用户名: 密码: 验证码:
煤蜡裂解a-烯烃合成润滑油基础油新技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于我国在α-烯烃生产及聚α-烯烃(PAO)合成技术方面存在明显不足,高档PAO合成润滑油长期依赖进口。随着石油资源的日益紧缺,拓宽蜡裂解制α-烯烃的原料范围,开发适应我国“多煤少油”国情特点的煤蜡裂解a-烯烃合成PAO新工艺技术是缓解我国高档PAO合成润滑油长期依赖进口的迫切要求,这不仅有利于提高煤蜡的附加值,而且对于开发非石油路线制取高性能润滑油基础油新技术更具有重要的意义。
     本文提出并成功实现了煤蜡裂解α-烯烃合成高性能PAO基础油的工艺技术,通过裂解高熔点煤蜡制备了适宜聚合反应的混合α-烯烃,并采用改进的催化剂合成了性能良好的PAO基础油产品。以煤蜡裂解烯烃为原料的自制PAO产品性能达到优质商业PAO-8产品指标,同时可调合提高石油类基础油的粘度指数等级。
     论文首先在验证裂解小试实验装置可靠性的基础上,考察了3种不同组成煤蜡的裂解性能及产物分布特点。结果表明,煤蜡1#在预热室温度540℃、裂解温度670℃、停留时间2.5s、水蜡比16%的优化裂解条件下,裂解单程转化率为62.6%,液烯单程收率和选择性分别为43.1%和68.9%,液烯中α-烯烃、二烯烃和正构烷烃含量分别为65.9%、9.7%和18.3%,α-烯烃单程收率和选择性分别为28.4%和45.4%。与54#石油蜡相比,煤蜡原料的裂解单程转化率和α-烯烃单程收率分别可提高约30个和10个百分点,单程转化率的提高能够显著降低原料蜡的回炼量,降低裂解能耗,提高裂解装置的经济性。
     随后,本文以癸烯-1为原料优选了适宜的催化剂体系及聚合反应条件,在此基础上进行了煤蜡裂解α-烯烃聚合反应效果研究。结果表明,AlCl3/TiCl4双金属催化剂具有良好的低温催化活性。采用AlCl3/TiCl4双金属催化剂,在反应温度80℃、反应时间3h、n(Al)/n(Ti)=5、催化剂质量分数3%的优化条件下,以正构α-烯烃含量分别为65.25%和64.06%的1#和2#煤蜡裂解液烯产物为聚合原料,合成油的收率分别为73.27%和76.21%,合成油40℃运动粘度分别为54.75mm2/s和54.19mm2/s、100℃运动粘度分别为8.77mm2/s和8.68mm2/s、粘度指数分别为138和137、凝点分别为-51℃和-52℃。煤蜡裂解烯烃合成PAO主要由聚合度在3-5的多聚体组成,聚合度大于5的多聚体含量较低,其中280~350℃的馏分含量最高。同时,论文还开展了拟浆态床聚合反应研究,初步实现了α-烯烃连续聚合反应工艺,连续运行时间超过150h。
     对煤蜡裂解反应机理分析结果表明,煤蜡裂解过程中以烷烃断链和脱氢反应为主,高温、低压、短停留时间有利于提高α-烯烃选择性。基于量子力学第一性原理的裂解反应计算结果,提高裂解温度烯烃更易裂解成二烯烃和烷烃。α-烯烃聚合反应机理分析结果表明,聚合反应过程中同时伴随着叠合、异构化、氢转移以及裂解等反应。以直链为主、碳链上适宜位置具有合适支链的聚合物分子是高性能PAO的理想组分。
     此外,论文还对煤蜡裂解以及a-烯烃聚合反应的动力学进行了研究。结果表明,将煤蜡裂解视作拟一级串连反应,建立的集总反应动力学模型可以较准确的预测不同反应条件下煤蜡的转化率、液烯和裂解气的收率。反应温度在343K~373K时,模型化合物癸烯-1在AlCl3/TiCl4催化下的聚合反应速率常数在0.165min-1~0.300min-1,动力学方程为:Xm/(1-Xm)=294.71×exp(-21383.61/(RT))to AlCl3/TiCl4催化下的聚合反应速率常数明显大于AlCl3催化剂,采用AlCl3/TiCl4催化剂时聚合反应的反应活化能较AlCl3催化时低3.14kJ/mol, AlCl3/TiCl4的催化活性高于AlCl3催化剂。
     最后,论文对煤蜡裂解α-烯烃合成PAO的应用情况进行研究。结果表明,精制后的合成PAO产品性能与商业PAO-8产品指标接近;同时,合成PAO产品可作为调合组分以提高石油加工基础油的粘度指数等级,调合30%的自制PAO后,石油加工基础油的粘度指数可从60左右提高到95以上,基础油等级由LVI升级为HVI,凝点由原基础油的-23℃降至-31℃,闪点无明显变化。
Due to the lack of advanced technology on a-olefins production and polyalphaolefins (PAO) synthesis, the imported PAO is still the main resource of the high-performance synthetic lubricant. The increasing scarcity status of petroleum resource is pushing us to widen the raw materials for wax cracking plants and develop the proper technology for producing high-performance PAO using a-olefins cracked from coal liquefaction wax in order to meet the national conditions of being rich in coal but lack of petroleum resource and change the situation of import dependency of PAO products. This kind of work, thus, is of great importance not only for improving the value of coal wax but also for coping with the urgent problem of lacking of petroleum resource and producing excellent synthetic lubricant base oil.
