K. Preparation of gold colloids with UV irradiation using dendrimers as stabilizer. Langmuir, 1998, 14, 3157-3159.
    265. Ooe, M., Murata, M., Mizugaki, T., Ebitani, K., and Kaneda, K. Dendritic nanoreactors encapsulating Pd particles for substrate-specific hydrogenation of olefins. Nano Lett., 2002, 2, 999-1002.
    266. Yeung, L. K. and Crooks, R. M. Heck heterocoupling within a dendritic nanoreactor. Nano Lett., 2001, 1, 14-17.
    267. Miklis, P., Cagin, T., and Goddard, W. A. Dynamics of bengal rose encapsulated in the meijer dendrimer box. J. Am. Chem. Soc., 1997, 119, 7458-7462.
    268. Teobaldi, G. and Zerbetto, F. Molecular dynamics of a dendrimer-dye guest-host system. J. Am. Chem. Soc., 2003, 125, 7388-7393.
    269. Teobaldi, G. and Zerbetto, F. Simulation of some dynamical aspects of the photophysics of dye molecules encapsulated in a dendrimer. J. Lumines., 2005, 111, 335-342.
    270. Kramer, M., Stumbe, J. F., Turk, H., Krause, S., Komp, A., Delineau, L., Prokhorova, S., Kautz, H., and Haag, R. pH-responsive molecular nanocarriers based on dendritic core-shell architectures. Angew. Chem., Int. Ed., 2002, 41, 4252-4256.
    271. Garcia-Bernabe, A., Kramer, M., Olah, B., and Haag, R. Syntheses and phase-transfer properties of dendritic nanocarriers that contain perfluorinated shell structures. Chem.-Eur. J., 2004, 10, 2822-2830.
    272. Stiriba, S. E., Kautz, H., and Frey, H. Hyperbranched molecular nanocapsules: Comparison of the hyperbranched architecture with the perfect linear analogue. J. Am. Chem. Soc., 2002, 124, 9698-9699.
    273. Chen, Y., Shen, Z., Pastor-Perez, L., Frey, H., and Stiriba, S. E. Role of topology and amphiphilicity for guest encapsulation in functionalized hyperbranched poly(ethylenimine)s. Macromolecules, 2005, 38, 227-229.
    274. Kumar, K. R. and Brooks, D. E. Comparison of hyperbranched and linear polyglycidol unimolecular reverse micelles as nanoreactors and nanocapsules. Macromol. Rapid Commun., 2005, 26, 155-159.
    275. Liu, H. B., Jiang, A., Guo, J., and Uhrich, K. E. Unimolecular micelles: Synthesis and characterization of amphiphilic polymer systems. J. Polym. Sci., Part A: Polym. Chem., 1999, 37, 703-711.
    276. Liu, H. B., Farrell, S., and Uhrich, K. Drug release characteristics of unimolecular polymeric micelles. J. Control. Release, 2000, 68, 167-174.
    277. Mecking, S., Thomann, R., Frey, H., and Sunder, A. Preparation of catalytically active palladium nanoclusters in compartments of amphiphilic hyperbranched polyglycerols. Macromolecules, 2000, 33, 3958-3960.
    278. Slagt, M. Q., Stiriba, S. E., Gebbink, R. J. M. K., Kautz, H., Frey, H., and van Koten, G.Encapsulation of hydrophilic pincer-platinum(II) complexes in amphiphilic hyperbranched polyglycerol nanocapsules. Macromolecules, 2002, 35, 5734-5737.
    279. Chen, Y., Shen, Z., Frey, H., Perez-Prieto, J., and Stiriba, S. E. Synergistic assembly of hyperbranched polyethylenimine and fatty acids leading to unusual supramolecular nanocapsules. Chem. Commun., 2005, 755-757.
    280. Kleinman, M. H., Flory, J. H., Tomalia, D. A., and Turro, N. J. Effect of protonation and PAMAM dendrimer size on the complexation and dynamic mobility of 2-naphthol. J. Phys. Chem. B, 2000, 104, 11472-11479.
    281. Chen, W., Tomalia, D. A., and Thomas, J. L. Unusual pH-dependent polarity changes in PAMAM dendrimers: Evidence for pH-responsive conformational changes. Macromolecules, 2000, 33, 9169-9172.
    282. Jansen, J. F. G. A., Meijer, E. W., and de Brabander-van den Berg, E. M. M. 含封入其中的活性物质的树枝状聚合物及活性物质的释出. CN1117875A, 6 May 1996.
    283. Goetheer, E. L. V., Baars, M. W. P. L., van den Broeke, L. J. P., Meijer, E. W., and Keurentjes, J. T. F. Functionalized poly(propylene imine) dendrimers as novel phase transfer catalysts in supercritical carbon dioxide. Ind. Eng. Chem. Res., 2000, 39, 4634-4640.
    284. Weener, J. W., Baars, M. W. P. L., and Meijer, E. W. Some Unique Features of Dendrimers Based upon Self-Assembly and Host-Guest Properties. Dendrimers and other Dendritic Polymers (chapter 16), John Wiley & Sons Ltd, 2001, 387-423.
    285. Pittelkow, M., Christensen, J. B., and Meijer, E. W. Guest-host chemistry with dendrimers: Stable polymer assemblies by rational design. J. Polym. Sci., Part A: Polym. Chem., 2004, 42, 3792-3799.
    286. Niu, Y. H. and Crooks, R. M. Dendrimer-encapsulated metal nanoparticles and their applications to catalysis. C. R. Chim., 2003, 6, 1049-1059.
    287. Garcia-Martinez, J. C., Lezutekong, R., and Crooks, R. M. Dendrimer-encapsulated Pd nanoparticles as aqueous, room-temperature catalysts for the stille reaction. J. Am. Chem. Soc., 2005, 127, 5097-5103.
    288. Pistolis, G., Malliaris, A., Tsiourvas, D., and Paleos, C. M. Poly(propyleneimine) dendrimers as pH-sensitive controlled-release systems. Chem.-Eur. J., 1999, 5, 1440-1444.
    289. Sideratou, Z., Tsiourvas, D., and Paleos, C. M. Quaternized poly(propylene imine) dendrimers as novel pH-sensitive controlled-release systems. Langmuir, 2000, 16, 1766-1769.
    290. Smith, D. K. Supramolecular dendritic solubilisation of a hydrophilic dye and tuning of its optical properties. Chem. Commun., 1999, 1685-1686.
    291. Dykes, G. M., Brierley, L. J., Smith, D. K., McGrail, P. T., and Seeley, G. J. Supramolecular solubilisation of hydrophilic dyes by using individual dendritic branches. Chem.-Eur. J., 2001, 7, 4730-4739.
    292. Stephan, H., Spies, H., Johannsen, B., Klein, L., and Vogtle, F. Lipophilic urea-functionalized dendrimers as efficient carriers for oxyanions. Chem. Commun., 1999, 1875-1876.
    293. Balzani, V., Ceroni, P., Gestermann, S., Gorka, M., Kauffmann, C., Maestri, M., and Vogtle, F. Eosin molecules hosted into a dendrimer which carries thirty-two dansyl units in the periphery: A photophysical study. ChemPhysChem, 2000, 1, 224-227.
    294. Haag, R. Supramolecular drug-delivery systems based on polymeric core-shell architectures.Angew. Chem., Int. Ed., 2004, 43, 278-282.
    295. Liu, H. J., Zhong, S., Striba, S. E., Chen, Y., Zhang, W. Q., and Wei, L. H. Core-shell-type multiarm star polyethylenirnine-block-poly(epsilon-caprolactone): Synthesis and guest encapsulation potential. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 4165-4173.
