用户名: 密码: 验证码:
兴仁高砷煤矿区水环境中砷的自然净化机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
兴仁县高砷煤矿区是黔西南高砷煤矿区之一。过去的采煤活动造成部分含砷量高的煤层及煤渣暴露于空气中,在有氧的条件下氧化,致使其中的部分砷释放出来。释放的砷元素通过一系列复杂的物理、化学过程扩散到矿区周围水体和沉积物中。本文对兴仁县高砷废弃煤矿区石门坎、法兰木、小尖山和正在开采的潘家庄顺发煤矿四个区域的水体和沉积物进行采样分析。通过对研究区水体的水化学特征,水体和沉积物中砷的分布规律以及沉积物中砷的分级提取形态的研究,探讨了碳酸盐岩地质背景下矿山环境中砷的自然净化机理及净化能力。取得以下结论:
     1.研究区大多数区域水体的pH值从上游至下游呈升高趋势,而水体的电导率呈下降趋势。各区域水体的电导率随pH值的升高而降低,其中法兰木区域水体表现最为突出。研究区大部分水样离子组分以Fe和SO_4~(2-)为主,只有少数水样点以SO_4~(2-)和Ca为主。
     2.从上游至下游,研究区水体中总砷含量呈下降趋势,而沉积物中总砷含量的沿程变化多表现为先升高后降低,沉积物中总砷含量较高的原因是沉积物对砷的富集。
     3.研究区沉积物中砷的形态以Fe、Al氧化物结合态为主。其中又以无定形态占主导,这与研究区沉积物组分中含有大量的非晶质体相对应;而可交换态和硫化物及有机结合态含量较少。
     4.由于沉积物中含有大量的非晶质体物质,沉积物中砷的形态主要以无定形Fe、Al(氢)氧化物结合态和结晶Fe、Al(氢)氧化物结合态的形式存在。表明了矿山环境中砷的自然净化机理主要是以Fe、Al(氢)氧化物的吸附沉淀和共沉淀为主,而水流的稀释作用也是研究区水体中砷的自然净化机理之一。从上游到下游,研究区水体中砷的净化速率不断降低,一般经过很短的运移距离,水体中砷的含量从一个较高的含量水平降低到10μg/L或是更低。
The High-Arsenic coal mining area in Xingren is one of the High-Arsenic coal mining areas in southwestern Guizhou Province. The coals and waste dump with high arsenic which caused by mining activities, are exposed to the air and continued to oxidation, which lead to arsenic released. The released arsenic through a series of complex physical and chemical process diffuse to the water and sediments around the mining area,. The water and sediment samples in the stream system from the abandoned high-arsenic coal mine area, where are in Shimenkan, Falanmu and Xiaojianshan, and from the mining coal where is in Panjiazhuang in Xingren county were analyzed. Based on analysis of the water chemical characterization, the As distribution in water and sediments, and the fractions of arsenic in the sediments by selective extractions method, this paper discusses the natural attenuated mechanisms of arsenic in mine environment with carbonate rocks of the geological environment. There are several conclusions as follows:
     1. The pH value in most water samples are increasing while the electric conductivitys are decreasing from upstream to downstream. There is a negative correlation between the electric conductivity and the pH value, especially in water samples from Falanmu. The main ions in most collected water samples are Fe and SO_4~(2-), only a few of water samples have more SO_4~(2-) and Ca.
     2. From the upstream to downstream, the contents of arsenic in water samples are decreasing while the contents of arsenic in sediments are increasing then decreasing. The arsenic in water transform to the sediment, caused the contents of arsenic in sediment is higher.
     3. The arsenic fraction in sediments is associated with Al and Fe oxyhydroxides, especially the fraction associated with Al and Fe amorphous oxyhydroxides, which are coincided with a large number of amorphous in sediments mineral composition. And the exchangeable fraction and associated with sulphides and organics fraction were low in sediments.
     4.There is a large number of amorphous in sediments, and the fraction of arsenic in sediments are the fraction associated with Al and Fe amorphous oxyhydroxides and the fraction associated with Al and Fe crystalline oxyhydroxides. Arsenic in mine environment was mainly attenuated by the adsorption and coprecipitation of Fe and Al oxyhydroxides, while the dilution of water also plays an important role. Usually, from the upstream to downstream, the attenuation speed of arsenic in water is gradually decreased, and the content of arsenic in water was decreased below 10ug/L or lower in a short distance.
引文
[1]丁振华,郑宝山,张杰,等.黔西南高砷煤中砷存在形式的初步研究[J].中国科学(D辑),1999,9(5):421-425.
