用户名: 密码: 验证码:
新疆塔里木盆地周边地区古代人群及山西虞弘墓主人DNA分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:DNA Analysis of Ancient Populations Around Xinjiang Tarim Basin and the Yuhong Tomb in Shanxi
  • 作者:谢承志
  • 论文级别:博士
  • 学科专业名称:生物化学与分子生物学
  • 学位年度:2007
  • 导师:周慧
  • 学科代码:071010
  • 学位授予单位:吉林大学
  • 论文提交日期:2007-04-01
摘要
本文对位于新疆塔里木盆地周边地区的三个古代人群及山西虞弘墓主人的遗传结构和族源进行了较为系统的分析。
     首先,对距今3400-4000年间的小河墓地古代居民的遗传结构的初步分析显示,小河古代居民的遗传结构相对复杂,同时具有欧洲谱系和亚洲谱系的来源;小河古代居民与中亚人群有最较近的遗传距离,其中,又与中亚人群的乌兹别克和土库曼人群有最近的距离;在同其他新疆古代居民的比较中,小河古代居民与丝绸之路南线的圆沙和山普拉的遗传关系较近,而与北线的古代居民关系较远。
     其次,对距今2200-1700年前的山普拉古代居民遗传结构的初步分析显示,山普拉古代居民是一欧亚混合人群,与绍兴周等的体质人类学结果一致;与现代欧亚大陆人群的系统发育分析显示山普拉古代居民与现代伊朗人群和奥塞梯人群有较近的母系遗传联系。
     再次,对距今1700年左右的尼雅遗址出土的一例个体进行了线粒体DNA分析,结果显示该个体属于单倍型类群U3,暗示尼雅古代居民和山普拉古代居民可能存在一定的母系遗传联系。
     最后,对距今1400年左右的虞弘墓主人的分析显示,虞弘属于主要分布在西部欧亚大陆的单倍型类群U5,而虞弘夫人的单倍型类群G主要分布在东部欧亚人群中。这是首次在古代中原地区发现西部欧亚特有的单倍型类群。
     总之,本论文的研究揭示了新疆塔里木盆地不同时期、不同地点古代居民的遗传结构、族源以及这些古代居民与现代人群和其他新疆古代居民之间的亲缘关系。并且首次在1400年前的中原地区发现了西部欧亚特有的单倍型类群。这些结果对研究该地区历史上各民族的族源、迁徙、分化、融合等提供了分子生物学上的证据。
Based on the molecular biology, ancient DNA research could analyze the genetic information of the ancient samples despite the time limitation in human evolution. By comparing the modern living creatures with the ancient ones, it could answer the questions of the origin, evolution and expansion of various kinds of lives including mankind. Mitochondrial DNA was most suitable for ancient DNA analysis because of high mutation rate, no recombination and multiple copies.
     Xinjiang Uigur Autonomous Region of China, located in northwest China, was famous for the ancient Silk Road. As an area of contact between Asia and Europe, Xinjiang had experienced a scenario of complex cultural from West and East Eurasian. The ancient civilization of China, India, Persia and Greece could all be found there, so the analysis of the ancient Xinjiang populations had always been an important research topic in the international academics. Cui et al. had analysis the mitochondrial DNA hypervariable region I of ancient Luobunouer, Turfan, Chawuhu and Yuansha populations, and provided important genetic evidences of human origin and movement.
     We selected three important relics which were located in Xinjiang Tarim Basin for ancient DNA analysis, including Sampula cemetery and Niya relic which were located in south route of Silk Road, and the Xiaohe cemetery was located in Luobupo. These samples were analyzed not only the mitochondrial DNA hypervariable region I, but also the RFLP of coding region, at the same time, quantification PCR was also performed in our research.
     The Yu Hong tomb archaeological site was located in Wangguo country of Taiyuan, Shanxi province. A well-preserved epitaph carved on the tombstone was found. The epitaph showed that Yu Hong died in 592 A.D, and the ancestors of Yu Hong lived in the ancient Yu country which was located in somewhere of Central Asian. Yu Hong came to central part of China and settled in there.
     SYBR green I Real-time polymerase chain reaction (PCR) was used to quantify five tooth and bone samples, which were excavated in Xiaohe cemetery, China. To evaluate the preservation of these ancient samples and to compare the DNA content of tooth and bone samples, three different fragment sizes (138 bp, 209 bp and 363 bp) within the mitochondrial DNA hypervariable region I and the AMG gene (121/115 bp) of the nuclear DNA were analyzed. The quantification results of mitochondrial DNA showed an inverse correlation between amplicon length and amplification efficiency, which was one of the criteria used to determine authenticity in ancient DNA studies. We also found that the 138 bp fragment had highest copies. Our study also showed that tooth samples had more DNA molecules than bone samples, and tooth samples were more suitable for ancient DNA analysis.