    296. Zou, J. H., Zhao, Y. B., and Shi, W. F. Encapsulation mechanism of molecular nanocarriers based on unimolecular micelle forming dendritic core-shell structural polymers. J. Phys. Chem. B, 2006, 110, 2638-2642.
    297. Tang, L. M., Fang, Y., and Tang, X. L. Influence of alkyl chains of amphiphilic hyperbranched poly(ester amine)s on the phase-transfer performances for acid dye and the aggregation behaviors at the interface. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 2921-2930.
    298. Fang, Y., Tang, L. M., Qiu, T., and Qi, D. C. Amphiphilic hyperbranched poly (ester-amine) used as phase transferring agent for dye. Acta Polym. Sin., 2004, 309-312.
    299. Baars, M. W. P. L., Kleppinger, R., Koch, M. H. J., Yeu, S. L., and Meijer, E. W. The localization of guests in water-soluble oligoethyleneoxy-modified poly(propylene imine) dendrimers. Angew. Chem., Int. Ed., 2000, 39, 1285-1288.
    300. Kojima, C., Kono, K., Maruyama, K., and Takagishi, T. Synthesis of polyamido amine dendrimers having poly(ethylene glycol) grafts and their ability to encapsulate anticancer drugs. Bioconjugate Chem., 2000, 11, 910-917.
    301. Esfand, R. and Tomalia, D. A. Poly(amido amine) (PAMAM) dendrimers: From biomimicry to drug delivery and biomedical applications. Drug Discov. Today, 2001, 6, 427-436.
    302. Twyman, L. J., Beezer, A. E., Esfand, R., Hardy, M. J., and Mitchell, J. C. The synthesis of water soluble dendrimers, and their application as possible drug delivery systems. Tetrahedron Lett., 1999, 40, 1743-1746.
    303. Santo, M. and Fox, M. A. Hydrogen bonding interactions between starburst dendrimers and several molecules of biological interest. J. Phys. Org. Chem., 1999, 12, 293-307.
    304. Beezer, A. E., King, A. S. H., Martin, I. K., Mitchel, J. C., Twyman, L. J., and Wain, C. F. Dendrimers as potential drug carriers; encapsulation of acidic hydrophobes within water soluble PAMAM derivatives. Tetrahedron, 2003, 59, 3873-3880.
    305. Santra, S. and Kumar, A. Facile synthesis of aliphatic hyperbranched polyesters based on diethyl malonate and their irreversible molecular encapsulation. Chem. Commun., 2004, 2126-2127.
    306. Morgan, M. T., Carnahan, M. A., Immoos, C. E., Ribeiro, A. A., Finkelstein, S., Lee, S. J., and Grinstaff, M. W. Dendritic molecular capsules for hydrophobic compounds. J. Am. Chem. Soc., 2003, 125, 15485-15489.
    307. Frauchiger, L., Shirota, H., Uhrich, K. E., and Castner, E. W. Dynamic fluorescence probing of the local environments within amphiphilic starlike macromolecules. J. Phys. Chem. B, 2002, 106, 7463-7468.
    308. Marquez, F. and Sabater, M. J. Emission frequency modulation by electronic confinement effect: Congo red incorporated within a dendritic structure. J. Phys. Chem. B, 2005, 109, 16593-16597.
    309. Ghosh, Swapan Kumar, Kawaguchi, Seigou, Jinbo, Yuji, Izumi, Yoshinobu, Yamaguchi, Keizo, Taniguchi, Tatsuo, Nagai, Katsutoshi, and Koyama, Kiyohito. Nanoscale solution structure and transfer capacity of amphiphilic poly(amido amine) dendrimers having waterand polar guest molecules inside. Macromolecules, 2003, 36, 9162-9169.
    310. Jungmann, N., Schmidt, M., Ebenhoch, J., Weis, J., and Maskos, M. Dye loading of amphiphilic poly(organosiloxane) nanoparticles. Angew. Chem., Int. Ed., 2003, 42, 1714-1717.
    311. Schenning, A. P. H. J., Peeters, E., and Meijer, E. W. Energy transfer in supramolecular assemblies of oligo(p-phenylene vinylene)s terminated poly(propylene imine) dendrimers. J. Am. Chem. Soc., 2000, 122, 4489-4495.
    312. Bourrier, O., Butlin, J., Hourani, R., and Kakkar, A. K. Aggregation of 3,5-dihydroxybenzyl alcohol based dendrimers and hyperbranched polymers, and encapsulation of DR1 in such dendritic aggregates. Inorg. Chim. Acta, 2004, 357, 3836-3846.
    313. Bhattacharjee, R. R., Chakraborty, M., and Mandal, T. K. Synthesis of dendrimer-stabilized gold-polypyrrole core-shell nanoparticles. J. Nanosci. Nanotechnol., 2003, 3, 487-491.
    314. Chechik, V. and Crooks, R. M. Dendrimer-encapsulated Pd nanoparticles as fluorous phase-soluble catalysts. J. Am. Chem. Soc., 2000, 122, 1243-1244.
    315. Chung, Y. M. and Rhee, H. K. Dendrimer-templated Ag-Pd bimetallic nanoparticles. J. Colloid Interface Sci., 2004, 271, 131-135.
    316. Lang, H. F., May, R. A., Iversen, B. L., and Chandler, B. D. Dendrimer-encapsulated nanoparticle precursors to supported platinum catalysts. J. Am. Chem. Soc., 2003, 125, 14832-14836.
    317. Li, Y. and El-Sayed, M. A. The effect of stabilizers on the catalytic activity and stability of Pd colloidal nanoparticles in the Suzuki reactions in aqueous solution. J. Phys. Chem. B, 2001, 105, 8938-8943.
    318. Rahim, E. H., Kamounah, F. S., Frederiksen, J., and Christensen, J. B. Heck reactions catalyzed by PAMAM-dendrimer encapsulated Pd(0) nanoparticles. Nano Lett., 2001, 1, 499-501.
    319. Froehling, P. E., de Brabander-van den Berg, E. M. M., and Mostert, H. A. M. Process for incorporating an active substance in a moulded plastic part. WO9812376, 26 March 1998.
    320. Froehling, P. E. Dendrimers and dyes - A review. Dyes Pigment., 2001, 48, 187-195.
    321. Brinker, C. J., Lu, Y. F., Sellinger, A., and Fan, H. Y. Evaporation-induced self-assembly: Nanostructures made easy. Adv. Mater., 1999, 11, 579-585.
    322. Whitesides, G. M. and Grzybowski, B. Self-assembly at all scales. Science, 2002, 295, 2418-2421.
    323. Lehn, J. M. Toward self-organization and complex matter. Science, 2002, 295, 2400-2403.
    324. Percec, V., Glodde, M., Bera, T. K., Miura, Y., Shiyanovskaya, I., Singer, K. D., Balagurusamy, V. S. K., Heiney, P. A., Schnell, I., Rapp, A., Spiess, H. W., Hudson, S. D., and Duan, H. Self-organization of supramolecular helical dendrimers into complex electronic materials. Nature, 2002, 419, 384-387.
    325. Zhang, S. G. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotechnol., 2003, 21, 1171-1178.
    326. Drain, C. M. Supramolecular chemistry and self-assembly special feature: Self-organization of self-assembled photonic materials into functional devices: photo-switched conductors. Proc. Natl. Acad. Sci. U. S. A., 2002, 99, 5178-5182.
