用户名: 密码: 验证码:
MPS-PLGA微球的制备及其治疗大鼠脊髓压迫损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:脊髓损伤有两个阶段,原发性损伤和继发性损伤,其中继发性损伤的危害更大。甲基强的松龙(MP)能够通过抑制脂质过氧化、抗炎、抑制脂质水解和花生四烯酸释放、改善损伤后脊髓血流、防止细胞内外Na、K及Ca失衡、防止脊髓细胞凋亡、抑制兴奋性氨基酸、增强神经兴奋性和突触传递等作用减轻脊髓继发性损伤、促进神经功能恢复,是临床是上唯一确定有效的药物之一,也是唯一被美国联邦食品药品管理局(Food Drug Administration,FDA)批准的治疗SIC药物。目前MP治疗脊髓损伤的用药方案主要是大剂量冲击疗法(30mg/kg,iv,之后5.4mg/kg/h,iv,23h),通过外周静脉给药,该方案的治疗效果已获临床证实,但是其全身副作用也引起医学专家的重视。本实验尝试通过蛛网膜下腔给药来减少用药量,减轻全身副作用,为避免反复多次注射引发感染,先将MP微球化,力求通过一次性蛛网膜下腔注射MPS-PLGA微球达到较好的治疗效果。
     方法:(1)MPS-PLGA微球的制备及优化:以PLGA为囊材采用W/O/W型复乳法制备MPS-PLGA微球,通过单因素分析和正交设计优化微球制备工艺,检测优化条件下制得微球的形态、粒径、载药量、包封率、体外释药速度和稳定性。(2)动物实验:将240只成年将康SD大鼠(体重:230-250g,雌雄各半)随机分为A、B、C、D四组,A、B、C三组按Nystrom法(50g,5min)制备大鼠压迫损伤模型,A组蛛网膜下腔注射MPS-PLGA微球(3mg/kg),B组尾静脉注射MPS(30mg/kg),C组不予治疗,D组为假手术组(仅暴露脊髓而不压迫)。于术后各时相点进行BBB运动功能评分、MEP检测、损伤段脊髓组织NO含量和NOS活性检测、HE染色、Bcl-2和NF200免疫组织化学染色。
     结果:(1)内水相和油相体积比1:10、初乳功率150W、MPS浓度60mg/ml、复乳时间3min、复乳转速2000转/分钟是制备MPS-PLGA微球的最佳工艺组合。(2)在最佳工艺条件下制备的微球形态规则(近圆形)、表面光滑、平均粒径12±9.41um、粒径分布集中(<18um的微球数占80.58±1.12%)、载药量26.98%、包封率67.46%、体外释药符合Higuchi方程(y=3.203t1/2+40.526)。(3)A、B、C三组动物在损伤后其运动功能评分(BBB评分)均降低,且随时间延长逐渐升高,14d时仍低于正常水平,各时相点组内存在显著差异(p<0.01),A、B、C三组组与假手术组比较也有显著差异(p<0.01),A、B组于术后3d、7d、14d明显高于C组(p<0.01),A组7d、14d时优于B组,但差异不显著(P<0.05)。(4)大鼠脊髓损伤后MEP N1波潜伏期明显延长,随时间增加逐渐恢复。A组于7天基本恢复正常,B组也于14天时恢复至正常水平,C组14天时与D组仍有显著统计学差异。(5)NO含量和NOS活性于脊髓损伤后2h已有升高,24h打高峰并持续到72h。A、B两组明显低于C组(p<0.01),但仍高于D组(P<0.01),且A组低于B组。(6)NF200免疫组织化学染色相对阳性染色面积和平均光密度于伤后3D达最低点,各时间点A、B组与C组间存在显著差异(p<0.01),A、B组间无统计学差异(p>0.05)。(7)Bcl-2免疫组织化学染色阳性细胞百分比和平均光密度在损伤后1d达高峰,并于7d时恢复正常水平。在8h、1d、3d三个时间点,A、B组与C组间存在显著统计学差异(p<0.01),A组和B组间也有明显差异(P<0.05)。
     结论:(1)W/O/W型溶剂挥发法是MPS-PLGA微球很好的制备方法。(2)按正交设计优化工艺制备的MPS-PLGA微球符合药学要求。(3)MP早期应用能够减轻脊髓继发性损伤,促进神经功能恢复。(4)MPS-PLGA微球蛛网膜下腔注射给药治疗脊髓急性损伤的效果不亚于于MPS外周给药。
In traumatic spinal cord injury (SCI), the impact on the spinal cord induces the primary injury and the secondary damage. The secondary pathological changes following mechanical injury to the spinal cord contribute to the worsening of neurological functions. Methylprednisolone can cut down the disservice of the secondary damage and enhance the recovery of the neurofunction after SCI. The mechanisms probably included inhibiting lipid peroxidation, inflammatory reaction, lipid hydrolization and arachidonic acid releasing, improving microcirculation of the damaged spinal cord, preventing the disequilibrium of the Na, K and Ca between the internal and external, preventing apoptosis, suppressing excitatory amino acids, enhancing nervous excitation and synaptic transmission. MP is the one of those which has been certificated having effect with the SCI, and it is the only drug which having been approved to therapy the SCI by the FDA. At present, MP has been used to therapy the SCI with the high dose chemotherapy through intravenous injection. This drug delivery system usually has many adverse reactions. In this study, we try to inject the drug in the subarachnoid space in order to decrease the drug consumption and lessen the adverse reactions. First, we prepare the MPS-PLGA microspheres so as to therapy the SCI by one time injection without infection.