     Xiaohe cemetery was located about 60 kilometres to the south of the downriver of peafowl river which was located in Luobupo, dated from 3400 to 4000 years BP. Xiaohe was the earliest and easternmost cemetery which had been found in Xinjiang, which was very important for analyzing the genetic information of the earlier Xinjiang population. Of the twenty ancient Xiaohe individuals analyzed, seventeen individuals revealed reproducibly successful amplifications of mitochondrial DNA hypervariable region I. The sequences from the bone and tooth samples from each individual were identical, which strongly confirmed the authenticity of the results. Tajima's D test and the Mismatch distributions all showed that the ancient Xiaohe population had no recent demographic expansions. The distribution of ancient Xiaohe haplotypes among modern human populations showed that the genetic structure of Xiaohe people was complex, which had European and Asian origin at the same time. Comparing with the mtDNA data of 15 modern Eurasian populations, including Eastern Asian, Siberian, Central Asian, European and Southwestern Asian, Neighbour-joining tree, multidimensional scaling analysis and analysis of molecular variance all showed that ancient Xiaohe population had close relationships with Central Asian. The median joining network of the Xiaohe people and eight ancient Xinjiang and Central Asian populations showed that Xiaohe people had close relationships with Yuansha and Sampula which were located in the south route of Silk Road, and was far from the populations of north route of Silk Road
     The archaeological site of Sampula cemetery was located about 14 kilometres to the southwest of the Luo County in Xinjiang Khotan, and this cemetery dated from 217 B.C. to 283 A.D. Of the sixteen ancient Sampula individuals analyzed, thirteen individuals revealed reproducibly successful amplifications. Haplogroups were assigned based on the sequences of mitochondrial DNA hypervariable region I region and the RFLP results of coding region. The haplogroup distributions showed that Sampula was complex population of European and Asian. Tajima's D test and the Mismatch distributions all showed that the ancient Sampula population had no recent demographic expansions. Comparing with the mtDNA data of 11 modern Eurasian populations, median joining network, multidimensional scaling analysis and sequence diversity all showed that ancient Sampula peoples had close relationships with Ossetian and Iranian.
     Niya was located about 100 kilometres to the north of the downtown of Minfeng, deep in the Taklamakan Desert in Xinjiang, and dated to about 1,700 years BP. One sample was collected in the Niya relic, and the mtDNA lineage of this Niya sample was assigned to the haplogroup U3. Compared with the U3 lineages from modern Eurasian populations and ancient Xinjiang samples, this lineage was mainly concentrated in Iranian and Near Eastern populations. Haplogroup U3 had also been found in four ancient Sampula samples, which indicated that the ancient Niya peoples perhaps had genetic relationship with ancient Sampula peoples.
     Mitochondrial DNA was successfully amplified from both the bones and teeth samples of Yuhong and his wife, and the sequences from the bone and tooth samples from each individual were identical. Basing the sequences of mitochondrial DNA hypervariable region I region and the RFLP results of coding region, Yuhong was included in haplogroup U5, the West Eurasian-specific haplogroup, while his wife belonged to haplogroup G, representative of East Asian populations. Our findings indicate that a member of the oldest European-specific haplogroups, U5, arrived in Taiyuan about 1400 years ago. It is the first West Eurasian-specific haplogroup to have been found in the central part of ancient China, and Taiyuan may be the easternmost region which European lineage has been found until now in ancient China.
     In a word, on the basis of mtDNA data from different space-time populations in the Xinjiang Tarim Basin, our research reveals that the genetic structure and ethnologic origin of the ancient populations as well as the relationships and gene continuity between the ancient populations and extant populations. At the same time, the first West Eurasian-specific haplogroup has been found in the central part of ancient China, 1400 years ago. This article provides molecular evidences for the origin, expansion, evolution and forming process of these populations.
引文
1. Ballinger S W, Schurr T G, Torroni A, Gan Y Y, et al. Southeast Asian mitochondrial DNA analysis reveals genetic continuity of ancient mongoloid migrations. Genetics, 1992. 130: p. 139–152.
    2. Torroni A, Schurr T G, Yang C C, et al. Native American mitochondrial DNA analysis indicates that the Amerind and the Nadene populations were founded by two independent migration. Genetics, 1992. 130: p. 153–162
    3. Torroni A, Sukernik R I, Schurr T G, et al. mtDNA variation of aboriginal Siberians reveals distinct genetic affinities with Native Americans. Am J Hum Genet, 1993a. 53: p. 591–608
    4. Torroni A, Schurr T G, Cabell M F, et al. Asian affinities and continental radiation of the four founding Native American mtDNAs. Am J Hum Genet, 1993b. 53: p. 563–590
    5. Torroni A, Neel J V, Barrantes R, et al. Mitochondrial DNA "clock" for the Amerinds and its implications for timing their entry into North America. Proc Natl Acad Sci U S A, 1994a. 91: p.1158-1162
    6. Torroni A, Miller J A, Moore L G, et al. Mitochondrial DNA analysis in Tibet: implications for the origin of the Tibetan population and its adaptation to high altitude. . Am J Phys Anthropol 1994b. 93: p. 189–199
    7. Torroni A, Chen Y S, Semino O, et al. mtDNA and Y-chromosome polymorphisms in four Native American populations from southern Mexico. Am J Hum Genet 1994c. 54: p. 303–318
    8. Chen Y S, Torroni A, Excoffier L, et al. Analysis of mtDNA variation in African populations reveals the most ancient of all human continent-specific haplogroups. Am J Hum Genet, 1995. 57: p. 133–149
    9. Richards M, Corte-Real H, Forster P, et al. Paleolithic and neolithic lineages in the European mitochondrial gene pool. Am J Hum Genet 1996. 59: p. 185–203
    10. Torroni A, Huoponen K, Francalacci P, et al. Classification of European mtDNAs from an analysis of three European populations. Genetics, 1996. 144: p. 1835–1850.