    327. Kong, X. X. and Jenekhe, S. A. Block copolymers containing conjugated polymer and polypeptide sequences: Synthesis and self-assembly of electroactive and photoactivenanostructures. Macromolecules, 2004, 37, 8180-8183.
    328. Bullock, S. E. and Kofinas, P. Nanoscale battery materials based on the self-assembly of block copolymers. J. Power Sources, 2004, 132, 256-260.
    329. Boker, A., Lin, Y., Chiapperini, K., Horowitz, R., Thompson, M., Carreon, V., Xu, T., Abetz, C., Skaff, H., Dinsmore, A. D., Emrick, T., and Russell, T. P. Hierarchical nanoparticle assemblies formed by decorating breath figures. Nat. Mater., 2004, 3, 302-306.
    330. de Boer, B., Stalmach, U., Nijland, H., and Hadziioannou, G. Microporous honeycomb-structured films of semiconducting block copolymers and their use as patterned templates. Adv. Mater., 2000, 12, 1581-1583.
    331. Antonietti, M. and Forster, S. Vesicles and liposomes: A self-assembly principle beyond lipids. Adv. Mater., 2003, 15, 1323-1333.
    332. Zhang, L. F. and Eisenberg, A. Multiple morphologies of \"crew-cut\" aggregates of polystyrene-b-poly(acrylic acid) block copolymers. Science, 1995, 268, 1728-1731.
    333. Zhang, L. F. and Eisenberg, A. Morphogenic effect of added ions on crew-cut aggregates of polystyrene-b-poly(acrylic acid) block copolymers in solutions. Macromolecules, 1996, 29, 8805-8815.
    334. Shen, H. W., Zhang, L. F., and Eisenberg, A. Thermodynamics of crew-cut micelle formation of polystyrene-b-poly(acrylic acid) diblock copolymers in DMF/H2O mixtures. J. Phys. Chem. B, 1997, 101, 4697-4708.
    335. Yu, Y. S., Zhang, L. F., and Eisenberg, A. Multiple morphologies of crew cut aggregates of polybutadiene-b-poly(acrylic acid) diblocks with low T-g cores. Langmuir, 1997, 13, 2578-2581.
    336. Zhang, L. F., Shen, H. W., and Eisenberg, A. Phase separation behavior and crew-cut micelle formation of polystyrene-b-poly(acrylic acid) copolymers in solutions. Macromolecules, 1997, 30, 1001-1011.
    337. Zhang, L. F. and Eisenberg, A. Structures of ''crew-cut'' aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers. Macromol. Symp., 1997, 113, 221-232.
    338. Bronich, T. K., Cherry, T., Vinogradov, S. V., Eisenberg, A., Kabanov, V. A., and Kabanov, A. V. Self-assembly in mixtures of poly(ethylene oxide)-graft-poly(ethyleneimine) and alkyl sulfates. Langmuir, 1998, 14, 6101-6106.
    339. Yu, G. E. and Eisenberg, A. Multiple morphologies formed from an amphiphilic ABC triblock copolymer in solution. Macromolecules, 1998, 31, 5546-5549.
    340. Yu, Y. S., Zhang, L. F., and Eisenberg, A. Morphogenic effect of solvent on crew-cut aggregates of apmphiphilic diblock copolymers. Macromolecules, 1998, 31, 1144-1154.
    341. Li, S., Clarke, C. J., Eisenberg, A., and Lennox, R. B. Langmuir films of polystyrene-b-poly(alkyl acrylate) diblock copolymers. Thin Solid Films, 1999, 354, 136-141.
    342. Burke, S., Shen, H. W., and Eisenberg, A. Multiple vesicular morphologies from block copolymers in solution. Macromol. Symp., 2001, 175, 273-283.
    343. Discher, D. E. and Eisenberg, A. Polymer vesicles. Science, 2002, 297, 967-973.
    344. Soo, P. L. and Eisenberg, A. Preparation of block copolymer vesicles in solution. J. Polym. Sci., Part B: Polym. Phys., 2004, 42, 923-938.
    345. Liu, X. Y., Wu, J., Kim, J. S., and Eisenberg, A. Self-assembly of mixtures of block copolymers of polystyrene-b-acrylic acid) with random copolymers of polystyrene-co-methacrylic acid). Langmuir, 2006, 22, 419-424.
    346. Percec, V., Ahn, C. H., and Barboiu, B. Self-encapsulation, acceleration and control in the radical polymerization of monodendritic monomers via self-assembly. J. Am. Chem. Soc., 1997, 119, 12978-12979.
    347. Percec, V., Ahn, C. H., Ungar, G., Yeardley, D. J. P., Moller, M., and Sheiko, S. S. Controlling polymer shape through the self-assembly of dendritic side-groups. Nature, 1998, 391, 161-164.
    348. Percec, V., Cho, W. D., Ungar, G., and Yeardley, D. J. P. Synthesis and NaOTf mediated self-assembly of monodendritic crown ethers. Chem.-Eur. J., 2002, 8, 2011-2025.
    349. Percec, V., Bera, T. K., Glodde, M., Fu, Q. Y., Balagurusamy, V. S. K., and Heiney, P. A. Hierarchical self-assembly, coassembly, and self- organization of novel liquid crystalline lattices and superlattices from a twin-tapered dendritic benzamide and its four-cylinder-bundle supramolecular polymer. Chem.-Eur. J., 2003, 9, 921-935.
    350. Percec, V., Dulcey, A. E., Balagurusamy, V. S. K., Miura, Y., Smidrkal, J., Peterca, M., Hummelin, S., Edlund, U., Hudson, S. D., Heiney, P. A., Duan, H., Magonev, S. N., and Vinogradov, S. A. Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature, 2004, 430, 764-768.
    351. Percec, V., Imam, M. R., Bera, T. K., Balagurusamy, V. S. K., Peterca, M., and Heiney, P. A. Self-assembly of semifluorinated janus-dendritic benzamides into bilayered pyramidal columns. Angew. Chem., Int. Ed., 2005, 44, 4739-4745.
    352. Percec, V., Dulcey, A. E., Peterca, M., Ilies, M., Nummelin, S., Sienkowska, M. J., and Heiney, P. A. Principles of self-assembly of helical pores from dendritic dipeptides. Proc. Natl. Acad. Sci. U. S. A., 2006, 103, 2518-2523.
    353. Jeppesen, J. O., Perkins, J., Becher, J., and Stoddart, J. F. Self-assembly of an amphiphilic [2]rotaxane incorporating a tetrathiafulvalene unit. Org. Lett., 2000, 2, 3547-3550.
    354. Elizarov, A. M., Chang, T., Chiu, S. H., and Stoddart, J. F. Self-assembly of dendrimers by slippage. Org. Lett., 2002, 4, 3565-3568.
    355. Jang, S. S., Jang, Y. H., Kim, Y. H., Goddard, W. A., Choi, J. W., Heath, J. R., Laursen, B. W., Flood, A. H., Stoddart, J. F., Norgaard, K., and Bjornholm, T. Molecular dynamics simulation of amphiphilic bistable [2]rotaxane Langmuir monolayers at the air/water interface. J. Am. Chem. Soc., 2005, 127, 14804-14816.
    356. Mendes, P. M., Flood, A. H., and Stoddart, J. F. Nanoelectronic devices from self-organized molecular switches. Appl. Phys. A-Mater. Sci. Process., 2005, 80, 1197-1209.