     The synthesis process of PAO base oil using a-olefins cracked from coal liquefaction wax with high melting point was achieved. The mixed a-olefins were produced by cracking coal liquefaction wax and the high-performance PAOs were synthesized using improved catalyst. The properties of synthetic PAO can meet the performance requirement of superior commercial PAO-8products. Meanwhile, the synthetic PAO could be blended with mineral base oil in order to upgrade the viscosity index of the base oil.
     Firstly, the cracking performances of three kinds of coal liquefaction wax were studied and discussed on a steam cracking experimental equipment based on the reliability testing of this equipment. Under the optimal conditions of preheating temperature of540℃, cracking temperature of670℃, the residence time of2.5s, and the steam ratio of16%, the results indicate that the single pass conversions of waxl#is62.6%, the single pass yield and selectivity of the liquid product are43.1%and68.9%, and the single pass yield and selectivity of a-olefins are28.4%and45.4%. In addition, the contents of a-olefins, diolefins, and alkanes in cracked liquid product are65.9%,9.7%, and18.3%respectively. Compared with54# petroleum wax, the coal liquefaction waxes show around30percentage higher single pass conversion and10percentage higher single pass yield of a-olefins, therefore, will make the cracking plant have lower recycling amount, lower energy consumption, and better economy.
     Then the oligomerization performance of mixed a-olefins produced from coal liquefaction waxes was investigated while the optimal catalyst system and reaction conditions of decene-1oligomerization were found. The results show that AlCl3/TiCl4catalyst exhibits high catalytic activity under low temperature. Under the oligomerization conditions of catalyst of AICl3/TiCl4, temperature of80℃, time of3h, n(Al)/n(Ti) of5, and catalyst dosage of3%,1#coal wax, which has a normal a-olefins content of65.25%, shows a yield of73.27%,v40of54.75mm2/s, v100of8.77mm2/s, VI of138, and FP of-51℃. As for2#coal wax with a normal a-olefins content of64.06%, the yield, v40, v100, VI, and FP are76.21%,54.19mm2/s,8.68mm2/s,137, and-52℃, respectively. PAO products synthesized from cracked a-olefins is mainly consisted of oligomers with the degree of oligomerization of3-5. Moreover, the fraction with distillation range of280~350℃has the highest content in PAO products. Besides, the pseudo slurry bed oligomerization process was investigated and the synthesis of PAO can be performed continuously for more than150h at the present pseudo slurry bed reactor.
     The analysis results of cracking mechanism indicate that the main cracking reactions are the chain scission reactions and dehydrogenation reactions of alkane molecules. A high temperature, low partial pressure of alkane, and short retention time are beneficial to the selectivity of a-olefins. The calculation results based on quantum mechanical method show that olefins can crack into diolefins more easily at higher temperature. The mechanism of a-olefins oligomerization is also discussed and the results indicate that the oligomerization reactions occur along with isomerization, hydrogen transfer, and cracking reactions. Furthermore, the oligomers, which have one linear main chain and proper branches, are the excellent components of high performance PAO.
