用户名: 密码: 验证码:
光伏并网逆变器辨识建模方法及应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
能源危机和气候变化是当今全球面临的主要挑战之一。作为人类应对这些挑战的努力,太阳能光伏产业应运而生。光伏并网逆变器作为太阳能光伏电池阵列与公共电网的接口装置,是光伏并网发电系统中的核心部件,在新能源的开发利用中起到了至关重要的作用,对其进行研究具有重要意义。建立光伏并网逆变器的数学模型,是一切研究工作的基础。目前由逆变器供应商提供的数学模型都是基于机理建模法,通过大量简化假设而得到的,使用方难以判断其准确性,要通过逐个产品的验证测试来修正其模型,这对于设备使用方来说具有极大的难度,制约了分布式电源接入电力系统的建模、仿真、控制方法、电能质量等方面的研究与设计,因此迫切需要提出新的分布式电源逆变器建模方法来满足新能源并网系统的理论分析与建设需求。
     针对光伏并网逆变器的建模问题,基于非线性系统辨识建模方法,较为深入地研究了不同光伏并网逆变器的建模问题,包括单相、三相光伏并网逆变器的辨识建模方法及三相光伏逆变器模型的系统仿真研究。
     论文提出了单相光伏并网逆变器NARX模型的系统辨识方法。针对商用光伏并网逆变器的“黑箱”特征,以及现有的线性化建模方法无法解决逆变器的强非线性问题,将单相光伏并网逆变器视为“黑箱”,无需逆变器内部电路、功率开关器件等拓扑结构和参数及其控制系统的类型和逻辑关系,仅仅利用逆变器输入-输出两侧的外部测量数据,基于NARX模型非线性系统辨识技术,可建立较为准确的数学模型,实现对商用光伏并网逆变器准确描述其动态特性的可能。辨识所得单相光伏并网逆变器NARX模型结构简单,运算量小,在模型的复杂性和模型的精确性方面取了很好的平衡,适用于电力系统对并网光伏发电系统的调度、联合运行与协调控制、随机模拟等需要快速建模与简单模型结构的研究领域。
     针对进一步提高辨识模型精度的问题,论文提出了基于Wiener模型的单相光伏并网逆变器模型辨识方法。方法基于非线性理论和离散时间方法,仍然将单相光伏并网逆变器视为“黑箱”,采集多时间阶段、不同典型光照条件下单相光伏并网逆变器的输入-输出信息,辨识出与“黑箱”特性等价的单相光伏并网逆变器Wiener模型。最后在相同实验条件下,对比分析了单相光伏并网逆变器Wiener模型与Hammerstein-Wiener模型以及本文第二章提出的NARX模型。结果表明,单相光伏并网逆变器Wiener模型及其辨识建模方法,能更好的反映实际单相光伏并网逆变器在不同天气条件下的动态行为,具有更高的精确度与适应性,但模型相对复杂,运算量较大。适用于需要精确使用光伏并网逆变器模型的场合。
     光伏并网模式有单相模式和三相模式。辨识建模方法用于三相逆变器时,输入、输出变量多,模型复杂,模型参数难以辨识。在单相光伏并网逆变器辨识建模方法的基础上,提出了适用于三相光伏并网逆变器的非线性系统辨识建模方法。为了简化三相逆变器的建模,对三相系统进行了简化处理。在输入端,选取输入电压电流作为输入量;在输出端,借鉴对称三相电路的分析方法,任选一相有功无功输出用于辨识,然后根据三相对称关系进行重建。将辨识模型简化为双输入双输出系统,降低了辨识难度,对三相系统简化后分别应用NARX模型和Wiener模型构建了三相光伏逆变器的建模方法。
     为了分析比较不同建模方法的优劣,建立了双级三相光伏并网发电仿真系统,在系统中对各种三相光伏并网逆变器模型(详细模型、NARX模型、Wiener模型)进行了仿真研究,优选了基于NARX模型的非线性系统辨识建模方法。所得模型结构简单、运算量小、模型精度较高,可作为三相光伏并网逆变器的辨识建模方法。
Energy crisis and climate change is one of the major challenges facing the world.The solar photovoltaic industry came into being as humans efforts to address thesechallenges. As the interface device between solar photovoltaic array and the utility grid,photovoltaic grid-connected inverter is the core component of the grid-connectedphotovoltaic system. Photovoltaic grid-connected inverter plays a crucial role in thedevelopment and utilization of new energy. It is important to study the photovoltaicgrid-connected inverter. Establishment of mathematical model for photovoltaicgrid-connected inverter, is the basis of all the research work. However, the mathematicalmodel provided by the manufacturer of power inverters is based on analyticalapproaches and contains a large number of simplifying assumptions. Thus, usersexperience difficulty in judging its accuracy and have had to revise the model throughthe product validation test one by one. This restricts the study of modeling, simulation,operation control, power quality and other aspects of research and design in the newpower system with distributed generation. Hence, a new distributed power invertermodeling method is urgently needed for theoretical analysis and construction of agrid-tied new energy power generation system.
     In view of the photovoltaic grid-connected inverter modeling problem, based onthe nonlinear system identification modeling method, the different photovoltaicgrid-tied inverters modeling problems had been deeply studied, including single-phase,three-phase photovoltaic grid-connected inverters identification modeling methods andthree-phase photovoltaic inverter model simulation.