    357. Suarez, M., Lehn, J. M., Zimmerman, S. C., Skoulios, A., and Heinrich, B. Supramolecular liquid crystals. self-assembly of a trimeric supramolecular disk and its self-organization into a columnar discotic mesophase. J. Am. Chem. Soc., 1998, 120, 9526-9532.
    358. Cao, D. H., Chen, K. C., Fan, J., Manna, J., Olenyuk, B., Whiteford, J. A., and Stang, P. J. Supramolecular chemistry and molecular design:Self-assembly of molecular squares. Pure Appl. Chem., 1997, 69, 1979-1986.
    359. Cho, Y. L., Rudkevich, D. M., Shivanyuk, A., Rissanen, K., and Rebek, J. Hydrogen-bonding effects in calix[4]arene capsules. Chem.-Eur. J., 2000, 6, 3788-3796.
    360. Korner, S. K., Tucci, F. C., Rudkevich, D. M., Heinz, T., and Rebek, J. A self-assembled cylindrical capsule: New supramolecular phenomena through encapsulation. Chem.-Eur. J., 2000, 6, 187-195.
    361. Casson, J. L., Wang, H. L., Roberts, J. B., Parikh, A. N., Robinson, J. M., and Johal, M. S.Kinetics and interpenetration of ionically self-assembled dendrimer and PAZO multilayers. J. Phys. Chem. B, 2002, 106, 1697-1702.
    362. Maruyama, N., Koito, T., Nishida, J., Sawadaishi, T., Cieren, X., Ijiro, K., Karthaus, O., and Shimomura, M. Mesoscopic patterns of molecular aggregates on solid substrates. Thin Solid Films, 1998, 329, 854-856.
    363. Nishikawa, T., Nishida, J., Ookura, R., Nishimura, S. I., Wada, S., Karino, T., and Shimomura, M. Honeycomb-patterned thin films of amphiphilic polymers as cell culture substrates. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 1999, 8-9, 495-500.
    364. Nishikawa, T., Nishida, J., Ookura, R., Nishimura, S. I., Wada, S., Karino, T., and Shimomura, M. Mesoscopic patterning of cell adhesive substrates as novel biofunctional interfaces. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 1999, 10, 141-146.
    365. Karthaus, O., Maruyama, N., Cieren, X., Shimomura, M., Hasegawa, H., and Hashimoto, T. Water-assisted formation of micrometer-size honeycomb patterns of polymers. Langmuir, 2000, 16, 6071-6076.
    366. Nishikawa, T., Nishida, J., Ookura, R., Nishimura, S. I., Scheumann, V., Zizlsperger, M., Lawall, R., Knoll, W., and Shimomura, M. Web-structured films of an amphiphilic polymer from water in oil emulsion: Fabrication and characterization. Langmuir, 2000, 16, 1337-1342.
    367. Nishikawa, T., Ookura, R., Nishida, J., Arai, K., Hayashi, J., Kurono, N., Sawadaishi, T., Hara, M., and Shimomura, M. Fabrication of honeycomb film of an amphiphilic copolymer at the air-water interface. Langmuir, 2002, 18, 5734-5740.
    368. Yabu, H., Tanaka, M., Ijiro, K., and Shimomura, M. Preparation of honeycomb-patterned polyimide films by self-organization. Langmuir, 2003, 19, 6297-6300.
    369. Matsushita, S. I., Kurono, N., Sawadaishi, T., and Shimomura, M. Hierarchical honeycomb structures utilized a dissipative process. Synth. Met., 2004, 147, 237-240.
    370. Tanaka, M., Takebayashi, M., Miyama, M., Nishida, J., and Shimomura, M. Design of novel biointerfaces (II). Fabrication of self-organized porous polymer film with highly uniform pores. Bio-Med. Mater. Eng., 2004, 14, 439-446.
    371. Yabu, H., Takebayashi, M., Tanaka, M., and Shimomura, M. Superhydrophobic and lipophobic properties of self-organized honeycomb and pincushion structures. Langmuir, 2005, 21, 3235-3237.
    372. Yabu, H. and Shimomura, M. Simple fabrication of micro lens arrays. Langmuir, 2005, 21, 1709-1711.
    373. Nemoto, J., Uraki, Y., Kishimoto, T., Sano, Y., Funada, R., Obata, N., Yabu, H., Tanaka, M., and Shimomura, M. Production of mesoscopically patterned cellulose film. Bioresour. Technol., 2005, 96, 1955-1958.
    374. Widawski, G., Rawiso, M., and Francois, B. Self-organized honeycomb morphology of star-polymer polystyrene films. Nature, 1994, 369, 387-389.
    375. Francois, B., Pitois, O., and Francois, J. Polymer films with a self-organized honeycomb morphology. Adv. Mater., 1995, 7, 1041-1044.
    376. Leclere, P., Parente, V., Bredas, J. L., Francois, B., and Lazzaroni, R. Organized semiconducting nanostructures from conjugated block copolymer self-assembly. Chem. Mat., 1998, 10, 4010-4014.
    377. Francois, B., Ederle, Y., and Mathis, C. Honeycomb membranes made from C-60(PS)(6). Synth. Met., 1999, 103, 2362-2363.
    378. Pitois, O. and Francois, B. Formation of ordered micro-porous membranes. Eur. Phys. J. B, 1999, 8, 225-231.
    379. Jenekhe, S. A. and Chen, X. L. Self-assembled aggregates of rod-coil block copolymers and their solubilization and encapsulation of fullerenes. Science, 1998, 279, 1903-1907.
    380. Jenekhe, S. A. and Chen, X. L. Self-assembly of ordered microporous materials from rod-coil block copolymers. Science, 1999, 283, 372-375.
    381. Chen, X. L. and Jenekhe, S. A. Supramolecular self-assembly of three-dimensional nanostructures and microstructures: Microcapsules from electroactive and photoactive rod-coil-rod triblock copolymers. Macromolecules, 2000, 33, 4610-4612.
    382. Govor, L. V., Bashmakov, I. A., Kaputski, F. N., Pientka, M., and Parisi, J. Self-organized formation of low-dimensional network structures starting from a nitrocellulose solution. Macromol. Chem. Phys., 2000, 201, 2721-2728.
    383. Govor, L. V., Bashmakov, I. A., Kiebooms, R., Dyakonov, V., and Parisi, J. Self-organized networks based on conjugated polymers. Adv. Mater., 2001, 13, 588-591.
    384. Bashmakov, I. A., Govor, L. V., Solovieva, L. V., and Parisi, J. Preparation of self-assembled carbon network structures with magnetic nanoparticles. Macromol. Chem. Phys., 2002, 203, 544-549.
    385. Srinivasarao, M., Collings, D., Philips, A., and Patel, S. Three-dimensionally ordered array of air bubbles in a polymer film. Science, 2001, 292, 79-83.
    386. Song, L., Bly, R. K., Wilson, J. N., Bakbak, S., Park, J. O., Srinivasarao, M., and Bunz, U. H. F. Facile microstructuring of organic semiconducting polymers by the breath figure method: Hexagonally ordered bubble arrays in rigid-rod polymers. Adv. Mater., 2004, 16, 115-118.
    387. Stenzel, M. H. Formation of regular honeycomb-patterned porous film by self-organization. Aust. J. Chem., 2002, 55, 239-243.
    388. Barner-Kowollik, C., Dalton, H., Davis, T. P., and Stenzel, M. H. Nano- and micro-engineering of ordered porous blue-light-emitting films by templating well-defined organic polymers around condensing water droplets. Angew. Chem., Int. Ed., 2003, 42, 3664-3668.