     In addition, the kinetics of the coal wax cracking and oligomerization of a-olefins were studied. A lumping kinetic model of coal wax cracking was developed based on the assumption of first order consecutive reaction. The kinetic model exhibits high accuracy for predicting the conversion of coal wax and the yields of liquid and gas products. The rate constants of decence-1oligomerization at the temperature from343K to373K with AlCl3/TiCl4catalyst are found in the range of0.165min-1and0.300min-1. The kinetic model can be expressed as:Xm/(1-Xm)=294.71×exp(-21383.61/(RT))t. AlCl3/TiCl4catalyst gives higher catalytic reaction rate constants and3.14kJ/mol lower activation energy as compared to AlCl3catalyst, suggesting higher catalytic activity than AlCl3catalyst.
     In the end, the application performance of synthesized PAO was researched and discussed. It is found that the refined PAO product exhibits the similar properties to the commercial PAO-8product. Meanwhile, the synthesized PAO can be blended into petroleum base oil to upgrade the viscosity index of the base oil. The viscosity index of petroleum base oil can be improved from60to above95by blending30%mass fraction of synthesized PAO. As a result, the blended petroleum base oil was upgraded from LVI to HVI. As compared to the petroleum base oil, the blended base oil shows a lower freezing point and similar flash point.
引文
[1]水天德.现代润滑油生产工艺[M].北京:中国石化出版社,1997.
    [2]关子杰,钟光飞.润滑油应用于采购指南[M].北京:中国石化出版社,2010.
    [3]颜志光.润滑材料与润滑技术[M].北京:中国石化出版社,1999.
    [4]中国石油化工股份有限公司炼油事业部.润滑油基础油[S].中国石油化工股份有限公司协议指标,2012年11月1日发布.
    [5]Murphy W R, Blain D A, Galiano-Roth A S. Synthetic basics:Benefits of Synthetic Lubricants in Industrial Applications[J]. Journal of Synthetic Lubrication,2002, 18(4):301-325.
    [6]Rudnick L R, Shubkin R L. Synthetic Lubricants and High-Performance Functional Fluids[M]. Florida:CRC Press,1999.
    [7]颜志光,杨振宇.合成润滑剂[M].北京:中国石化出版社,1996.
    [8]Kioupis L I, Maginn E J. Molecular Simulation of Poly-a-olefin Synthetic Lubricants: Impact of Molecular Architecture on Performance Properties [J]. The Journal of Physical Chemistry B,1999,103:10781-10790.
    [9]Liu J, Shen H B, Wang M. Synthesis of High Viscosity Index PAO[J]. Synthetic Lubricant, 2006,33(1):13-15.
    [10]刘婕,沈虹滨,王猛.高粘度指数PAO的研究[J].润滑油与燃料,2006,16(3):23-25.
    [11]Skupinska J. Oligomerization of a-olefins to higher oligomers[J]. Chem Rev.,1991, 91:613-648.
    [12]Murphy W R, Cheng V M. Jackson A, et al. The effect of lubricant traction on wormgear efficiency[C]. AGMA Semi-Annual Technical Meeting, Toronto,1981-10.
    [13]钱伯章.世界聚α-烯烃基础油生产现状[J].润滑油与燃料,2008,18(1/2):34-35.
    [14]王蕾.高碳α-烯烃的技术进展[J].石化技术,2010,17(4):43-48.
    [15]钱伯章.线性a-烯烃的技术进展与市场分析[J].石化技术,2011,18(1):58-62.
    [16]王守琰.长链a-烯烃工业应用展望[J].石油化工,1981,10(12):862-867.
    [17]何维华,张云,张志洲等.辛烯-1共聚产品生产、技术发展状况[J].当代化工,2007,36(1):172-176.
    [18]白尔铮.直链α-烯烃生产技术进展[J].石油化工,1997,26(12):843-848.
    [19]Turner A H. Purity aspects of higher alpha olefins[J]. J. Am. Chem. Soc.,1983,60(3): 623-627.
    [20]Singleton D M. Ethylene oligomerization process[P].US 4472522,1984-9-18.
    [21]Singleton D M. Ethylene oligomerization process[P].US 4503280,1985-3-5.
    [22]Hsia C C S. Process of making high VI lubes[P].US 4520221,1985-5-8.