     Materials and Methods:
     Preparation of microspheres experiment: PLGA was choice as the capsule wall material and W/O/W double emulsion solvent evaporation-extraction method is used to prepare MPS-PLGA microspheres. The different variables of influencing factors on the preparation technology of PLGA microspheres were optimized by single factor analysis experiments and orthogonal design experiments. Prepare MPS-PLGA microspheres under the optimized conditions, and determine the shape, particle size, drug loading amount, encapsulation efficiency and release profile in vitro.
     Animal experiment: 240 healthy adult SD rats (weight: 230-250g) of either sex half and half were randomly divided into four groups. Group A, B and C were spinal cord compression model (50g/5min) according to the letter reported by Nystrom. Group A was injected MPS-PLGA microspheres (110mg/kg) though subarachnoid route, Group B was injected MPS (30mg/kg) by vena caudalis, and nothing has to do with Group C. Group was exposed the spinal cord without compression. The evaluating indicators in two weeks include: BBB score, motor evoked potentials, amount of nitric oxide in the damaged spinal cord, activity of nitric oxide synthetase in the damaged spinal cord, expression of Bcl-2 and NF200 in the spinal cord.
     Results:
     1. The optimized conditions of Preparation of MPS-PLGA microspheres: the phase volume ratio of the inner aqueous phase and oil phase is 1: 10, ultrasonic power of emulsicication is 150w, the density of MPS is 60mg/ml, frequency of stir is 2000rpm, stir time is 3min.
     2. The mirospheres prepared under the optimized conditions have nearly round integrated shape and slick appearance. Its average particle size is 12±9.41um, drug loading is 26.98%, drug trapping efficiency is 67.46%. The in vitro release profile was figured by Higuchi equation: y=3.203t1/2+40.526.
     3. BBB score of Group A, Group B and Group C is lower than Group D at every time point after surgery(p<0.01), and that of Group A and Group B is higher than Group C(p<0.01) at every time point after SCI except 8h. There are obviously differences between Group A and Group B 7d and 14d after SCI (P<0.05).
     4. The latent time of MEP N1 lengthen after SCI and then become short and short with the time increasing. The latent time of MEP N1 of Group A and Group B recovery nearly to the normal level at 7d and 14d after SCI.
     5. The amount of NO and the activity of NOS in the damaged spinal cord of Group A and Group B are higher than Group C at every time point after SCI(p<0.01). So do the Group A and Group B.
     6. The Area and AOD of the NF200 of the Group A and Group B are higher than the Group C 7d and 14d after SCI(p<0.01). There is no significant difference between Group A and Group B.
     7. The expression of Bcl-2 increase and reach to the peak 1d after SCI, then it return to the normal level at the 7d time point. At the 8h,1d and 3d time point, the expression of Bcl-2 of the Group A and Group B is lower than Group C(p<0.01). There is also an obviously difference between Group A and Group B.