    389. Jesberger, M., Barner, L., Stenzel, M. H., Malmstrom, E., Davis, T. P., and Barner-Kowollik, C. Hyperbranched polymers as scaffolds for multifunctional reversible addition-fragmentation chain-transfer agents: A route to polystyrene-core-polyesters and polystyrene-block-poly(butyl acrylate)-core-polyesters. J. Polym. Sci., Part A: Polym. Chem., 2003, 41, 3847-3861.
    390. Lord, H. T., Quinn, J. F., Angus, S. D., Whittaker, M. R., Stenzel, M. H., and Davis, T. P. Microgel stars via reversible addition fragmentation chain transfer (raft) polymerisation - A facile route to macroporous membranes, honeycomb patterned thin films and inverse opal substrates. J. Mater. Chem., 2003, 13, 2819-2824.
    391. Stenzel, M. H., Davis, T. P., and Fane, A. G. Honeycomb structured porous films prepared from carbohydrate based polymers synthesized via the RAFT process. J. Mater. Chem., 2003, 13, 2090-2097.
    392. Hernandez-Guerrero, M., Davis, T. P., Barner-Kowollik, C., and Stenzel, M. H. Polystyrene comb polymers built on cellulose or poly(styrene-co-2-hydroxyethylmethacrylate) backbones as substrates for the preparation of structured honeycomb films. Eur. Polym. J., 2005, 41, 2264-2277.
    393. Nygard, A., Davis, T. P., Barner-Kowollik, C., and Stenzel, M. H. A simple approach to micro-patterned surfaces by breath figures with internal structure using thermoresponsive amphiphilic block copolymers. Aust. J. Chem., 2005, 58, 595-599.
    394. Beattie, D., Wong, K. H., Williams, C., Poole-Warren, L. A., Davis, T. P., Barner-Kowollik, C., and Stenzel, M. H. Honeycomb-structured porous films from polypyrrole-containing block copolymers prepared via RAFT polymerization as a scaffold for cell growth. Biomacromolecules, 2006, 7, 1072-1082.
    395. Stenzel, M. H., Barner-Kowollik, C., and Davis, T. P. Formation of honeycomb-structured, porous films via breath figures with different polymer architectures. J. Polym. Sci., Part A: Polym. Chem., 2006, 44, 2363-2375.
    396. Wong, K. H., Hernandez-Guerrero, M., Granville, A. M., Davis, T. P., Barner-Kowollik, C., and Stenzel, M. H. Water-assisted formation of honeycomb structured porous films. J. Porous Mat., 2006, 13, 213-223.
    397. Zhao, H. Y., Gong, J., Jiang, M., and An, Y. L. A new approach to self-assembly of polymer blends in solution. Polymer, 1999, 40, 4521-4525.
    398. Yuan, X. F., Zhao, H. Y., Jiang, M., and An, Y. L. The self-assembly of polymer blends in selective solvents. Acta Chim. Sin., 2000, 58, 118-121.
    399. Duan, H. W., Chen, D. Y., Jiang, M., Gan, W. J., Li, S. J., Wang, M., and Gong, J. Self-assembly of unlike homopolymers into hollow spheres in nonselective solvent. J. Am. Chem. Soc., 2001, 123, 12097-12098.
    400. Jiang, M., Duan, H. W., and Chen, D. Y. Macromolecular assembly: From irregular aggregates to regular nanostructures. Macromol. Symp., 2003, 195, 165-170.
    401. Mu, M. F., Ning, F. L., Jiang, M., and Chen, D. Y. Giant vesicles based on self-assembly of a polymeric complex containing a rodlike oligomer. Langmuir, 2003, 19, 9994-9996.
    402. Gu, C. F., Chen, D. Y., and Jiang, M. Short-life core-shell structured nanoaggregates formed by the self-assembly of PEO-b-PAA/ETC (1-(3-dimethylaminopropyl)-3-ethylcarbodiimide methiodide) and their stabilization. Macromolecules, 2004, 37, 1666-1669.
    403. Bo, Z. S., Zhang, X., Yang, M. L., and Shen, J. C. The self-assembled dendritic supramolecular complex based on electrostatic attraction. Chem. J. Chin. Univ.-Chin., 1997, 18, 326-328.
    404. Zhang, X., Li, H. B., Zhao, B., Shen, J. C., Gao, Z. M., and Li, X. S. Ordered self-organizing films of an amphiphilic polymer by slow evaporation of organic solvents. Macromolecules, 1997, 30, 1633-1636.
    405. Chi, L. F., Li, H. B., Zhang, X., Fuchs, H., and Shen, J. C. Atomic force microscopic (AFM) study on a self-organizing polymer film. Polym. Bull., 1998, 41, 695-699.
    406. Zhang, X. and Shen, J. C. Self-assembled ultrathin films: From layered nanoarchitectures to functional assemblies. Adv. Mater., 1999, 11, 1139-1143.
    407. Xiong, H. M., Qin, L. D., Sun, J. Z., Zhang, X., and Shen, J. C. Synthesis and self-assembly of rod-coil diblock molecules of oligophenylenevinylene-poly(ethylene oxide). Chem. Lett., 2000, 586-587.
    408. Li, H. B., Liu, Q. T., Qin, L. D., Xu, M., Lin, X. K., Yin, S. Y., Wu, L. X., Su, Z. M., and Shen, J. C. Self-assembling structures and thin-film microscopic morphologies of amphiphilic rod-coil block oligomers. J. Colloid Interface Sci., 2005, 289, 488-497.
    409. Zhang, X., Chen, K., Xie, K., and Long, Y. F. Self-assembly of monodisperse polymermicrospheres from PPQ-b-PEG rod-coil block copolymers in selective solvents. Sci. China Ser. B-Chem., 2005, 48, 42-48.
    410. Yan, D. Y., Zhou, Y. F., and Hou, J. Supramolecular self-assembly of macroscopic tubes. Science, 2004, 303, 65-67.
    411. Zhou, Y. F. and Yan, D. Y. Supramolecular self-assembly of giant polymer vesicles with controlled sizes. Angew. Chem., Int. Ed., 2004, 43, 4896-4899.
    412. Jia, Z. F., Zhou, Y. F., and Yan, D. Y. Amphiphilic star-block copolymers based on a hyperbranched core: Synthesis and supramolecular self-assembly. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 6534-6544.
    413. Mai, Y. Y., Zhou, Y. F., and Yan, D. Y. Synthesis and size-controllable self-assembly of a novel amphiphilic hyperbranched multiarm copolyether. Macromolecules, 2005, 38, 8679-8686.
    414. Zhou, Y. F. and Yan, D. Y. Real-time membrane fission of giant polymer vesicles. Angew. Chem., Int. Ed., 2005, 44, 3223-3226.
    415. Wong, G. C. L., Tang, J. X., Lin, A., Li, Y. L., Janmey, P. A., and Safinya, C. R. Hierarchical self-assembly of F-actin and cationic lipid complexes: Stacked three-layer tubule networks. Science, 2000, 288, 2035-2039.
    416. Mathias, J. P., Simanek, E. E., and Whitesides, G. M. Self-assembly through hydrogen bonding: Peripheral crowding - A new strategy for the preparation of stable supramolecular aggregates based on parallel, connected CA3.M3 rosettes. J. Am. Chem. Soc., 1994, 116, 4326-4340.
    417. John P.Mathias, Eric E.Simanek, Jonathan A.Zerkowski, , Christopher T. Seto, and George M.Whitesides. Structural preferences of hydrogen-bonded networks in organic solution-the cyclic CA3eM3 "rosette". J. Am. Chem. Soc., 1994, 116, 4316-4325.