    [2]丁振华,郑宝山,陈朝刚,等.黔西南高砷煤的分布及地球化学特征研究[J].地球化学,2000,29(5):493-494.
    [3]丁振华,郑宝山,Finkelmam RB等.黔西南高砷煤中砷赋存状态的XAFS和铁的Moessbauer 谱研究[J].高校地质学报 2003,9(2):273-278.
    [4]王春旭,李生志,等.环境中砷的存在形态研究[J].环境科学,1993,14(4):53-57.
    [5]王小庆.水环境条件对重金属迁移转化的影响[J].洛阳工业高等专科学校学报,2006,16(1):3-4,28.
    [6]王振刚,何海燕,严于型,等.石门雄黄矿地区居民砷暴露研究[J].卫生研究,1999,28(1):12-14.
    [7]王菊英,张曼平.重金属的存在形态与生态毒性[J].海洋与湖沼.1992 23(2):84-89.
    [8]王立军,朝生.江广州段水体沉积物和悬浮物中27种元素的含量玉形态分布特征[J].用基础与工程科学学报,1997,7(1):12.
    [9]中华人民共和国国家标准(土壤环境质量标准GB15618-1995).
    [10]毕树平,David.L,Correl.L.天然水体中砷形态分布的化学平衡计算[J].南京大学学报,1997,33(2):242.
    [11]刘俊华,王文华,彭安.土壤中汞生物有效性的研究[[J].农业环境保护,2000,19(4):216-220.
    [12]乔庆霞,黄小凤.沘江表层底泥中重金属化学形态的研究[J].昆明理工大学学报,1999,24(2):195-198.
    [13]孙歆,韦朝阳,王五一.土壤中砷的形态分析和生物有效性研究进展[J].地球科学进展,2006,21(6):625-632
    [14]陈静生,王飞越,宋吉杰.中国东部河流沉积物中重金属含量与沉积物主要性质的关系{J}.环境化学,1996,15(1):8-14.
    [15]陈静生,王飞越,陈成旗.中国东部主要河流颗粒物的元素组成[J].北京大学学报,1996,32(2):206-214.
    [16]陈静生,周家义.中国水环境重金属研究[M].北京:中国环境科学出版社,1992.
    [16]陈萍,黄文辉,唐修义.我国煤中砷的含量、赋存特征及对环境的影响[J].煤田地质与勘探,2002,30(3):1-4.
    [17]陈同斌,刘更另.土壤中砷的吸附和砷对水稻的毒害效应与pH值的关系[J].中国农业科学,1993,26(1):63-68.
    [18]李达圣,安冬,曾正,等.贵州燃煤型砷中毒患者患恶性肿瘤死亡观察[J].中国地方病学杂志,2004,23(1):42-45.
    [19]李铁,叶常明,雷志芳.沉积物与水间相互作用的研究进展[J].环境科学进展,1998,6(5):29-39.
    [20]邱立萍.砷污染危害及其治理技术[J].新疆环境保护,1999,21(3):15-19.
    [21]吴攀,裴廷权,冯丽娟,等.贵州兴仁煤矿区土壤表土与沉积物中砷的环境调查研究[J].地球与环境,2006,34(4):31-35.
    [22]肖唐付,洪业汤,郑宝山,等.黔西南Au-As-Hg-Tl矿化区毒害金属元素的水地球化学[J].地球化学,2000,29(6):571-578.
    [23]肖唐付,洪冰,杨中华,等.砷的水地球化学及其环境效应[J].地质科技情 报,2001,30(1):71-75.
    [24]佘海燕.河湖沉积物对重金属吸附-解吸的研究概况[J].化学工程师,2005,118(7):30-33.
    [25]张朝生,王立军,章申.长江中下游河流沉积物和悬浮物中金属元素的形态特征[J].中国环境,1995,15(5):342.
    [26]张辉,马东升.长江(南京段)现代沉积物中重金属的分布特征及其形态研究[J].环境化学,1997,16(5):429.
    [27]金相灿主编.沉积物污染化学.北京:中国环境科学出版社,1992.
    [28]武斌,廖晓勇,陈同斌,等.石灰性土壤中砷形态分级方法的比较及其最佳方案[J].环境科学学报,2006,26(9):1467-1473.
    [29]岳梅,赵峰华,任德贻,等.煤矿酸性水水化学特征及其环境地球化学信息研究[J].煤田地质与勘探,2004,32(3):46-49.