    [23]Lappin G. Butene-1 and other LLDPE Comonmers[M].New York:Chem. Systems Inc., 1986.
    [24]Quann R J. Process for preparing alpha-olefins from light olefins[P].US 4665245, 1987-5-12.
    [25]Espinoza R L, Snel R, Korf C J, et al. Catalytic oligomerization of ethene over nickel-exchanged amorphous silica-aluminas:effect of the acid strength of the support[J].Appl. Catal.,1987,29(2):259-266.
    [26]Sauer J. Alpha-Olefins Applications Handbook[M].New York:Shell Chemical Company, 1989.
    [27]Keim W. Nickel:An element with wide application in industrial homogeneous catalysis[J]. Angew. Chem. Int. Engl.,1990,29(3):235-244.
    [28]Chauvin Y, Commereuc D, Forestiere A, et al. Method for converting ethylene into light alpha olefins[P].US 5292979,1994-3-8.
    [29]Chauvin Y, Commereuc D, Hugues F, et al. Process for the production of light alpha olefins by oligomerization of ethylene[P].US 5345023,1994-9-6.
    [30]Chauvin Y, Commereuc D, Hugues F, et al. Catalyst for the production of light alpha olefins by oligomerization of ethylene[P].US 5496783,1996-3-5.
    [31]Rogers J S, Bazan G C, Sperry C K. Ethoxyboratabenzene zirconium complexes: Catalysts for a-olefin production[J].J. Am. Chem. Soc.,1997,119(39):9305-9306.
    [32]Killian C M, Johnson L K, Brookhart M. Preparation of linear a-olefins using cationic nickel(Ⅱ) α-di-imine catalysts[J].Organometallics,1997,16(10):2005-2007.
    [33]Small B L, Brookhart M, Bennett A M A. Highly active iron and cobalt catalysts for the polymerization of ethylene [J].J. Am. Chem. Soc.,1998,120(16):4049-4050.
    [34]Small B L, Brookhart M. Iron-Based catalysts with exceptionally high actives and selectivities for oligomerization of ethylene of linear a-olefins[J]. J. Am. Chem. Soc.,1998, 120(28):7143-7144.
    [35]Theriot K J, Irwin R G Olefin oligomerization process[P].US 5929297,1999-7-27.
    [36]Perciful J C. Thermal cracking wax to normal alpha-olefins[P].US 4042488,1977-8-16.
    [37]Li Z T, Xie C G, Shi W Y, et al. Process for producing light olefins by catalytic conversion of hydrocarbons [P]. US 5670037,1997-9-23.
    [38]葛志强.蜡裂解工艺制α-烯烃及聚α-烯烃合成油工业化试验[D].北京:中国石油大 学,2005.
    [39]李成俭,李祥高.蜡裂解制α-烯烃及下游产品开发[J].当代化工,2006,35(4):254-257.
    [40]陈新德.石蜡裂解制α-烯烃及其综合应用技术研究[D].上海:华东理工大学,2008.
    [41]Wakui K, Nakamura Y, Hayashi M. Process for producing olefin by catalytic cracking of hydrocarbon[P].US 7531706,2009-5-12.
    [42]Konuspayev S R, Kadirbekov K A, Sarsekova A T, et al. Catalytic Synthesis of Higher a-Olefins by Paraffin Cracking[J]. Petroleum Chemistry,2010,50(5):368-372.
    [43]Konuspayev S R, Kadirbekov K A, Nurbayeva R K, et al. New Catalysts Based on the Heteropoly Acid-Zeolite System for the Synthesis of Higher a-Olefins by Paraffin Cracking[J].Catalysis in Industry,2011,3(1):76-80.
    [44]Choi J-S, Park B-J, Kim J-D, et al. Thermal-cracking method of hydrocarbon[P].US 7951987B2,2011-5-31.
    [45]姚蒙正,程侣柏,王家儒.精细化工产品合成原理[M].北京:中国石化出版社,1992.
    [46]Alperowicz N. Alpha-olefins:Sasol expands capacity further, denies link with Shell[J]. Chem. Week,1996,158(29):20.
    [47]Anon. Sasol builds octane palnt to supply Dow[J]. Chem. Week,1997,159(20):5.