    11. Richards M B, Macaulay V A, Bandelt H-J, et al. Phylogeography of mitochondrial DNA in western Europe. Ann Hum Genet, 1998. 62: p. 241–260
    12. Macaulay V A, Richards M B, Hickey E, et al. The emerging tree of West Eurasian mtDNAs: a synthesis of control-region sequences and RFLPs. Am J Hum Genet, 1999b. 64: p. 232–249
    13. Schurr T G, Sukernik R I, Starikovskaya Y B, et al. Mitochondrial DNA variation in Koryaks and Itel'men: population replacement in the Okhotsk Sea- Bering Sea region during the Neolithic. Am J Phys Anthropol, 1999. 108: p. 1–39.
    14. Ingman M, Kaessmann H, P??bo S, et al. Mitochondrial genome variation and the origin ofmodern humans. Nature, 2000. 408: p. 708–713
    15. Finnil? S, Lehtonen M S, Majamaa K. Phylogenetic network for European mtDNA. Am J Hum Genet, 2001a. 68: p. 1475–1484.
    16. Finnil? S, Majamaa K. Phylogenetic analysis of mtDNA haplogroup TJ in a Finnish population. J Hum Genet, 2001b. 46: p. 64–69
    17. Maca-Meyer N, Gonzalez A M, Larruga J M, et al. Major genomic mitochondrial lineages delineate early human expansions. BMC Genet, 2001. 2: p. 13
    18. Herrnstadt C, Elson J L, Fahy E, et al. Reduced-median-network analysis of complete mitochondrial DNA codingregion sequences for the major African, Asian, and European haplogroups. Am J Hum Genet, 2002. 70: p. 1152–1171
    19. Kivisild T, Tolk H-V, Parik J, et al. The emerging limbs and twigs of the East Asian mtDNA tree. Mol Biol Evol 2002. 19: p. 1737–1751
    20. Yao Y, Nie L, Harpending H, et al. Genetic relationship of Chinese ethnic populations revealed by mtDNA sequence diversity. Am J Phys Anthropol, 2002a. 118: p. 63–76
    21. Kong Q P, Yao YG, Sun C, et al. Phylogeny of East Asian Mitochondrial DNA Lineages Inferred from Complete Sequences. Am J Hum Genet 2003b. 73: p. 671–676
    22. Reidla M, Kivisild T, Metspalu E, et al. Origin and Diffusion of mtDNA Haplogroup X. Am J Hum Genet. 2003. 73: p. 1178–90
    23. Krings M, Stone A, Schmitz R W, et al. Neandertal DNA sequences and the origin of modern human. Cell 1997. 90: p. 19–30
    24. Krings M, Geisert H, Schmitz R W, et al. DNA sequence of the mitochondrial hypervariable region II from the neandertal type specimen. Proc Natl Acad Sci U S A, 1999. 96: p. 5581–5585
    25. Ovchinnikov I V, Gotherstrom A, Romanova G P, et al. Molecular analysis of Neanderthal DNA from the northern Caucasus. Nature, 2000. 404: p. 490–493
    26. Salas A, Richards M , Lareu M V, et al. The African diaspora: mitochondrial DNA and the Atlantic slave trade. Am J Hum Genet, 2004. 74: p. 454–465
    27. Graven L, Passarino G, Semino O, et al. Evolutionary correlation between control region sequence and restriction polymorphisms in the mitochondrial genome of a large Senegalese Mandenka sample. Mol Biol Evol 1995. 12: p. 334–345
    28. Horai S, Hayasaka K, Kondo R, et al. Recent African origin of modern humans revealed by complete sequences of hominoid mitochondrial DNAs. Proc Natl Acad Sci U S A, 1995. 92: p. 532–536
    29. Watson E, Forster P, Richards M, et al. Mitochondrial footprints of human expansions in Africa. Am J Hum Genet 1997. 61: p. 691–704
    30. Chen Y S, Olckers A, Schurr T G, et al. mtDNA variation in the South African Kung and Khwe-and their genetic relationships to other African populations. Am J Hum Genet, 2000. 66: p. 1362–1383
    31. Kong Q P, Yao Y G, Liu M, et al. Mitochondrial DNA sequence polymorphisms of five ethnic populations from northern China. Hum Genet 2003a. 21: p. 391–405
    32. Comas D, Plaza S, Wells R S, et al. Admixture, migrations, and dispersals in Central Asia: evidence from maternal DNA lineages. Eur J Hum Genet 2004. 11: p. 1–10
    33. Kivisild T, Bamshad M J, Kaldma K, et al. Deep common ancestry of Indian and western-Eurasian mitochondrial DNA lineages. Curr Biol, 1999a. 9: p. 1331–1334
    34. Kivisild T, Papiha S S, Rootsi S, et al. An Indian Ancestry: a key for understanding human diversity in Europe and beyond.In: Renfrew C, Boyle K (eds) Archaeogenetics: DNA and the population prehistory of Europe. McDonald Institute for Archaeological Research University of Cambridge. Cambridge, 2000. pp 267–279