    [30]赵峰华,任德贻,郑宝山,等.高砷煤中砷赋存状态的扩展x射线吸收精细结构谱研究[J].科学通报,1998,43(14):1549-1551.
    [31]赵素莲,土玲芬,梁京辉.饮用水中砷的危害及除砷措施[J].现代预防医学,2002,29(5):651-654.
    [32]周代兴.高砷煤污染引起慢性砷中毒的调查[J].中华预防医学杂志,1993:27(3):147-149.
    [33]柯海玲.陕西潼关金矿区土壤重金属环境地球化学特征及污染评价[A].长安大学,中国,陕西,2005.
    [34]姚志刚,鲍征宇,高璞.湖泊沉积物中重金属的环境地球化学[J].地质通报,2005,24(10-11):997-1001.
    [35]候琳琳.贵州省兴仁县滥木厂地区铊汞砷环境污染和铊的土壤存在形态的研究[A].成都理工大学,中国,四川,2002.
    [36]栾兆坤,汤鸿霄.污染水体重金属化学稳定性的研究[J].环境科学,1990,11(4):248-251.
    [37]傅平.砷的地球化学屏障作用初探[J].重庆环境科学,1999,21(6):48-49.
    [38]梁亮.河流沉积物重金属形态分类法的研究[A].山东大学硕士学位论文,2006,P11.
    [39]谢锋,何锦林,谭红,等.硝酸一次消解同时测定土壤中Cd、As、Hg的方法研究[J].土壤通报,2006,37(2):340-342.
    [40]谢宏.贵州西部高砷煤地质特征及成因研究[A].贵州大学2005届硕士研究生学位论文,p11.
    [41]蒋成爱,吴启堂,陈杖榴.土壤中砷污染研究进展[J].土壤(Soils),2004,36(3):264-270.
    [42]简敏菲,弓晓峰.鄱阳湖流域重金属污染对湖区湿地生态功能的影响及防治对策.江西科学,2003,21(3):230-234.
    [43]裴廷权.贵州兴仁县煤矿区砷的表生地球化学初步研究[D].贵阳,贵州大学,2006.
    [44]戴树桂主编.环境化学[M].北京:高等教育出版社,2006年第二版,p197.
    [45]魏俊峰,吴大清,彭金莲,等.广州城市水体沉积物中重金属形态分布研究[J].土壤与环境1999,8(1):10-14.
    [46]魏俊峰,吴大清,彭金莲等.污染沉积物中重金属的释放及其动力学[J].生态环境,2003.12(2):127-130.
    [47]Anawar H.M.,Garcia-Sanchez A.,.Santa Regina I.Evaluation of various chemical extraction methods to estimate plant-available arsenic in mine soils[J].Chemosphere,2007,1-9.
    [33]Ata Akcil ,Soner Koidas. Acid Mine Drainage (AMD): causes, treatment and case studies[J]. Journal of Cleaner Production, 2006 (14): 1139-1145
    [48]Benjamin M M and Leckie J O. Multiple2site adsorption of Cd, Cu, Zn , and Pb on amorphous iron oxyhydroxide [J]. J . Colloid Interface Sci., 1981,79 :209-221.
    [49]Bertin C,and Boury A. C.M. Trends in the heavy metal content of river sediments in the drainage basin of smelting activities[J].Wat.Resl,1995,29:1729-1736.
    [50]Brandstetter A, Lombi E, Wenzel WW. Arsenic-contaminated soils:I. Risk assessment. In: Wise DL, Trantolo DJ, Inyang HI, Cichon ED, editors. Remediation of Hazardous Waste Contaminated Soils[M]. 2nd Ed. New York: Marcel Dekker Inc; 2000.715~37.
    [51]Carlson L, Bigham JM, Schwertmann U, Kyek A, Wagner F.Scavenging of As from acid mine drainage by schwertmannite and ferrihydrite: a comparison with synthetic analogues[J]. Environ Sci Technol 2002;36:1712~9.
    
    [52]Castro Larrgoitia J ,Kramar U and Puchhelt H 200 years of mining activities at La Paz/San Luis Potoa/Mosico-Consequences forenvironment exploration[J]. Geochem. Explor, 1997,58:81- 91.
    
    [53]Chang S C, Jackson M L. Fractionation of soil phosphorus[J].Soil Science,1957,84:133-144.
    [54]Chlopecka A, Adriano D C. Mimicked in situ stabilization of metals in a cropped soil: bioavailability and chemical form of zinc[J].Environmental Science&Technology,1996,30:3294-3303.