     Conclusions:
     1. W/O/W double emulsion solvent evaporation-extraction method is a excellent method to prepare MPS-PLGA microspheres.
     2. The MPS-PLGA microspheres prepared under the optimized conditions according to the orthogonal design experiments consistent with the requisition of the pharmaceutical sciences.
     3. Methylprednisolone can decrease the disservice of the secondary damage and enhance the recovery of the neurofunction after SCI.
     4. The therapeutic effect of MPS-PLGA microspheres injected through subarachnoid route to the SCI is as good as MPS injected though intravenous.
引文
1. Hall ED,Braughler JM ,McCall JM.Antioxidant effects in brain and spinal cord injury[J].J Neurotrauma,l992.(Suppl 1):Sl65-Sl72
    2. Koc RK,Akdemir H,Karakucuk EI,et a1.Effect of methylprednisolone,tirilazad mesylate and vitamin E on lipid peroxidation after experimental spinal cord injury[J].Spinal Cord.1999,37(1):29-32.
    3. Bracken MB , Holford TR.Neurological and functional status l year after acute spinal cord injury:estimates of functional recovery in National Acute Spinal Cord Injury StudyⅡfrom results modeled in National Acute Spinal Cord Injury StudyⅢ[J].J Neurosurg.2002,96(3):259-266.
    4. Xu J,Kim GM,Ahmed SH, et al. Glucocorticoid receptor-mediated suppression of activator protein-1 activation and matrix metalloproteinase expression after spinal cord injury [J].J Neurosci. 2001 (1):92-97
    5. Bracken MB, Shepard MJ, Collins WF , et al. Methylprednisolone or naloxone treatment after acute spinal cord injury: 1-year follow-up data. Results of the second National Acute Spinal Cord Injury Study. [J]. J. Neurosurg.1992, 76(1): 23-31.
    6. Wise W,胥少汀,苟三怀.大剂量甲基强的松龙治疗急性脊髓损伤[J].中国脊柱脊髓杂志.2000,l0 (5):304-305.
    7.郝定均,周晓渝袁福镛.甲基强的松龙对急性脊髓损伤治疗的药理作用[J].中国脊柱脊髓损伤杂志.1995,5(5):227-228.
    8. Braughler JM,Hall ED.Uptake and elimination of methylprednisolone from contused cat spinal cord following intravenous injection of the sodium succinate ester[J].J Neurosurg.1983,58(4):538-542.
    9. Bracken, MB, Shepard, MJ, Holford, TR, et al. Administration of methylprednisolone for 24 or 48 hours or tirilazad mesylate for 48 hours in the treatment of acute spinal cord injury. Results of the Third National Acute Spinal Cord Injury Randomized Controlled Trial. National Acute Spinal Cord Injury Study. [J]. JAMA .1997,277(20): 1597-1604
    10. Jakeman, LB, Wei, P, Guan, Z, et al. Brain-derived neurotrophic factor stimulates hindlimb stepping and sprouting of cholinergic fibers after spinal cord injury [J]. ExpNeurol. 1998, 154(1): 170-184.
    11. Kojima, A, Tator, CH. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats [J]. J. Neurotrauma. 2002, 19(2):223–238.
    12. Namiki J, Kojima A., Tator CH. Effect of brain-derived neurotrophic factor, nerve growth factor, and neurotrophin-3 on functional recovery and regeneration after spinal cord injury in adult rats [J]. J Neurotrauma .2000, 17(12): 1219–1231.
    13. Novikova, LN, Novikov, LN, Kellerth, JO. Survival effects of BDNF and NT-3 on axotomized rubrospinal neurons depend on the temporal pattern of neurotrophin administration [J]. Eur J Neurosci. 2000,12(2): 776–780
    14. Jones LL, Tuszynski MH. Chronic intrathecal infusions after spinal cord injury cause scarring and compression [J]. Microsc. Res. Tech. 2001,54 (5):317–324.
    15. Le Breton F, Daviet JC, Monteil J, et al. Radioisotopic control for baclofen pump catheter failure [J]. Spinal Cord. 2001,39(5): 283–285.
    16. McMillan MR, Doud T, Nugent W. Catheter-associated masses in patients receiving intrathecal analgesic therapy [J]. Anesth Analg. 2003.,96(1): 186–190.