    35. Quintana-Murci L, Semino O, Bandelt H-J, et al. Genetic evidence of an early exit of Homo sapiens sapiens from Africa through eastern Africa. Nat Genet 1999. 23: p. 437–441
    36. Kivisild T, Rootsi S, Metspalu M, et al. The Genetics of Language and Farming Spread in India. In: Bellwood P, Renfrew C (eds) Examining the farming/language dispersal hypothesis. The McDonald Institute for Archaeological Research . Cambridge, 2003a. pp 215–222
    37. Kivisild T, Rootsi S, Metspalu M, et al. the genetic heritage of the earliest settlers persists both in Indian tribal and caste populations. Am J Hum Genet, 2003b. 72: p. 313–332
    38. Forster P, Torroni A, Renfrew C, et al. Phylogenetic Star Contraction Applied to Asian and Papuan mtDNA Evolution. . Mol Biol Evol, 2001. 18: p. 1864–1881.
    39. Bermisheva M, Tambets K, Villems R, et al. Diversity of mitochondrial DNA haplotypes in ethnic populations of the Volga-Ural region of Russia. Mol Biol Evol, 2002. 36: p. 990–1001
    40. Quintana-Murci L, Chaix R, Wells S, et al. Where West meets East: The complex mtDNA landscape of the Southwest and Central Asian corridor. Am J Hum Genet 2004. 74: p. 827–845.
    41. Derbeneva OA, Starikovskaia E B, Volod'ko N V, et al. Mitochondrial DNA variation in Kets and Nganasans and the early peoples of Northern Eurasia. Genetika 2002a. 38: p. 1554–1560.
    42. Derbeneva O A, Starikovskaya E B, Wallace D C, et al. Traces of early Eurasians in the Mansi of northwest Siberia revealed by mitochondrial DNA analysis. Am J Hum Genet 2002b. 70: p. 1009–1014
    43. Derenko M V, Grzybowski T, Malyarchuk B A, et al. Diversity of Mitochondrial DNA Lineages in South Siberia. Ann Hum Genet, 2003. 67: p. 391–411
    44. Bamshad M, Kivisild T, Watkins W S, et al. Genetic evidence on the origins of Indian caste populations. Genome Research, 2001. 11: p. 994–1004
    45. Starikovskaya Y B, Sukernik R I, Schurr T G, et al. mtDNA diversity in Chukchi and Siberian Eskimos: implications for the genetic history of Ancient Beringia and the peopling of the New World. Am J Hum Genet 1998. 63: p. 1473–1491
    46. Fedorova S A, Bermisheva M A, Villems R, et al. Analysis of mitochondrial DNA lineages inYakuts. Mol Biol (Mosk), 2003. 37: p. 643–653
    47. Puzyrev V P, Stepanov V A, Golubenko M V, et al. MtDNA and Y-Chromosome Lineages in the Yakut Population. Genetika 2003. 39: p. 975–981
    48. Yao Y G, Kong Q P, Bandelt H J, et al. Phylogeographic differentiation of mitochondrial DNA in Han Chinese. Am J Hum Genet, 2002b. 70: p. 635– 651
    49. Schurr T G, Wallace D C. Mitochondrial DNA diversity in Southeast Asian populations. Hum Biol, 2002. 74: p. 431–452.
    50. Fucharoen G, Fucharoen S, Horai S. Mitochondrial DNA polymorphisms in Thailand. J Hum Genet, 2001. 46: p. 115–125
    51. Oota H, Settheetham-Ishida W, Tiwawech D, et al. Human mtDNA and Y-chromosome variation is correlated with matrilocal versus patrilocal residence. Nat Genet 2001. 29: p. 20–21
    52. Saillard J, Forster P, Lynnerup N, mtDNA variation among Greenland Eskimos: the edge of the Beringian expansion. Am J Hum Genet 2000a. 67: p. 718–726
    53. Meinil? M, Finnil? S, Majamaa K, Evidence for mtDNA admixture between the Finns and the Saami. Hum Hered, 2001. 52: p. 160–170
    54. Sajantila A, P??bo S. Language replacement in Scandinavia. Nat genet 1995. 11: p. 359–360
    55. Dupuy B M, Olaisen B, MtDNA sequences in the Norwegian Saami and main population. In: Carracedo A, Brinkmann B, B?r W (eds) Advances in forensic haemogenetics. 6. Springer-Verlag, Berlin, Heidelberg. New York, 1996. pp 23–25
    56. Lahermo P, Sajantila A, Sistonen P, et al. The genetic relationship between the Finns and the Finnish Saami (Lapps): analysis of nuclear DNA and mtDNA. Am J Hum Genet 1996. 58: p. 1309–1322
    57. Delghandi M, Utsi E, Krauss S. Saami mitochondrial DNA reveals deep maternal lineage clusters. Hum Hered 1998. 48: p. 108–114
    58. Redd A J, Takezaki N, Sherry S T, et al. Evolutionary history of the COII/tRNALys intergenic 9 base pair deletion in human mitochondrial DNAs from the Pacific. Mol Biol Evol, 1995. 12: p. 12.