    [48]Gunderson R C, Hart A W. Synthetic lubricants[M]. New York:Reinhold,1962.
    [49]Sullivan F W, Jr, Voorhees V, et al. Synthetic Lubricating Oils Relation Between Chemical Constitution and Physical Properties[J]. Ind. Eng. Chem.,1931,23(6):604-611.
    [50]Langedijk S L, van Peski A J, Amsterdam, et al. Process for the polymerization of unsaturated hydrocarbon[P]. US 2085535,1937-7-29.
    [51]Montgomery C W, Gilbert W I, Oakmont, et al. Process of preparing polymeric lubricating oils[J]. US 2559984,1951-7-10.
    [52]Hamilton L A, Pitman, Seger F M, et al. Polymerized olefin synthetic lubricants[P]. US 3149178,1964-9-15.
    [53]Brennan J A, Hill C, N.J. Polymerization of olefins with BF3[P]. US 3382291,1968-5-7.
    [54]Shubkin R L, Park O, Mich, et al. Process for producting a C6-C16 normal alpha-olefin
    oligomer having a pour point below about -50 F[P]. US 3763244,1973-10-2.
    [55]Shubkin R L, Park O, Mich, et al. Synthetic lubricants by oligomerization and hydrogenation[P]. US 3780128,1973-10-18.
    [56]Fredrik N, Salme K, Peter I, et al. Procedure for producing poly-alpha-olefin-type lubricant[P]. GR 3001928,1992-11-23.
    [57]Loveless F C, Cheshire, Conn. Catalytic poly alpha-olefin process[P]. US 4642410, 1987-2-10.
    [58]John B. Ziegler-Natta catalysts and polymerizations[M]. New York:Academic Press, 1979.
    [59]John H. Process for preparing ethylene-higher olefin copolymer oils with Ziegler-Natta catalyst in mixed aliphatic-aromatic sol vent [P].US 4855526,1989-8-8.
    [60]Chokai M. Polypropylene composition[P]. JP 11012400,1999-1-19.
    [61]黄葆同,陈伟.茂金属催化剂及其烯烃聚合物[M].北京:化学工业出版社,2000.
    [62]Dimaio A J, Baranski J R, Bludworth J G. Process for producing liquid poly-alphaolefin polymer, metallocene catalyst therefor, obtained polymer and lubricant containing the same[P]. JP 2006206925,2006-8-10.
    [63]Wu M M-S, Rucker S P, Spissell R T. Novel synthetic lubricant composition and process[P]. US 2006116498,2006-6-1.
    [64]Wu M M-S, Rucker S P, Spissell R T, et al. Novel synthetic lubricant composition and process[P].US 7022784,2006-4-4.
    [65]吕春胜.单环戊二烯基钛类茂金属催化剂催化烯烃聚合的研究[D].长春:吉林大学,2006.
    [66]Angelika D B, Christopher S, Henry W R. Polymerisation catalysts[P]. MY 129125, 2007-3-30.
    [67]Patil A O, Bodige S. Process for synthetic lubricant production[P]. US 2009156874, 2009-6-18.
    [68]Patil A O, Yang N, Wu M M-S. Process for synthetic lubricant production[P]. WO 2009117110,2009-9-24.
    [69]吴M M-S,哈格梅斯特M,杨N.聚α-烯烃的制备方法[P].CN 101809042A,2010-8-18.
    [70]Fujita Y, Suzuki K. Lubricant composition[P]. JP 2011121991,2011-6-23.
    [71]Carey J T, Galiand-Roth A S, Wu M M-S. High viscosity metallocene catalyst PAO noval base stock lubricant blends[P]. SG 172668,2011-7-28.
    [72]Shimizu H, Katayama K, Noda H, et al.1-Octene,1-decene,1-dodecene ternary copolymer and lubricant composition containing same[P]. WO 2012157531,2012-11-22.
    [73]伯顿W C,福克斯B E.控制聚α烯烃粘度的方法[P].CN102471396A,2012-5-23.
    [74]Tamoto Y. Lubricant composition[P]. EP 2540809,2013-1-2.
    [75]Ambler P W, Hodgson P K G, Stewart N J. Preparation of butene polymers using an ionic liquid[P]. US 5304615,1994-4-19.