    418. Jang, S. S., Jang, Y. H., Kim, Y. H., Goddard, W. A., Flood, A. H., Laursen, B. W., Tseng, H. R., Stoddart, J. F., Jeppesen, J. O., Choi, J. W., Steuerman, D. W., Delonno, E., and Heath, J. R. Structures and properties of self-assembled monolayers of bistable [2]rotaxanes on Au(111) surfaces from molecular dynamics simulations validated with experiment. J. Am. Chem. Soc., 2005, 127, 1563-1575.
    419. Menzer, S., White, A. J. P., Williams, D. J., Belohradsky, M., Hamers, C., Raymo, F. M., Shipway, A. N., and Stoddart, J. F. Molecular meccano. 25. Self-assembly of functionalized [2]catenanes bearing a reactive functional group on either one or both macrocyclic components - from monomeric [2]catenanes to polycatenanes. Macromolecules, 1998, 31, 295-307.
    420. Zhang, L. F. and Eisenberg, A. Multiple morphologies and characteristics of \"crew-cut\" micelle-like aggregates of polystyrene-b-poly(acrylic acid) diblock copolymers in aqueous solutions. J. Am. Chem. Soc., 1996, 118, 3168-3181.
    421. Zhang, L. F. and Eisenberg, A. Formation of crew-cut aggregates of various morphologies from amphiphilic block copolymers in solution. Polym. Adv. Technol., 1998, 9, 677-699.
    422. Discher, B. M., Won, Y. Y., Ege, D. S., Lee, J. C. M., Bates, F. S., Discher, D. E., and Hammer, D. A. Polymersomes: Tough vesicles made from diblock copolymers. Science, 1999, 284, 1143-1146.
    423. Chen, X. R., Ding, X. B., Zheng, Z. H., and Peng, Y. X. Intelligent crew-cut aggregates formed by thermosensitive block copolymers and their multiple morphologies. Macromol.Biosci., 2005, 5, 157-163.
    424. Cheng, C. X., Tian, Y., Shi, Y. Q., Tang, R. P., and Xi, F. Ordered honeycomb-structured films from dendronized PMA-b-PEO rod-coil block copolymers. Macromol. Rapid Commun., 2005, 26, 1266-1272.
    425. Ludwigs, S., Boker, A., Voronov, A., Rehse, N., Magerle, R., and Krausch, G. Self-assembly of functional nanostructures from ABC triblock copolymers. Nat. Mater., 2003, 2, 744-747.
    426. Cheng, C. X., Tian, Y., Shi, Y. Q., Tang, R. P., and Xi, F. Porous polymer films and honeycomb structures based on amphiphilic dendronized block copolymers. Langmuir, 2005, 21, 6576-6581.
    427. van Hest, J. C. M., Delnoye, D. A. P., Baars, M. W. P. L., van Genderen, M. H. P., and Meijer, E. W. Polystyrene-dendrimer amphiphilic block copolymers with a generation-dependent aggregation. Science, 1995, 268, 1592-1595.
    428. Hudson, S. D., Jung, H. T., Percec, V., Cho, W. D., Johansson, G., Ungar, G., and Balagurusamy, V. S. K. Direct visualization of individual cylindrical and spherical supramolecular dendrimers. Science, 1997, 278, 449-452.
    429. Schenning, A. P. H. J., Elissen-Roman, C., Weener, J. W., Baars, M. W. P. L., van der Gaast, S. J., and Meijer, E. W. Amphiphilic dendrimers as building blocks in supramolecular assemblies. J. Am. Chem. Soc., 1998, 120, 8199-8208.
    430. Uchiyama, T., Ishii, K., Nonomura, T., Kobayashi, N., and Isoda, S. A phthalocyanine dendrimer capable of forming spherical micelles. Chem.-Eur. J., 2003, 9, 5757-5761.
    431. Zimmerman, S. C. and Lawless, L. J. Dendrimers IV (Supramolecular chemistry of dendrimers). Top. Curr. Chem., 2001, 217, 95-120.
    432. Cho, B. K., Jain, A., Nieberle, J., Mahajan, S., Wiesner, U., Gruner, S. M., Turk, S., and Rader, H. J. Synthesis and self-assembly of amphiphilic dendrimers based on aliphatic polyether-type dendritic cores. Macromolecules, 2004, 37, 4227-4234.
    433. Wang, J. F., Chen, J. Y., Jia, X. R., Cao, W. X., and Li, M. Q. Self-assembly ultrathin films based on dendrimers. Chem. Commun., 2000, 511-512.
    434. Hartgerink, J. D., Beniash, E., and Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science, 2001, 294, 1684-1688.
    435. Pochan, D. J., Chen, Z. Y., Cui, H. G., Hales, K., Qi, K., and Wooley, K. L. Toroidal triblock copolymer assemblies. Science, 2004, 306, 94-97.
    436. Stupp, S. I., LeBonheur, V., Walker, K., Li, L. S., Huggins, K. E., Keser, M., and Amstutz, A. Supramolecular materials: Self-organized nanostructures. Science, 1997, 276, 384-389.
    437. Onoshima, D. and Imae, T. Dendritic nano- and microhydrogels fabricated by triethoxysilyl focal dendrons. Soft Matter, 2006, 2, 141-148.
    438. Ornatska, M., Peleshanko, S., Genson, K. L., Rybak, B., Bergman, K. N., and Tsukruk, V. V. Assembling of amphiphilic highly branched molecules in supramolecular nanofibers. J. Am. Chem. Soc., 2004, 126, 9675-9684.
    439. Ornatska, M., Peleshanko, S., Rybak, B., Holzmueller, J., and Tsukruk, V. V. Supramolecular multiscale fibers through one-dimensional assembly of dendritic molecules. Adv. Mater., 2004, 16, 2206-2212.
    440. Zou, J. H., Ye, X. D., and Shi, W. F. Crosslinkable vesicles self-assembled by amphiphilic hyperbranched polyester. Macromol. Rapid Commun., 2005, 26, 1741-1745.
    441. Tian, H. Y., Deng, C., Lin, H., Sun, J. R., Deng, M. X., Chen, X. S., and Jing, X. B.Biodegradable cationic PEG-PEI-PBLG hyperbranched block copolymer: Synthesis and micelle characterization. Biomaterials, 2005, 26, 4209-4217.
    442. Claussen, R. C., Rabatic, B. M., and Stupp, S. I. Aqueous self-assembly of unsymmetric peptide bolaamphiphiles into nanofibers with hydrophilic cores and surfaces. J. Am. Chem. Soc., 2003, 125, 12680-12681.
    443. Decher, G. Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science, 1997, 277, 1232-1237.
    444. Tang, L. M., You, H., Wu, J. W., Yu, K., and Tang, X. L. Controlling surface morphologies of self-assembled films through adjusting amphiphilic balance of hyperbranched poly (ester-amine)s in water by solution pH. Colloid Surf. A-Physicochem. Eng. Asp., 2006, 275, 177-182.
    445. Tang, L. M., Qiu, T., You, H., Fang, Y., Tuo, X. L., and Liu, D. S. Formation and reaction of self-assembled films based on hyperbranched polyanion and hyperbranched polycation. Acta Polym. Sin., 2005, 625-628.
    446. Wang, W. L., He, Q. G., Zhai, J., Yang, J. L., and Bai, F. L. Self-assembled hyperbranched poly(para-phenylene vinylene) monolayers: Fabrication and characterization. Polym. Adv. Technol., 2003, 14, 341-348.