    59. Sykes B, Leiboff A, Low-Beer J, et al. The origins of the Polynesians: an interpretation from mitochondrial lineage analysis. Am J Hum Genetics, 1995. 57: p. 1463–1475
    60. Lum J K, Cann R L. MtDNA and language support a common origin of Micronesians and Polynesians in Island Southeast Asia. Am J Phys Anthropol 1998. 105: p. 109–119
    61. Derenko M V, Dambueva I K, Malyarchuk B A, et al. Structure and diversity of the mitochondrial gene pool in indigenous populations of Tuva and Buryatia based on restriction polymorphism data. Genetika, 1999. 35: p. 1706–1712
    62. Di Rienzo A, Wilson A C. Branching pattern in the evolutionary tree for human mitochondrial DNA. Proc Natl Acad Sci U S A, 1991. 88: p. 1597–1601
    63. Piazza A. Who are the Europeans? Science 1993. 260: p. 1767–1769
    64. Cavalli-Sforza L L, Menozzi P, Piazza A. The History and Geography of Human Gene . Princeton University Press, Princeton 1994.
    65. Torroni A, Lott M T, Cabell M F, et al. mtDNA and the origin of Caucasians: identification of ancient Caucasian- specific haplogroups, one of which is prone to a recurrent somatic duplication in the D-loop region. Am J Hum Genet, 1994d. 55: p. 760–776
    66. Richards M, Macaulay V., Hickey E, et al. Tracing European founder lineages in the Near Eastern mtDNA pool. Am J Hum Genet 2000. 67: p. 1251–1276
    67. Richards M, Macaulay V, Torroni A, et al. In search of geographical patterns in European mitochondrial DNA. Am J Hum Genet 2002. 71: p. 1168–1174
    68. Richards M, Rengo C, Cruciani F, et al. Extensive female-mediated gene flow from sub-Saharan Africa into near eastern Arab populations. Am J Hum Genet, 2003. 72: p. 1058–1064
    69. Torroni A, Bandelt H-J, D'Urbano L, et al. mtDNA analysis reveals a major late Paleolithic population expansion from southwestern to northeastern Europe. Am J Hum Genet, 1998. 62: p. 1137–1152
    70. Corte-Real H B, Macaulay V A, Richards M B, et al. Genetic diversity in the Iberian Peninsula determined from mitochondrial sequence analysis. Ann Hum Genet, 1996. 60: p. 331–350.
    71. Rando J C, Pinto F, Gonzalez A M, et al. Mitochondrial DNA analysis of northwest African populations reveals genetic exchanges with European, near-eastern, and sub-Saharan populations. Ann Hum Genet, 1998. 62: p. 531–550
    72. Stevanovitch A, Gilles A, Bouzaid E, et al. Mitochondrial DNA Sequence Diversity in a Sedentary Population from Egypt. Ann Hum Genet 2004. 68: p. 23–39
    73. Metspalu E, Kivisild T, Kaldma K, et al. the Trans-Caucasus and the Expansion of the Caucasoid-Specific Human Mitochondrial DNA. In: Papiha S, Deka R, Chakraborty R (eds) Genomic Diversity: Application in Human Population Genetics. Kluwer Academic / Plenum Publishers. New York, 1999. pp 121–134
    74. Passarino G, Semino O, Bernini L F, et al. Pre-Caucasoid and Caucasoid genetic features of the Indian population, revealed by mtDNA polymorphisms. Am J Hum Genet, 1996. 59: p. 927–934.
    75. Kivisild T, Kaldma K, Metspalu M, et al. The place of the Indian mitochondrial DNA variants in the global network of maternal lineages and the peopling of the Old World. In: Papiha SS, Deka R, Chakraborty R (eds) Genomic Diversity. pp 135-152, 1999b: Kluwer Academic/Plenum Publishers.
    76. Anderson S, Bankier A T, Barrell B G, et al. Sequence and organization of the human mitochondrial genome. Nature 1981. 290: p. 457–465
    77. Helgason A, Hickey E, Goodacre S, et al. mtDNA and the islands of the North Atlantic: estimating the proportions of Norse and Gaelic ancestry. Am J Hum Genet 2001. 68: p.723–737.