    [76]Abdul-sada A A K, Seddon K R, Stewart N J. Ionic liquid[P]. WO 9521872,1995-8-17.
    [77]Philip A M, Royston S M, Brian E. Lubricating oils[P]. EP 0791643,1997-8-27.
    [78]Sherif F G, Shyu L-J, Gerco C C. Linear alxylbenzene formation using low temperature ionic liquid[P]. US 5824832,1998-10-20.
    [79]Hope K D, Kingwood, Twomey D W, et al. Method for manufacturing high viscosity polyalphaolefin using ionic liquid catalysts[P]. US 20050113621 A1,2005-5-26.
    [80]Hope K D, Stern D A, Kingwood, et al. Method for manufacturing high viscosity polyalphaolefin using ionic liquid catalysts[P]. US 2000161623 Al,2007-7-3.
    [81]张耀,段庆华,刘依农等.一种高粘度聚α-烯烃合成油及其制备方法[P].CN102776022A,2012-11-14.
    [82]张耀,段庆华,刘依农等.一种高粘度聚α-烯烃合成油及其制备方法[P].CN102776023A,2012-11-14.
    [83]张耀,段庆华,刘依农等.一种高粘度聚α-烯烃合成油及其制备方法[P].CN102776024A,2012-11-14.
    [84]Seger F M, Sachanen A N. Conversion of 1-olefins in the presence of lead tetraacetate[P]. US 2500161,1950-3-14.
    [85]沈虹滨,刘婕,王猛.高粘度指数聚α-烯烃合成油的制备方法[P].CN 1948243,2007-4-18.
    [86]Garwood W E. Synthetic lubricants[P]. US 2500163,1950-3-14.
    [87]毕磊,任海涛,李磊等.氯化镁处理方式对负载钛催化剂催化活性的影响[J].合成橡胶工业,2007,30(4):255-257.
    [88]张新年.负载型分子筛催化剂的制备及乙烯齐聚性能研究[D].西安:西安石油大学,2010.
    [89]Loveless F C. Method for the oligomerization of alpha-olefins[P].US 4041098,1977-8-9.
    [90]薛玉业,于廷云,张艳霞等.固载AlCl3催化剂聚合α-烯烃制润滑油基础油[J].润滑油,2002,17(6):61-64.
    [91]王囡囡,蒋山,纪敏等.AlCl3固载化催化剂的制备及其对1-癸烯聚合的催化性能[J].石油化工,2006,35(5):479-482.
    [92]Richard W S, Haddonfield. High viscosity synthetic lubricants from alpha-olefins[P].US: 3113167,1963-12-3.
    [93]Robert D, Marcel O. Lubricating oil composition[P].US 3634249,1972-1-11.
    [94]陈开,宁英男,李世刚等.氯化镁负载单中心催化剂用于烯烃聚合研究进展[J].化 工生产与技术,2011,18(4):34-38.
    [95]王静,朱博超,董金勇等.乙烯齐聚催化剂研究进展[J].高分子通报,2007,(12):17-22.
    [96]Kossiakoff A, Rice F O. Thermal Decomposition of hydrocarbons, resonance stabilization and isomerization of free radicals[J]. J. Am. Chem. Soc.,1943,65:590-594.
    [97]林世雄.石油炼制工程[M].北京:石油工业出版社,2005,第三版.
    [98]Van Speybroeck V, Reyniers M F, Marin C B, et al. The Kinetics of Cyclization Reactions on Polyaromatics from First Principles[J]. Chem. Phys. Chem.,2002,3:863-870.
    [99]Atkins P W. Physical Chemistry (Second Edition)[M]. London:Oxford University Press, 1982.
    [100]Ding H, Zhang B Y, and Liu J. Study on preparation process of lubrication from 1-decene with acidic ionic liquid catalyst[J]. Petroleum Science and Technology,2009, 27:1919-1925.
    [101]Shubkin R L, Baylerlan M S, Maler A R. Olefin oligomer synthetic lubricants:structure and mechanism of formation[J]. Ind. Eng. Chem. Prod. Res. Dev.,1980,19:15-19.
    [102]曲敏,蒋山,阎圣刚等.AlCl3/TiCl4催化癸烯聚合制润滑油基础油的研究[J].石油炼制与化工,2008,39(12):22-24.