    [55]Chukhantsev, V.G.The solubility products of a series of arsenates[J]. Anal. Chem. (URSS) 1956.11,565-571.
    
    [56]CullenW R, Reimer K J. Arsenic speciation in the environment[J]. Chemical Reviews, 1989, 89: 713-764.
    
    [57]Chlopecka A, Adriano D C,Mimicked in-situ stabilization of metals in a cropped soil: Bio-availability and chemical forms of zinc[J].Environ.Sci. Technol.,1996,34,3294-3303.
    [58]Davidson C M,Wilson L E,Ure A M,Effect of sample preparation on the operational speciation of cadmium and lead in a freshwater sediment, Fresenius[J].Anal.Chem.,1999,363,134-136.
    [59]De Vitre, R., Belzile, N., Tessier, A., Speciation and adsorption of arsenic on diagenetic iron oxyhydroxides. Limnol. Oceanog.1991.36,1480-1485.
    
    [60]Dove, P.M., Rimstidt, J.A.,. The solubility and stability of scorodite, FeAsO_42H_2O[J]. Am. Mineral. 1985,70,838-844.
    
    [61]Ehrlich, H.L., Bacterial oxidation of arsenopyrite and enargite[J]. Econ. Geol. 1964.59, 1306-1312.
    
    [62]Fergusson JEThe heavy elements: chemistry, environmental impact and health effects[J]. Pergamon Press, New York ,1990
    
    [63]Forstner U, Kernsten M, Chemistry and Biology of Solid Waste[J]. Springer-Verleg, Berlin, 1988,219-237.
    
    [64]Fukushi K, Miwa S, Tsutomu S, et al, A natural attenuation of arsenic in drainage from an abandoned arsenic mine dump[J]. Applied Geochemistry, 2003 (18):1267-1278.
    [65]Fuller CC, Davis JA. Influence of coupling of sorption and photosynthetic processes on trace element cycles in natural waters[J]. Nature 1989;340:52-64.
    [66]Gelova, G.A., Hydrogeochemistry of Ore Elements[J]. Nedra, Moscow. 1977.
    [67]GohH K. Lira TT. Arsenic fractionation in a fine soil fraction and influence of various anions on its mobility in the subsurface environment[J].Applied Geochemistry,2005,20:229-239.
    [68]Homlstrom H, Ljungberg J, Ohlander B. Role of carbonates in mitigation of metal release from mining waste.Evidence from humidity cells tests[J].Environ Geol,1999,37(4):267-280.
    [69]Hossain M.F..孟加拉国砷污染回顾[J].水文地质工程地质技术方法动态,2007,(1):14-28.
    [70]Jennings S R.Dollhopf D J and Inskeep W P.Acid production from sulfide minerals using hydrogen peroxide weathering[J].Appl.Geochim.,2000,15;235-243.
    [71]Johnson R H,Blowes D W and Robertson W D,et al.The hydrogeochemistry of the Nickel Rim mine tailing impoundment,Sudbury,Ontario[J].J.Comtam.Hydrol,2000,41:49-80.
    [72]Juan Carlos N6voa-Munoz,Jose Manuel G Queijeiro,Daniel Blanco-Ward,Cdstalina Alvarez-Olleros,Eduardo Garcia-Rodeja,Antonio Martinez-Cortizas.Arsenic fractionation in agricultural acid soils from NW Spain using a sequential extraction procedure[J].Science of the Total Environment,2007,1-5.
    [72]Keon NE,Swartz CH,Brabander DJ,Harvey C,Hemond HF.Validation of an arsenic sequential extraction method for evaluating mobility in sediments[J].Environ Sci Technol 2001,35:2778-2784.
    [73]Kimbal BA,Callender E,Axtmatm EV.Effects of colloids on metal transport in a river receiving acid mine drainage,upper Arkansas River,Colorado,USA[J].Appl Geochem,1995,10(3):285-306.
    [74]Kim,J.Y.,Davis,A.P.,Kirn,K.W.Stabilization of available arsenic in highly contaminated mine tailings using iron[J].Environ.Sci.Technol.2003,37:189-195.
    [75]Leblanc M,Achard B,Ben Othman D,Luck JM.Accumulation of arsenic from acidic mine waters by ferruginous bacterial accretions(stromatolites)[J].Appl Geochem 1996,11:541-54.
    [76]LeClaire J P,Chang A C,Levesque C S,Sposito C.Trace metal chemistry in add field soil amended with sewage sludge:Ⅳ Correlations between zinc uptake and extracted zinc fractions[J].Soil Sci.Soc.Am.J.,1984,48,509-513.