    447. Tse, C. W., Cheng, K. W., Chan, W. K., and Djurisic, A. B. Self-assembled monolayer formed by a rhenium complex containing hyperbranched polymer. Macromol. Rapid Commun., 2004, 25, 1335-1339.
    448. Tsukruk, V. V., Rinderspacher, F., and Bliznyuk, V. N. Self-assembled multilayer films from dendrimers. Langmuir, 1997, 13, 2171-2176.
    449. Tsukruk, V. V. Assembly of supramolecular polymers in ultrathin films. Prog. Polym. Sci., 1997, 22, 247-311.
    450. Genson, K. L., Hoffman, J., Teng, J., Zubarev, E. R., Vaknin, D., and Tsukruk, V. V. Interfacial micellar structures from novel amphiphilic star polymers. Langmuir, 2004, 20, 9044-9052.
    451. Peleshanko, S., Jeong, J., Gunawidjaja, R., and Tsukruk, V. V. Amphiphilic heteroarm PEO-b-PSm star polymers at the air-water interface: Aggregation and surface morphology. Macromolecules, 2004, 37, 6511-6522.
    452. Holzmueller, J., Genson, K. L., Park, Y., Yoo, Y. S., Park, M. H., Lee, M., and Tsukruk, V. Amphiphilic treelike rods at interfaces: Layered stems and circular aggregation. Langmuir, 2005, 21, 6392-6398.
    453. Sidorenko, A., Zhai, X. W., Peleshanko, S., Greco, A., Shevchenko, V. V., and Tsukruk, V. V. Hyperbranched polyesters on solid surfaces. Langmuir, 2001, 17, 5924-5931.
    454. Zhai, X., Peleshanko, S., Klimenko, N. S., Genson, K. L., Vaknin, D., Vortman, M. Y., Shevchenko, V. V., and Tsukruk, V. V. Amphiphilic dendritic molecules: Hyperbranched polyesters with alkyl-terminated branches. Macromolecules, 2003, 36, 3101-3110.
    455. Ornatska, M., Bergman, K. N., Rybak, B., Peleshanko, E., and Tsukruk, V. V. Nanofibers from functionalized dendritic molecules. Angew. Chem., Int. Ed., 2004, 43, 5246-5249.
    456. Rybak, B. M., Ornatska, M., Bergman, K. N., Genson, K. L., and Tsukruk, V. V. Formation of silver nanoparticles at the air-water interface mediated by a monolayer of functionalized hyperbranched molecules. Langmuir, 2006, 22, 1027-1037.
    457. Zhou, Y. F. and Yan, D. Y. Real-time membrane fusion of giant polymer vesicles. J. Am. Chem. Soc., 2005, 127, 10468-10469.
    458. Jiang, G. H., Wang, L., Chen, T., Yu, H. J., Wang, C. L., and Chen, C. Synthesis and macroscopic self-assembly of multiarm hyperbranched polyethers with benzoyl-terminated groups. Polymer, 2005, 46, 5351-5357.
    459. Jiang, G. H., Wang, L., Yu, H. J., Chen, C., Dong, X. C., Chen, T., and Yang, Q. Macroscopic self-assembly of hyperbranched polyesters. Polymer, 2006, 47, 12-17.
    460. Jiang, G. H., Wang, L., Chen, T., Wang, J. F., Chen, C., and Yu, H. J. Synthesis, properties, and self-assembly of poly(benzyl ether)-b-polystyrene dendritic-linear polymers. J. Appl. Polym. Sci., 2005, 98, 1106-1112.
    461. Jiang, G. H., Wang, L., Chen, T., and Yu, H. J. Synthesis and self-assembly of poly(benzyl ether)-b-poly (methyl methaerylate) dendritic-linear polymers. Polymer, 2005, 46, 81-87.
    462. Jiang, G. H., Wang, L., Chen, T., Dong, X. C., Yu, H. J., Wang, J. F., and Chen, C. Synthesis and self-assembly of hyperbranched polymers with benzoyl terminal arms. J. Polym. Sci., Part A: Polym. Chem., 2005, 43, 5554-5561.
    463. Jiang, G. H., Wang, L., Chen, T., Yu, H. J., Dong, X. C., and Chen, C. Synthesis and self-assembly of hyperbranched polyester peripherally modified by touluene-4-sulfonyl groups. Polymer, 2005, 46, 9501-9507.
    464. Jiang, G. H., Wang, L., Dong, X. C., Chen, C., and Chen, T. Synthesis and self-assembly of hyperbranched polyethers peripherally modified with adenosine 5 '-monophosphate. J. Appl. Polym. Sci., 2006, 99, 1147-1152.
    465. Tomalia, D. A. and Dewald, J. R. Dense star polymers having two dimensional molecular diameter. US4587329, 26 May 1986.
    466. Pittelkow, M., Moth-Poulsen, K., Boas, U., and Christensen, J. B. Poly(amido amine)-dendrimer-stabilized Pd(0) nanoparticles as a catalyst for the Suzuki reaction. Langmuir, 2003, 19, 7682-7684.
    467. Hobson, L. J. and Feast, W. J. AB(2) hyperbranched polymers derived from amino-methacrylate monomers. J. Mater. Chem., 2000, 10, 609-612.
    468. Mueller, A., Kowalewski, T., and Wooley, K. L. Synthesis, characterization, and derivatization of hyperbranched polyfluorinated polymers. Macromolecules, 1998, 31, 776-786.
    469. Shu, C. F. and Leu, C. M. Hyperbranched poly(ether ketone) with carboxylic acid terminal groups: Synthesis, characterization, and derivatization. Macromolecules, 1999, 32, 100-105.
    470. Gong, Z. H., Leu, C. M., Wu, F. I., and Shu, C. F. Hyperbranched poly(aryl ether oxazole)s: Synthesis, characterization, and modification. Macromolecules, 2000, 33, 8527-8533.
    471. Wu, F. I. and Shu, C. F. Hyperbranched aromatic poly(ether imide)s: Synthesis, characterization, and modification. J. Polym. Sci., Part A: Polym. Chem., 2001, 39, 2536-2546.
    472. Schmaljohann, D., Haussler, L., Potschke, P., Voit, B. I., and Loontjens, T. J. A. Modification with alkyl chains and the influence on thermal and mechanical properties of aromatic hyperbranched polyesters. Macromol. Chem. Phys., 2000, 201, 49-57.
    473. Sunder, A., Bauer, T., Mulhaupt, R., and Frey, H. Synthesis and thermal behavior of esterified aliphatic hyperbranched polyether polyols. Macromolecules, 2000, 33, 1330-1337.
    474. Malmstrom, E., Johansson, M., and Hult, A. The effect of terminal alkyl chains on hyperbranched polyesters based on 2,2-bis(hydroxymethyl)propionic acid. Macromol. Chem. Phys., 1996, 197, 3199-3207.
    475. Malmstrom, E., Hult, A., Gedde, U. W., Liu, F., and Boyd, R. H. Relaxation processes in hyperbranched polyesters: Influence of terminal groups. Polymer, 1997, 38, 4873-4879.
    476. Wei, H. Y., Shi, W. F., Shen, X. F., and Nie, K. M. Synthesis and crystallinity of dendritic poly(ether-amide) derivatives. Eur. Polym. J., 2002, 38, 1899-1905.
    477. Diederich, F., Dick, K., and Griebel, D. Complexation of arenes by macrocyclic hosts in aqueous and organic solutions. J. Am. Chem. Soc., 1986, 108, 2273-2286.