    [103]Bringue R, Cadenas M, Fite C, et al. Study of the oligomerization of 1-octene catalyzed by macroreticular ion-exchange resins[J]. Chemical Engineering Journal,2012,207-208: 226-234.
    [104]苏克曼,潘铁英,张玉兰.波谱解析法[M].上海:华东理工大学出版社,2002.
    [105]林洁,蒋山,纪敏等.用于α-烯烃聚合的固载化AlC13催化剂的稳定性[J].石油化工,2007,36(2):142-145.
    [106]Tianxi Cai, Min He. New approaches to immobilization of aluminum chloride on y-alumina and its regeneration after deactivation[J]. Catalysis Letters,2003,86(1-3):17-23.
    [107]蔡天锡,贺民,石先哲等.三氯化铝固载化的新方法[J].高等学校化学学报,2001,22(8):1385-1387.
    [108]商丽娟,邓少亮,纪敏等.固载化AlCl3催化剂在苯与长链烯烃烷基化反应中的稳定性研究[J].石化技术与应用,2007,25(2):103-106.
    [109]Onopchenko A, Cupples B L, Kresge A N. BF3-Catalyzed Oligomerization of Alakenes: Structures, Mechanisms, and Properties[J]. Ind. Eng. Chem. Prod. Res. Dev.,1983, 22:182-191.
    [110]Chen C S H, Bridger R F. Shape-selective oligomerization of alkenes to near-linear hydrocarbons by zeolite catalysis[J]. Journal of Catalysis,1996,161:687-693.
    [111]Pater J P G, Jacobs P A, Martens J A. Oligomerization of Hex-1-ene over Acidic Aluminosilicate Zeolites, MCM-41, and Silica-Alumina Co-gel Catalysts:A Comparative Study[J]. Journal of Catalysis,1999,184:262-267.
    [112]Klerk A de. Oligomerization of 1-hexene and 1-octene over solid acid catalysts[J]. Ind. Eng. Chem. Res.,2005,44:3887-3893.
    [113]Coleto I, Roldan R, Jimenez-Sanchidrian C. Valorization of a-olefins:Double bond shift and skeletal isomerization of 1-pentene and 1-hexene on zirconia-based catalysts[J]. Catalysis Today,2010,149:275-280.
    [114]Blomsma E, Martens J A, Jacobs P A. Mechanisms of Heptane Isomerization on Bifunctional Pd/H-Beta Zeolites[J]. Journal of Catalysis,1996,159:323-331.
    [115]Gee J C, Prampin D S. A kinetic and mechanistic study of the double bond and skeletal isomerization of 1-tetradecene on SAPO-11[J]. Applied Catalysis A:General,2009, 360:71-80.
    [116]Blomsma E, Martens J A, Jacobs P A. Reaction Mechanisms of Isomerization and Cracking of Heptane on Pd/H-Beta Zeolite[J]. Journal of Catalysis,1995,155:141-147.
    [117]Stull D R, Westrum E F, Jr, et al. The Chemical Thermodynamics of Organic Compounds[M]. New York:Wiley,1969.
    [118]Brennan J A. Wide-Temperature Range Synthetic Hydrocarbon Fluids[J]. Ind. Eng. Chem. Prod. Res. Dev.,1980,19:2-6.
    [119]Hochtl M, Jentys A, Vinek H. Isomerization of 1-pentene over SAPO, CoAPO (AEL, API) molecular sieves and HZSM-5[J]. Appl. Catal. A,2001,207,397-405.
    [120]Naragon E A. Catalytic isomerization of 1-hexene[J]. Ind. Eng. Chem.,1950, 42:2490-2493.
    [121]Fogler H S. Elements of chemical reaction engineering[M].4th Edition, New Jersey: Prentice Hall,2006.684-733.
    [122]Yadav G D, Doshi N S. Development of a green process for poly-a-olefin based lubricants[J]. Green Chemistry,2002,4:528-540.
    [123]冯乐刚,郝超,张海中等.烯烃平均碳数对聚-α-烯烃合成油粘度指数和凝点的影响[J].化学工业与工程技术,2003,24(3):24-26.
    [124]中国石油天然气集团公司.通用润滑油基础油[S]. Q/SY 44-2009.
    [125]中国石油化工集团公司.石油化工设计能耗计算标准[S].GB/T 50441-2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700