    78. Malyarchuk B A, Derenko M V. Mitochondrial DNA variability in Russians and Ukrainians: Implications to the origin of the Eastern Slavs. Ann Hum Genet, 2001. 65: p. 63– 78
    79. Tambets K, Kivisild T, Metspalu E, et al. The topology of the maternal lineages of the Anatolian and Trans-Caucasus populations and the peopling of the Europe: some preliminary considerations. In: Renfrew C, Boyle K (eds) Archaeogenetics: DNA and the population prehistory of Europe: McDonald Institute for Archaeological Research Monograph Series. Cambridge University Press. Cambridge, 2000. pp 219–235
    80. Hofmann S, Jaksch M, Bezold R, et al. Population genetics and disease susceptibility: characterization of central European haplogroups by mtDNA gene mutations, correlation with D loop variants and association with disease. Hum Mol Genet, 1997. 6: p. 92:532-536.
    81. Ritte U, Neufeld E, Broit M, et al. The differences among Jewish communities--maternal and paternal contributions. J Mol Evol 1993. 37: p. 435–440
    82. Behar D M, Hammer M F, Garrigan D, et al. MtDNA evidence for a genetic bottleneck in the early history of the Ashkenazi Jewish population. Eur J Hum Genet, 2004. 12: p. 355–364
    83. Forster P, Harding R, Torroni A, et al. Origin and evolution of Native American mtDNA variation: a reappraisal. Am J Hum Genet, 1996. 59: p. 935–945
    84. Brown M D, Hosseini S H, Torroni A, et al. mtDNA haplogroup X: an ancient link between Europe/Western Asia and North America? Am J Hum Genet, 1998. 63: p. 1852–1861
    85. Smith D G, Malhi R S, Eshleman J, et al. Distribution of mtDNA haplogroup X among Native North Americans. Am J Phys Anthropol 1999. 110: p. 271–284
    86. Derenko M V, Grzybowski T, Malyarchuk B A, et al. The presence of mitochondrial haplogroup X in Altaians from South Siberia. Am J Hum Genet 2001. 69: p. 237–241
    87. 葛剑雄,吴松弟,曹树基. 中国移民史. 福州:福建人民出报社, 1997. 178-180
    88. 陈中. 中国民族史纲要. 北京:中国财政和经济出版社, 1999. 450-459
    89. Comas D, Calafell F, Mateu E, et al. Trading genes along the Silk Road:mtDNA sequences and the origin of Central Asian populations. Am J Hum Genet 1998. 63: p. 1824-38.
    90. Calafell F, Comas D, Pe′rez-Lezaun, et al. Genetics and population history of Central Asia. In Archaeogenetics: DNA and the population prehistory of Europe. Cambridge: McDonald Institute for Archaeological Research., 2000. p. 259–266.
    91. Di Benedetto G, Ergüven A, Stenico M, et al. DNA Diversity and Population Admixture in Anatolia. Am J Phys Anthropol, 2001. 115: p. 144–156
    92. Yao Y G, Lü X M, Luo H R, et al. Gene admixture in the Silk Road region of China: Evidence from mtDNA and melanocortin 1 receptor polymorphism . Genes Genet. Syst 2000. 75: p. 173-17.
    93. 段然慧, 崔银秋, 周慧,等. 塔克拉玛干沙漠腹地隔离人群线粒体 DNA 序列多态性分析. 遗传, 2003. 30 (5): p. 437~442.
    94. Francalacci P. DNA analysis on ancient desiccated corpses from Xinjiang (China). Journal ofIndo-European Studies, 1995. 23: p. 385-398
    95. Ovchinnikov I, Buzhilova A, Mednikova A, et al. Ethnic affinities of the ancient human Jety-Asar population by mitochondrial DNA analysis. Electrophoresis, 1999 20: p. 1729-1732.
    96. Lalueza-Fox C, Sampietro M L, Gilbert M T, et al. Unravelling migrations in the steppe: mitochondrial DNA sequences from ancient central Asians. Proc Biol Sci, 2004. 271(1542): p. 941-7.
    97. 段然慧,周慧, 崔银秋. 新疆古代居民的遗传结构分析. 高等学校化学学报, 2002. 23(12): p. 2278-228.
    98. 谢承志,刘树柏,崔银秋,等. 新疆吾呼沟古代居民线粒体 DNA 序列多态性分析. 吉林大学学报(理学版), 2005. 43(4): p. 538-540.
    99. 韩康信. 新疆古代居民种族人类学的初步研究. 新疆社会科学, 1985. 2: p. 61—71.
    100. 崔银秋,周慧. 从 MtDNA 研究角度看新疆地区古代居民遗传结构的变化. 中央民族大学学报, 2004. 31(5): p. 34-36.
    101. 潘其风. 圆沙古城墓地出土人骨的观察和研究. 中国社会科学院考古研究所.
    102. Hofreiter M, Serre D, Poinar H N, et al. Ancient DNA. Nat Rev Genet, 2001. 2(5): p. 353─359.
    103. Willerslev E, Cooper A. Ancient DNA. Proc.R.Soc.B, 2005. 272: p. 3–16.
    104. Handt O, Krings M, Ward R H, et al. The retrieval of ancient human DNA sequences. Am J Hum Genet, 1996. 59: p. 368–376.