    17. Thorne RG, Frey WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations [J]. Clin Pharmacokinet. 2001, 40(12): 907–946.
    18. Jimenez-Hamann MC, Tsai EC, Tator CH., et al. Novel intrathecal delivery system for treatment of spinal cord injury[J].Exp Neurol. 2003, 182(2): 300–309.
    19. Lagarce F, Garcion E, Faisant N, et al. Development and characterization of interleukin-18-loaded biodegradable microspheres [J].International Journal of Pharmaceutics xxx (2006) xxx–xxx
    20. Jimenez-Aamann MC, Tator CH, Shoichet MS. Injectable intrathecal delivery system for localized administration of EGF and FGF-2 to the injured rat spinal cord. Experimental Neurology [J]. 2005, 194(1):106–119
    21.段宏,沈彬,何勤,等.缓释bFGF-PLGA微球制备及其体外释药性质和生物活性的研究[J].中国药学杂志.2004 ,39 (3): 196-198
    22. Pean JM, Venier-Julienne MC, Boury F, et al. NGF release from poly(D,L-lactide-co-glycolide) microspheres. Effect of some formulation parameters on encapsulated NGF stability [J]. J Control Release.1998, 56(1-3): 175-187.
    23. Chimalakonda AP, Mehvar R. Effects of duration of ischemia and donor pretreatment with methylprednisolone or its macromolecular prodrug on the disposition of indocyanine green in cold-preserved rat livers. Pharm Res. 2004,21(6): 1000-1008.
    24.戴春,张家美,王玉柱,等.反相HPLC法测定鼠血浆中甲基强的松龙及其前体酯。医学理论与实践.1999,12(3):127-129
    25.国家药典委员会编.中华人民共和国药典(二部)[M]. 2005年版.北京:化学工业出版社,附录73-74.
    26.贺石林,陈修编著。医学科研方法导论[M]。1998年版,人民卫生出版社,248-249
    27. Wang YM, Sato H, Adachi I, et al. Optimization of the formulation design of chitosan microspheres containing cisplatin [J]. J Pharm Sci, 1996, 85(11):1204-1210
    28.毕殿洲主编.药剂学(M).2001,人民卫生出版社,121-134
    29. Igartua M, Hernandez RM, Espuisabel A, et al. Enhanced immune response after subcutaneous and oral immunization with biodegradable PLGA microspheres [J] . J Controlled Release [J] .1998, 56(1-3): 63-73.
    30. Hilbert AK, Fritzsche U, Kissel T. Biodegradable microspheres containing influenza A vaccine: immune response in mice [J]. Vaccine.1999, 17(9-10): 1056-1073
    31. O’Donnell PB, MoGinity JW. Influence of processing of the stability and release properties of biodegradable microspheres containing thioridazine hydrochloride [J]. Eur J Pharm Biopharm. 1998, 45(1):83-94.
    32.朱家惠,沈正荣,王芳,等.含睾丸酮的乳酸聚乳酸共聚物微球的制备及体外释放[J].中国药学杂志.1997, 32(10):595.
    33. Lu L, Garcia CA., Mikos AG. In vitro degradation of thin poly(DL-lactic-co-glycolic acid) films [J]. J Biomed Mater Res.1999 ,46(2): 236–244
    34.陈莉,赵保中,杜锡光.聚羟基乙酸及其共聚物研究进展[J].化工新型材料.2002 ,30(3):11-15
    35. Wu XS. Preparation, characterization, and drug delivery applicationsof microspheres based on biodegradable lactic/glycolic acid polymer [M]. In: Wise, et al., editors. Encyclopedic Handbook of Biomaterials and Bioengineering. New York: Marcel Dekker,1995,1151–1200
    36. Kenley R, Marden L, Turek T, et al. Osseous regeneration in the rat calvarium using novel delivery systems for recombinant human bone morphogenetic protein-2(rhBMP-2) [J]. J Biomed Mater Res. 1994, 28(10):1139–1147.
    37. Mayer M, Hollinger J, Ron E, et al. Maxillary alveolar cleft repair in dogs using recombinant human bone morphogenetic protein-2 and a polymer carrier [J]. Plast Reconstr Surg .1996, 98(2): 247–259.
    38. Ogura Y, Kimura H. Biodegradable polymer microspheres for targeted drug delivery to the retinal pigment epithelium [J]. Surv Ophthalmol .1995, 39(Suppl 1):S17–24.