    [77]Lengke M F,Tempel R N.Geochemical modeling of arsenic sulfide oxidation kinetics in a mining environment[J].Geochimica et Cosmochimica Acta,2005,69:341-356.
    [78]Mandl,M.,Vyskovsky,M.,.Kinetics of arsenic(Ⅲ) oxidation by iron(Ⅲ) catalysed by pyrite in the presence of Thiobacillus Ferrooxidans[J].Biotechnol.Lett.1994,16:1199-1204.
    [79]Mckibben M A and Barnes H L.Oxidation of pyrite in low temperature acidic solution:rate law and surface texture[J].Geochim.Cosmochim.Acta,1986,50:1509-1520.
    [80]Morin G,Juillot F,Casiot C,Personne' JC,Elbaz-Poulichet F,Leblanc M,et al.Bacterial immobilization and oxidation of arsenic in acid mine drainage(Carnoale's creek,France) XANES and XRD evidence of As(Ⅴ)-or As(Ⅲ)-Fe(Ⅲ) gels and tooeleite[J].Environ Sci Teclanol 2003,37:1705-12.
    [81]Newton K,Amarasirivardena D,Xing B.Distribution of soil arsenic species,lead and arsenic bound to humic acid molar mass fractions in a comtaminated apple orchard[J].Environmental Pollution,2006,143:197-205.
    [82]Nishimura,T.,Tozawa,K.,.On the solubility products of ferric,calcium and magnesium arsenates[J].Bull.Inst.Miner.Dress.Metall.1978,34:20-26.
    [83]Norstrom D K.Aqueous pyrite oxidation and the consequent of secondary minerals[A].Madison,Acid Sulfate Weathering[M].Soil Sci.Soc.Am,1982,37-52.
    [84]Nordstrom,D.K.,Alpers,C.N.,Negative pH,efflorescent mineralogy,and consequences for environmental restoration at the Iron Mountain Superfund Site,Callfomia.Proc.Nat.Acad.Sci.,USA 1999.96,3455-3462.
    [85]Onken B M,Adriano D C.Arsenic availability in soil with time under saturated and subsaturated conditions[J].Soil Science Society of America Journal,1997,61:746-752.
    [86]Pierce ML,Moore CB.Adsorption of arsenite on amorphous iron hydroxide from dilute aqueous solution.Environ Sci Technol 1980,14(2):214-216.
    [87]Plumlee,G.S.,Smith,K.S.,Montour,M.R.,Ficklin,W.H.,Mosier,E.L.,.Geologic controls on the composition of natural waters and mine waters draining diverse mineraldeposit types.In Environmental Geochemistry of Mineral Deposits.Part B:Case Studies.1999Chapter 19,pp.373-432.
    [88]Pongratz R.Arsenic speciation in environmental samples of contaminated soil[J].the Science of the Total Environment,1998,224:133-141.
    [89]Pugh,C.E.,Hossner,L.R.,Dixon,J.B.,Oxidation ratio of iron sulfides as affected by surface area,morphology,oxygen concentration,and authotrophic bacteria[J].Soil Sci.1984,137:309-314.
    [90]Quevauviller Ph,Rauret GS Griepink B,Single and sequential extraction in sediments and soils,Intern.J.Environ.Anal.Chem.,1993,51:231-235.
    [91]Raven KP,Jain A,Loeppert RH.Arsenite and arsenate adsorption on ferrilaydrite:kinetics,equilibrium,and adsorption envelopes[J].Environ Sci Technol 1998,32:344-9.
    [92]Ranville M,Rough D,Flegal A.R.Metal attenuation at the abandoned Spenceville copper mine[J].Applied Geochemistry,2004,19:803-815.
    [93]Razo-Soto,L.Carrizales,L.,Castro-Larragoitia,J.,Diaz-Barriga F and Monroy,M.,Arsenic and heavy metal pollution of soil,water and sediments in a semi-arid climate mining area in Mexico.Water[J],Air and Soil Pollution,2005,152:129-152.
    [94]Rob Bowell,Jef Parshley,Arsenic Cycling in the Mining Environment[J].2003,1-28.
    [95]Robins,R.G.,Solubility and stability of scorodite FeAsO_4-2 H_2O:discussion[J].Am.Mineral.1987,72,842-844.
    [96]Roussel C,Bril H,Fernandez A.Evolution of sulphides-rich mine railings and immobilization of As and Fe[J].C R Acad Sci 1999,329:787-94.