    105. Morin P, Chambers K, Boesch C, et al. Quantitative DNA analysis from noninvasive samples for accurate microsatellite genotyping of wild chimpanzees(Pan troglodytes verus). Mol Ecol, 2001. 10(7): p. 1835-1844
    106. Gilbert M T P, Willerslev E, Hansen A J, et al. Distribution patterns of post-mortem damage in human mitochondrial DNA. Am J Hum Genet, 2003a. 72: p. 32–47.
    107. P??bo S, Higuchi R, Wilson A. Ancient DNA and the Polymerase Chain Reaction. J Biol Chem, 1989. 264: p. 9709-9712
    108. Krings M, Stone A, Schmitz R, et al. Neanderthal DNA sequences and the origin of modern humans. Cell, 1997. 90: p. 19–30
    109. Alonsoa A, Mart?′na P, Albarrána C, et al. Real-time PCR designs to estimate nuclear and mitochondrial DNA copy number in forensic and ancient DNA studies. Forensic Sci Int, 2004. 139: p. 141–149.
    110. 张驰宇, 成婧, 李全双, 等. 荧光实时定量 PCR 的研究进展. 江苏大学学报(医学版). 2006. 16(3): p. 268-271
    111. 陈苏红, 张敏丽,黄坚, 等. 生物化学与生物物理进展, 2004. 31(3): p. 249-254.
    112. Kazuo U, Masashi T, Isao Y, et al. Multiplex amplified product-length polymorphism analysis for rapid detection of human mitochondrial DNA variations. Electrophoresis, 2001. 22: p. 3533–3538.
    113. Kazuo U, Masashi T, Isao Y, et al. Multiplex amplified product-length polymorphism analysis of 36 mitochondrial single-nucleotide polymorphisms for haplogrouping of East Asian populations. Electrophoresis, 2005. 26: p. 91–98.
    114. Shinoda K I, Adachi N, Guillen S, et al. Mitochondrial DNA Analysis of Ancient Peruvian Highlanders. Am J Phys Anthropol, 2006.
    115. 汪维鹏, 倪坤仪, 周国华, 单核苷酸多态性检测方法的研究进展. 遗传, 2006 28 (1 ): p. 117~126.
    116. Hofreiter M, Jaenicke V, Serre D, et al. DNA sequences from multiple amplifications reveal artifacts induced by cytosine deamination in ancient DNA. Nucleic Acids Res, 2001. 29: p. 4693–4799.
    117. Sampietro M L, Caramelli D, Lao O, et al. The Genetics of the Pre-Roman Iberian Peninsula:A mtDNA Study of Ancient Iberians. Ann of Hum Genet, 2005. 69: p. 535–548.
    118. Dinner A, Blackburn G, Karplus M. Uracil-DNA glycosylase acts by substrate autocatalysis. Nature 2001. 413: p. 752–755
    119. Nyren P. Enzymatic method for continuous monitoring of DNA polymerase activity. Anal Bio- chem, 1987. 167 (2): p. 235-238
    120. 倪红兵, 王惠民, 焦磷酸测序技术及其应用进展. 医学检验与临床, 2006. 17(2): p. 1-3.
    121. Margulies M, Egholm M, Altman W E, et al. Genome Sequencing in Open Microfabricated High Density Picoliter Reactors. Nature, 2005. 437(7057): p. 376–380.
    122. Poinar H N, Schwarz C, Qi J, et al. Metagenomics to paleogenomics: large-scale sequencing of mammoth DNA. Science, 2005. 311: p. 392-394.
    123. Hoss M, Dilling A, Currant A, et al. Molecular phylogeny of the extinct ground sloth Mylodon darwinii. Proc. Natl Acad. Sci., 1996. 93: p. 181-185
    124. Loreille O. Ancient DNA analysis reveals divergence of the cave bear, Ursus spelaeus, and brown bear, Ursus arctos, lineages. Curr. Biol, 2001. 11: p. 200–-203.
    125. Yang H, Golenberg E M, Shoshani J. Phylogenetic resolution within the Elephantidae using fossil DNA sequences from the American mastodon (Mammut americanum) as an outgroup. Proc. Natl Acad. Sci., 1996. 93: p. 1190–1194.
    126. Chamberian J S, Gibbs R A, Ranier J E, et al. Detection Screening of the Duchenne Muscular Dystrophy Locus via Multiplex DNA Amplification. Nucl Acids Res, 1988. 16: p. 1141~1156.
    127. 陈明洁, 方倜, 柯涛,等. 多重 PCR—一种高效快速的分子生物学技术. 武汉理工大学学报, 2005. 10: p. 33-36.
    128. Krause J, Dear P H, Pollack J L, et al. Multiplex amplification of the mammoth mitochondrial genome and the evolution of Elephantidae. Nature, 2005. 439: p. 724-727.
    129. Kemp B M, Smith D G. Use of bleach to eliminate contaminating DNA from the surface of bones and teeth. Forensic Science International, 2005. 154: p. 53–61.