    39. Okada H, Toguchi H. Biodegradable microspheres in drug delivery [J]. Crit Rev Ther Drug Carrier Syst 1995; 12(1):1–99.
    40. Veziers J, Lesourd M, Jollivet C, et al. Analysis of brain biocompatibility of drug-releasing biodegradable microspheres by scanning and transmission electron microscopy [J]. J Neurosurg 2001?C 95(3):489–494.
    41. Schakenraad JM, Hardonk MJ, Feijen J, et al. Enzymatic activity toward poly(L-lactic acid) implants [J].J Biomed Mater Res.1990,24(5):529–545
    42. Vert M, Mauduit J, Li S. Biodegradation of PLA/GA polymers: increasing complexity [J].Biomaterials.1994 ,15(15):1209-1213
    43. Grizzi I, Garreau H, Li S, et al. Hydrolytic degradation of devices based on poly(DL-lactic acid) size-dependence [J]. Biomaterials .1995, 16(4): 305-311
    44. Spenlehauer G, Vert M, Benoit JP, et al. In vitro and in vivo degradation of poly (DL-lactide/glycolide) type microspheres made by solvent evaporation method [J]. Biomaterials.1989,10 :557–563
    45.蒋知俭主编.医学统计学[M].北京:人民卫生出版社,1998:125
    46. Aloke D. Projection properties of some orthogonal arrays. Statistics & Probability Letters [J]. 2005 , 75(4):298–306
    47. Li-HX, Fang L, Han Z, et al. Optimal design and preparation of beta-SiAlON multiphase materials from natural clay[J] . Materials & Design,.2006,27(7): 595-600
    48. Bakhtiari M.R, Faezi M.G., Fallahpour M, et al. Medium optimization by orthogonal array designs for urease production by aspergillus niger PTCC5011[J].Process Biochemistry.2006, 41, (3) 547–551
    49. Wang Y, Harrison M, Clark BJ. Experimental design for a basic mixture on a fluorinated packing: The effect of composition of the mobile phase [J] Journal of Chromatography A. 2006, 1105(1-2): 77–86
    50. Stephanie JW, Charles MG, Kathleen MF, et al. Significant Parameters in the Optimization of MALDI-TOF-MS for Synthetic Polymers [J]. Journal of the American Society for Mass Spectrometry. 2006, 17, (2): 246–252
    51.杨帆,张永明,赵耀明,等.干扰素-α微球的制备及其体外释药性能研究[J].中国医院药学杂志.2005,25(9):807–809
    52.陈发明,金岩,吴织芬,等.重组人骨形态发生蛋白-2缓释凝胶微球的研制及其溶胀、降解、载药、释药特征[J].中华创伤杂志.2005,21(9):697–701
    53. Nystrom B, Berglund JE, Bergquist E. Methodological analysis of an experimental spinal cord compression model in the rat [J]. Acta Neurol Scand.1988, 78(6) :460-466.
    54. Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats [J]. J Neurotrauma.1995, 12(1): 1–21.
    55.伍亚民,王正国,朱佩芳,等.缺血损伤脊髓运动诱发电位的变化及其意义[J].中华物理医学与康复杂志.2000,22(5):294–296
    56. Leung TJ, Tavera C, Martinez J, et al. Neutrophil chemotactic activity is modulated by human cystatin C, an inhibitor of cysteine proteases [J]. Inflammation.1990, 14(3): 247–258.
    57.李长有,林国宏.实验性脊髓缺血性损伤的免疫组织化学评价[J].中国医科大学学报.1999,28(5):375-386.
    58.蒙革,朱朗标,余翼飞,等.血预处理对缺血再灌注后兔脊髓磷酸腺苷代谢的影响[J].中国应用生理学杂志.2001,17(2):144–147.
    59.蔡文琴,王泊云.实用免疫细胞化学与核酸分子杂交技术[M].成都:四川科学技术出版社,1994
    60. Ronald D, Guido CK, Elbert AJJ. Regeneration of descending axon tracts after spinal cord injury[J] .Neurobiology .2005, 77:57–89
    61. Schwab ME, Bartholdi D. Degeneration and regeneration of axons in the lesioned spinal cord [J]. Physiological Review. 1996,76(2):319
    62. Aigner L, Arber S, Kapfhammer JP, et al. Overexpression of the neural growth-associated protein GAP-43 induces nerve sprouting in the adult nervous system of transgenic mice [J]. Cell .1995, 83(2):269–278.