    478. Caminati, G, Turro, N. J., and Tomalia, D. A. Photophysical investigation of starburst dendrimers and their interactions with anionic and cationic surfactants. J. Am. Chem. Soc., 1990, 112, 8515-8522.
    479. Tamada, J. A., Kertes, A. S., and King, C. J. Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling. Ind. Eng. Chem. Res., 1990, 29, 1319-1326.
    480. Hawker C.J., Wooley, K. L., and Frechet, J. M. J. Solvatochromism as a probe of the microenvironment in dendritic polyethers transition from an extended to a globular structure. J. Am. Chem. Soc., 1993, 115, 4375-4376.
    481. Frechet, J. M. J. Functional polymers and dendrimers. Reactivity, molecular architecture, and interfacial energy. Science, 1994, 263, 1710-1715.
    482. Paleos, C. M., Tsiourvas, D., Sideratou, Z., and Tziveleka, L. Acid- and salt-triggered multifunctional poly(propylene imine) dendrimer as a prospective drug delivery system. Biomacromolecules, 2004, 5, 524-529.
    483. Kreutzer, G., Ternat, C., Nguyen, T. Q., Plummer, C. J. G., Manson, J. A. E., Castelletto, V., Hamley, I. W., Sun, F., Sheiko, S. S., Herrmann, A., Ouali, L., Sommer, H., Fieber, W., Velazco, M. I., and Klok, H. A. Water-soluble, unimolecular containers based on amphiphilic multiarm star block copolymers. Macromolecules, 2006, 39, 4507-4516.
    484. Stone, D. L. and Smith, D. K. Anion binding at the core of branched ferrocene derivatives. Polyhedron, 2003, 22, 763-768.
    485. Lehn, J. M. Supramolecular chemistry: receptors, catalysts, and carriers. Science, 1985, 227, 849-856.
    486. Koshland, D. E. Jr. The key-lock theory and the induced fit theory. Angew. Chem., Int. Ed. Engl., 1995, 33, 2375-2378.
    487. Gao, C., Yan, D. Y., Zhang, B., and Chen, W. Fluorescence studies on the hydrophobic association of pyrene-labeled amphiphilic hyperbranched poly(sulfone-amine)s. Langmuir, 2002, 18, 3708-3713.
    488. Pitois, O. and Francois, B. Crystallization of condensation droplets on a liquid surface. Colloid Polym. Sci., 1999, 277, 574-578.
    489. Bormashenko, E., Pogreb, R., Stanevsky, O., Bormashenko, Y., and Gendelman, O. Formation of honeycomb patterns in evaporated polymer solutions: Influence of the molecular weight. Materials Letters, 2005, 59, 3553-3557.
    490. Lee, M., Cho, B. K., and Zin, W. C. Supramolecular structures from rod-coil block copolymers. Chem. Rev., 2001, 101, 3869-3892.
    491. Sawadaishi, T., Shimomura, M., and Shimomura, M. Preparation of mesoscopic patterns of nanoparticles by self-organization. Mol. Cryst. Liquid Cryst., 2003, 406, 353-356.
    492. Yabu, H. and Shimomura, M. Surface properties of self-organized honeycomb-patterned films. Mol. Cryst. Liquid Cryst., 2006, 445, 125-129.
    493. Lee, M., Cho, B. K., Ihn, K. J., Lee, W. K., Oh, N. K., and Zin, W. C. Supramolecular honeycomb by self-assembly of molecular rods in rod-coil molecule. J. Am. Chem. Soc., 2001, 123, 4647-4648.
    494. Bolognesi, A., Botta, C., and Yunus, S. Micro-patterning of organic light emitting diodes using self-organised honeycomb ordered polymer films. Thin Solid Films, 2005, 492, 307-312.
    495. Bolognesi, A., Mercogliano, C., Yunus, S., Civardi, M., Comoretto, D., and Turturro, A. Self-organization of polystyrenes into ordered microstructured films and their replication by soft lithography. Langmuir, 2005, 21, 3480-3485.
    496. Zhao, X. Y., Cai, Q., Shi, G. X., Shi, Y. Q., and Chen, G. W. Formation of ordered microporous films with water as templates from poly(D,L-lactic-co-glycolic acid) solution. J. Appl. Polym. Sci., 2003, 90, 1846-1850.
    497. Tian, Y., Ding, H. Y., Shi, Y. Q., Jiao, Q. Z., and Wang, X. L. Water-assisted formation of honeycomb films of poly(L-lactic-co-glycolic acid). J. Appl. Polym. Sci., 2006, 100, 1013-1018.
    498. Tian, Y., Ding, H. Y., Jiao, Q. Z., and Shi, Y. Q. Influence of solvents on the formation of honeycomb films by water droplets templating. Macromol. Chem. Phys., 2006, 207, 545-553.
    499. Yu, C. L., Zhai, J., Gao, X. F., Wan, M. X., Jiang, L., Li, T. J., and Li, Z. S. Water-assisted fabrication of polyaniline honeycomb structure film. J. Phys. Chem. B, 2004, 108, 4586-4589.
    500. Yu, C. L., Zhai, J., Ge, H. L., Wan, M. X., Jiang, L., Li, Z. S., and Li, T. J. Ordered self-assembly of polymer nano-structure. Acta Phys.-Chim. Sin., 2004, 20, 1258-1261.
    501. Peng, J., Han, Y. C., Fu, J., Yang, Y. M., and Li, B. Y. Formation of regular hole pattern in polymer films. Macromol. Chem. Phys., 2003, 204, 125-130.
    502. Peng, J., Han, Y. C., Yang, Y. M., and Li, B. Y. The influencing factors on the macroporous formation in polymer films by water droplet templating. Polymer, 2004, 45, 447-452.
    503. Cui, L., Peng, J., Ding, Y., Li, X., and Han, Y. C. Ordered porous polymer films via phase separation in humidity environment. Polymer, 2005, 46, 5334-5340.
    504. Duan, H. W., Kuang, M., Wang, J., Chen, D. Y., and Jiang, M. Self-assembly of rigid and coil polymers into hollow spheres in their common solvent. J. Phys. Chem. B, 2004, 108, 550-555.
    505. Zhao, B. H., Zhang, M., Wang, X. D., and Li, C. X. Water-assisted fabrication of honeycomb structure porous film from poly(L-lactide). J. Mater. Chem., 2006, 16, 509-513.
    506. Nystrom, D., Antoni, P., Malmstrom, E., Johansson, M., Whittaker, M., and Hult, A. Highly-ordered hybrid organic-inorganic isoporous membranes from polymer modified nanoparticles. Macromol. Rapid Commun., 2005, 26, 524-528.
    507. Hayakawa, T. and Horiuchi, S. From angstroms to micrometers: Self-organized hierarchical structure within a polymer film. Angew. Chem., Int. Ed., 2003, 42, 2285-2289.
    508. Kimura, M., Misner, M. J., Xu, T., Kim, S. H., and Russell, T. P. Long-range ordering of diblock copolymers induced by droplet pinning. Langmuir, 2003, 19, 9910-9913.
    509. Humphrey, J. and O'Connor, N. Dalton discussion 9: Functional molecular assemblies. Dalton Trans., 2006, 2736-2736.
    510. Liu, C. H., Gao, C., and Yan, D. Y. Synergistic supramolecular encapsulation of amphiphilic hyperbranched Polymer to dyes. Macromolecules, 2006, 39, 8102-8111.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700