    130. Sampietro M L, Gilbert M T P, Lao O, et al. Tracking down Human Contamination inAncient Human Teeth. Mol. Biol. Evol, 2006. 23(9): p. 1801–1807.
    131. 崔银秋,许月,杨亦代,等. 新疆罗布诺尔地区铜器时代古代居民 mtDNA 多态性分析. 吉林大学学报(医学版) 2004. 04: p. 650-652.
    132. Cooper A, Poinar H N. Ancient DNA: do it right or not at all. Science, 2000. 289: p. 1139
    133. Poinar H N. Criteria for authenticity in ancient DNA work. New York: Taylor and Francis Group, 2004: p. 115–116
    134. Li W H, Grauer D, Fundamentals of Molecular Evolution. Sinauer Associates, Sunderland, Massachusetts, 1991: p. 284
    135. 米红, 张文璋. 实用现代统计学分析方法与 SPSS 应用. 当代中国出版社, 2000: p. 204-278.
    136. Slatkin, M. A measure of population subdivision based on microsatellite allele frequencies. Genetics, 1995. 139: p. 457-462.
    137. Jeffreys A J, Tamaki K, Macleod A, et al. Complex gene conversion events in germline mutation at human minisatellites. Nat Genet, 1994. 6: p. 136–145.
    138. Ricaut F X, Keyser-Tracqui C, Cammaert L, et al. Genetic Analysis and Ethnic Affinities From Two Scytho-Siberian Skeletons. Am J Phys Anthropol, 2004. 123: p. 351–360
    139. Alzualde A, Izagirre N, Alonso S, et al. Insights Into the"Isolation" of the Basques: mtDNA Lineages from the Historical Site of Aldaieta (6th–7th Centuries AD). Am J Phys Anthropol, 2006. 130(3): p. 394-404
    140. Ricaut F X, Fedoseeva A, Keyser-Tracqui C, et al. Ancient DNA Analysis of Human Neolithic Remains Found in Northeastern Siberia. Am J Phys Anthropol, 2005. 126: p. 458–462.
    141. 新疆文物考古研究所, 2002 年小河墓地考古调查与发掘报告. 新疆文物, 2003. 2: p. 8-64.
    142. Lee S D, Shin C H, Kim K B, et al, Sequence variation of mitochondrial DNA control region in Koreans. Forensic Sci Int., 1997. 87(2): p. 99-116.
    143. Pakendorf B, Wiebe V, Tarskaia L A, et al, Mitochondrial DNA evidence for admixed origins of central Siberian populations. Am J Phys Anthropol, 2003. 120: p. 211-224.
    144. Comas D, Calafell F, Mateu E, et al, Geographic variation in human mitochondrial DNA control region sequence: the population history of Turkey and its relationship to the European populations. Mol Biol Evol 1996. 13: p. 1067-1077.
    145. Yao YG, Kong Q P., Wang CY, et al, Different matrilineal contributions to genetic structure of ethnic groups in the Silk Road Region in China. Mol Biol Evol 2004. 21: p. 2265-2280
    146 Mait M, Toomas K, Ene M, et al, Most of the extant mtDNA boundaries in South and Southwest Asia were likely shaped during the initial settlement of Eurasia by anatomically modern humans. BMC Genetics 2004. 5: p. 26.
    147. Thangaraj K, Sridhar V, Kivisild T, et al., Different population histories of the Mundari- and Mon-Khmer-speaking Austro-Asiatic tribes inferred from the mtDNA 9-bpdeletion/insertion polymorphism in Indian populations. Hum Genet, 2005. 116: p. 507–517.
    148. 新疆文物考古研究所, 中国新疆山普拉—古代于阗文明的揭示与研究. 乌鲁木齐:新疆人民出版社, 2001.
    149. 余太山,陈高华,谢方. 新疆各族历史文化词典. 北京:中华书局, 1996: p. 11-12
    150. 韩康信,左崇新. 新疆洛普山普拉古墓人骨的种系问题. 人类学学报, 1988. 3: p. 239-250.
    151. 邵兴周,王博. 洛普县山普拉出土颅骨的初步研究. 人类学学报, 1988. 1: p. 26-38.
    152. 林梅村, 从考古发现看火袄教在中国的初传. 西域研究, 1996. 4: p. 54-60.
    153. 中日?日中共同尼雅遗迹学术考察队, 中日?日中共同尼雅遗迹学术调查报告第二卷. 日本:中村印刷株式会社, 1999: p. 3-311.
    154. Achilli A, Rengo C, Battaglia V, et al, Saami and Berbers—An Unexpected Mitochondrial DNA Link. Am J Hum Genet, 2005. 76: p. 883-886.
    155. 山西省文物考古所, 太原隋虞弘墓. 北京:文物出版社, 2005.
    156. Lin, M C, The research of Jihu history—several problem from the epitaph of the Yuhong tomb. History Research of China, 2002 1: p. 71-84.
    157. Wang, L, Oota H, Saitou N, et al., Genetic structure of a 2500-year-old human population in China and its spatiotemporal changes. Mol. Biol. Evol, 2000. 17: p. 1396–1400.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700