    63. Tuszynski MH, Kordower J. CNS regeneration [M]. San Diego: Academic Press; 1999.
    64.罗其中,包映晖,董斌。中枢神经损伤后的神经再生与修复策略[J].中国微创神经外科杂志.2004,9(2):49-52。
    65. Tuszynski MH, Gage FH. Maintaining the neuronal phenotype after injury in the adult CNS. Neurotrophic factors, axonal growth substrates, and gene therapy [J].Mol Neurobiol. 1995,10(2-3):151–167.
    66. Tuszynski MH, Gabriel K, Gage FH. NGF delivery by gene transfer induces differential out growth of sensory, motor and noradrenergic neuritis adult spinal cord injury [J].Exp Neurol. 1996,137:157–173
    67.黄平,董海英。急性脊髓损伤非手术治疗的进展[J]。中国骨伤.2004,17(11):699-701
    68. Braughler JM,Hall ED.Uptake and elimination of methylprednisolone from contused cat spinal cord following intravenous injection of the sodium succinate ester[J].J Neurosurg.1983,58(4):538–542.
    69. Hsu CY,Dimitrijevic MR.Methylprednisolone in spinal cord injury:the possible mechanism of action[J].J Neurotrauma.1990,7(3):115–119.
    70. Anderson DK,Saunders RD,Demediuk P,et a1.Lipid hydrolysis and peroxidation in injured spinal cord:partial protection with methylprednisolone or vitamin E and slenium [J].Cent Nerv Syst Trauma.1985,2(4):257–267.
    71. Young W ,Flamm ES.Effect of high-dose corticosteroid therapy on blood flow,evoked potentials,and extra cellular calcium in experimental spinal injury[J].J Neurosurg.1982,57(5):667–673.
    72. Agrawal SK,Fehlings MG.Mechanisms of secondary injury to spinal cord axons in vitro:role of Na .Na-K ATPase,the Na-H exchanger,and the Na Ca exchanger[J].J Neumsci.1996, 16(21):545–552.
    73. Casha S,Yu WR,Fehlings MG.Oligodendroglial apoptosis occurs along degenerating axons and is associated with FAS and p75 expression following spinal cord injury in the rat. [J].Neuroscience.2001,103(1):203–218.
    74. Liu D,McAdoo DJ.Methylprednisolone reduces excitatory: Amino acid release following experimental spinal cord injury [J].Brain Res.1993,609(1-2):293–297.
    75. Hall ED . Glucocorticoid effects on central nervous excitability and synaptic transmission [J].Int Rev Neurobiol,1982,23:165–195.
    76. Hall ED . The neuroprotective pharmacology of methylprednisolone [J] . JNeurosurg.1992,76(1):13–22.
    77. Hall ED, Braughlet JM.Glucocorticoid mechanisms in acute spinal cord injury:a review and therapeutic rationale[J].Surg Neurol.1982,18(5):320–327.
    78. Clark CR, Maclusky NJ , Naftolin F . Glucocorticoid receptors in the spinal cord[J].Brain Res.1981,217(2):412–415.
    79. Saunders RD,Dugan LL,Demediuk P,et a1.Effects of methylprednisolone and the combination of alpha-tocopherol and selenium on arachidonic acid metabolism and lipid peroxidationin traumatized spinal cord tissue[J].J Neurochem.l987,49(1):24–31.
    80. Hsu CY,Dimitrijevie MR.Methylprednisolone in spinal cord injury: the possible mechanism of action [J]. J Neurotrauma.1990,7(3):115–119.