    [97]Sadiq M.Arsenic chemistry in soils:An overview of thermodynamic predictions and field observations[J].Water,Air,Soil Pollution,1997,93:117-136.
    [98]Ryssen R V.,et al.The use of flux-corer experiments in the determination of heavy metal redistribution in and of potential leaching from the sediments[J].Wat.Sci.Tech,1998,37(6-7):283-290.
    [99]Seylar P,Martine J M.Biogeochemical processes affecting arsenic species distribution in a permanently stratified lake[J].Environmental Science and Technology,1989,23:1258-1263.
    [100]Smedley,P.L.,Kinniburgh,D.G.,A review of the source,distribution and behaviour of arsenic in natural waters[J].Appl.Geochem.2002,17:517-568.
    [101]Smedley P.L.,Kinniburgh D.G.A review of the source,behaviour and distribution of arsenic in natural waters[J].Applied Geochemistry.2002,17;517-568.
    [102]Sullivan,K.A.,AUer,R.C.,Diagenetic cycling of arsenic in Amazon shelf sediments[J].Geochim.Cosmochim.Acta.1996.60,1465-1477.
    [103]Taggart M.A.,Carlisle M.,Pain D.J.,Williams R.,Osborn D.,Joyson A.,Meharg A.A.The distribution of arsenic in soils affected by the Aznalcollar' mine spill,SW Spain[J].Science of the Total Environment,2004;323;137-152.
    [104]Tallman D E,Shaikh A U.Redox stability of inorganic arsenic(Ⅲ)and arsenic(Ⅴ)in aqueous solution[J].Analytical Chemistry,1980,52:199-201.
    [105]Tessier A,Campbell P G C,Bisson M,Sequential extraction procedure for the specification of particulate trace metals[J],Anal.Chem.,1979,51:844-850
    [106]Thornton I Sources and pathways of arsenic in the geochemical environment.In:Appleton JD,Fuge R,McCall GJH(eds) Environmental geochemistry and health.Spec Publ of the Geol Soc of London,1994,113:153-162.
    [107]Toshihiko Ohnuki,Fuminod Sakamoto,Naofumi Kozai,Takuo Ozaki,Takahiro Yoshida,Issay Natural,Eiichi Wakai,Takuro Sakai,Arokiasamy J.Francis.Mechanisms of arsenic immobilization in a biomat from mine discharge water[J].Chemical Geology,2004,212:279-290.
    [108]Urasa L T and Macha S F.Speciation of heavy metals in soil,sediments,and sludge using DC-plasma emission spectrometry coupled with ion chromatograph[J].Inter.J.Environ.Anal.Chem,1996;64(2);83-95.
    [109]Wang S,Mulligan CN.Occurrence of arsenic contamination in Canada:Sources,behaviour and distribution[J].Sci Tot Env(in press),2005.
    [110]Webster,J.G.,.Arsenic.In:Marshall,C.P.,Fairbridge,R.W.(Eds.),Encyclopaedia of Geochemistry.Chapman and Hall,London,1999,pp.21-22.
    [111]WHO Library Cataloguing-in-Publication Data,(Environmental health criteria 224).Arsenic and Arsenic Compounds,IARC Monographs Suppl.7[R].International Agency for Research on Cancer WHO,Lyon,1987:100-106.
    [112]Wenzel WW,Kirchbaumer N,Prohaska T,Stingeder G,Lombi E,Adriano DC.Arsenic fractionation in soils using an improved sequential extraction procedure[J].Anal Chim Acta 2001;436;309-323.
    [113]Williams M.Arsenic in mine waters:an international study[J].Environ Geol 2001;40(3):267-278.
    [114]Williams TM,Smith B.Supergene geochemistry of arsenic,antimony and associated elements at Globe Phoenix Mine,Kwekwe,Zimbabwe.Brit Geol Surv Overseas Geol Ser Tech Report 1994,WC/94/65R
    [115]Williams TM,Fordyce FM,Paijitprapapon A,Charoenchaisri PArsenic contamination in surface drainage and groundwater in part of the south-east Asian tin.belt,Nakhon si Thamarat Province,southern Thailand[J].Environ Geol.1996,27:16-33.
    [116]Yu JY,Heo B,Choi IK,Cho JP,Chang HW.Apparent solubilities of schwertmaunite and ferrihydrite in natural streamwaters polluted by mine drainage[J].Geochim Cosmochim Acta 1999;63(19-20):3407-3416.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700