    81. Hasse W, Weidtmann A, Voeltz P. Lacricacidosis: a complication of spinal cord injury in multiple trauma[J].Unfallchirurg.2000 ,103(6):495–498
    82. Qian T, Campagnolo D, Kirshbulum S. High dose methylprednisolone may do more harm for spinal cord injury [J]. Mde Hpotheses.2000,55(5):452–453
    83. Hurlbert RJ. Methylprednisolone for acute spinal cord injury: an in appropriate standard of care [J]. J Neurosueg.2000,93(1):1–7
    1. Wise W,胥少汀,等.大剂量甲基强的松龙治疗急性脊髓损伤[J].中国脊柱脊髓杂志.2000, 10(5):304-305
    2.陆裕朴,胥少汀,葛宝丰主编.实用骨科学[M].北京:人民军医出版社, 1997, 804-807
    3. Xu J, Kim GM, et al. Glucocorticoid receptor-mediated suppression of activitor protein-1 activation and matrix methallpproteinase expression after spinal cord injury[J]. Neurosci.2001, 21(1):92-7
    4.李良满,朱悦,范广宇。甲基强的松龙对大鼠急性脊髓损伤组织C9和CD59表达的影响[J].第四军医大学学报.2005,26 (8):697-699
    5.杨建东,李家顺,贾连顺,等.大剂量甲基强的松龙对大鼠急性脊髓损伤预防保护作用的研究[J]。中国脊柱脊髓杂志.2005,(1):46-48
    6.汤宇。国际脊髓信托基金会对脊髓损伤修复治疗的发展策略[J]。中国脊柱脊髓杂志. 1997,7(3)∶141-144
    7.杨建东,贾连顺,李家顺,等.预防使用大剂量甲基强的松龙对大鼠急性脊髓损伤的神经保护作用[J].颈腰痛杂志.2005,26(1):22-25
    8. Liu D, Li L, et al. Prostaglandin releaseby spinal cord injury mediates production of hydroxyl radical, malondiadehyde and celldeath: a site of neuroprective action of methylprednisolone[J]. Neurotraum.2001, 77 (4):1036-47
    9. Lankorst AJ, Laak MP. Combinedtreatment with alpha MSH and methylprednisolone fails to improve functional recovery after spinal cord injury in the rat [J]. Brain Res .2000,859(2):334-40
    10. Benton R1, Ross CD, Miller YE. Spinal taurine levels are increased 7 and 30 days following methylprednisolone treatment of spinal cord injury in rats [J]. Brain Res. 2001,893(1-2)∶292-300
    11. Imanaka T, Hukuda S, et al. The role of GM1-ganglio-side in the injuried spinal cord of rats: an immunohis-tochemical study using GM1-antisera [J]. J Neurotrauma.1996,13∶163
    12.傅强,等。神经节苷脂对急性脊髓损伤的治疗作用[J]。中华创伤杂志.2000,16(12)∶720-722
    13.张春芬,仲伟法,等.维生素C对抗外源性溶血磷酯酰胆碱所致的离体大鼠工作心脏类缺血再灌注损伤作用[J]。微循环学杂志.2000,10 (3)∶22-24.
    14. Katoh D, Ikau T. Effect of dietaryvitamin C on compression injury of the spinal cord in a rat mutant unable to synthesize ascorbic acid and its correlation with that vitamin E [J]. Spine Cord.1996, 34 (4):234-238
    15. Kaptanoglu E, Tuncel M, et al. Comparision of the effects of melatonin and methylprednisolone in experimental spinal cord injury[J]. J Neurosurg.2000, 93(1Supple): 77- 84
    16. Kaptanoglu E, Caner HH, et al. Effect of mexiletine on lipid peroxidation and early ultrastructural findings in experimental spinal cord injury [J]. J Neurosurg 1999,91(2Supple): 200-204
    17. Tuszynski MH, Murai K, et al. Functional characterization of NGF-serecting cell grafts to the acutely injuried spinal cord [J]. Cell Transplant.1997,6:36
    18.庞清江,等。外源性神经生长因子对损伤性脊髓的保护作用[J].中华实验外科杂志.1999,16(4):378-380
    19. Kerekes N, Lanary M, et al. The effect of NGF,BDNF and bFGF on expression of galanin in cultured rat dorsal root ganglia [J]. Brain Res. 1997,754 (1-2)∶131
    20.刘文革,罗永湘.碱性成纤维细胞因子对脊髓损伤早期保护作用的实验研究[J].中国修复重建外科杂志.1999,13(5):291-294
    21.吕国华,王冰,潘磊.大剂量甲基强的松龙对大鼠脊髓急性损伤细胞凋亡和bFGF变化的影响[J].医学临床研究.2003,20(12):885-888

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700