     The system identification method of single-phase photovoltaic grid-connectedinverter NARX model was proposed. For the black box feature of commercialphotovoltaic grid-tied inverters, as well as the strongly nonlinear problem of the inverterwhich can not be solved by existing linear modeling approach, in this approach, theinverter was considered as a black box, wherein it was not necessary to know thetopology and the parameters of the inverter internal circuits and power switchingdevices, as well as the type and logical relations of the control system. It only used theinput-output external measurement data of the inverter, based on the NARX modelnonlinear system identification techniques, to create an accurate mathematical model.The model can accurately imitate the behavior of the commercial inverter and has simple structure, small amount of computation. It takes a good balance between thecomplexity of the model and the model accuracy. It is suitable for power system withthe grid-connected photovoltaic system scheduling, joint operation and coordinatedcontrol, stochastic simulation research areas, in which the fast modeling and simplemodel structure are required.
     Then the model identification method of single-phase photovoltaic grid-tiedinverter based on the Wiener Model was proposed in the point of further improving thethe accuracy of identification model. Based on nonlinear theory and discrete-timemethod, the single-phase photovoltaic grid-connected inverter was considered as a blackbox and was modeled only using input-output information of the inverter under differenttypical light conditions during multiple time periods. Finally, in the same experimentalconditions, the comparative analysis was conducted among the single-phasephotovoltaic grid-tied inverter Wiener model, the Hammerstein-Wiener model and theNARX model which was proposed in the second chapter. The results show that thesingle-phase photovoltaic grid-connected inverter Wiener model and its identificationmodeling method can better reflect the dynamic behavior of the actual single-phasephotovoltaic inverter under different weather conditions, and with higher accuracy andadaptability. However, the Wiener model is relatively complex and time consuming. It issuitable for applications requiring the precise model of photovoltaic grid-connectedinverter.
     Photovoltaic grid-connected modes include single-phase and three-phase mode.When using identification modeling method for three-phase inverter, the input andoutput variables increases, the model becomes complicated, and the model parameter isdifficult to identify. Based on the identification modeling approach of the single-phasephotovoltaic gird-connected inverter, the nonlinear system identification modelingmethod for three-phase photovoltaic grid-tied inverter has been proposed. In order tosimplify the modeling of three-phase inverter, three-phase system has been simplified.At the input, the input voltage and current were selected as the inputs. At the output,drawing on the symmetrical three-phase circuit analysis methods, one phase active andreactive power outputs were optionally chosen for the identification and reconstructionbased on a three-phase symmetrical relationship. The identification model wassimplified as a dual-input dual-output system, which reduced the difficulty ofidentification. Then the NARX model and Wiener model were respectively applied tobuild a three-phase photovoltaic gird-connected modeling approach after simplification.
     In order to analyze the pros and cons of different modeling methods, a dual-stage,three-phase, grid-connected photovoltaic system had been established. In the system,simulation studies had been conducted for a variety of three-phase photovoltaicgrid-tied inverter model which included the detailed model, the NARX model and theWiener model. The nonlinear system identification modeling method based on NARXmodel is optimally selected. It can be used as three-phase photovoltaic gird-connectedinverter identification modeling method, because of its simple model structure, smallamount of computation and the advantage of high accuracy of the model.
引文
[1]陈艳.光伏发电系统中Z源逆变器的控制技术研究[D].重庆:重庆大学,2012.
    [2]刘伟.单相光伏并网逆变数字控制策略研究与实现[D].长沙:湖南大学,2007.
    [3]张强,张崇巍,张兴,谢震.风力发电用大功率并网逆变器研究[J].中国电机工程学报,2007,27(16):54-59.
    [4]张强,刘建政,李国杰.单相光伏并网逆变器瞬时电流检测与补偿控制[J].电力系统自动化,2007,31(10):50-54.
    [5]赵清林,郭小强,邬伟扬.单相逆变器并网控制技术研究[J].中国电机工程学报,2007,27(16):60-64.
    [6]戴训江,晁勤.单相光伏并网逆变器固定滞环的电流控制[J].电力系统保护与控制,2009,37(20):12-17.
    [7]周东.三相光伏并网电流型PWM逆变器的研究[D].杭州:浙江大学,2012.
    [8]闫立伟.微电网中光伏发电动态特性研究[D].重庆:重庆大学,2010.
    [9]王兆安,黄俊.电力电子技术[M].北京:机械工业出版社,2000.
    [10]董密.太阳能光伏并网发电系统的优化设计与控制策略研究[D].长沙:中南大学,2007.
    [11]张超,何湘宁.一种用于光伏发电系统的新型高频逆变器[J].电力系统自动化,2005,29(19):51-71.
    [12]余世杰,何慧若,曹仁贤.光伏水泵系统中CVT及MPPT的控制比较[J].太阳能学报,1998,19(4):394-398.
    [13] R.M. Chao,S.H. Ko,F.S. Pai,I.H. Lin,C.C. Chang.Evaluation of a photovoltaic energymechatronics system with a built-in quadratic maximum power point trackingalgorithm[J].Solar Energy,2009,83(12):2177-2185.
    [14]赵争鸣,刘建政,孙晓瑛.太阳能光伏发电及其应用[M].北京:科学出版社,2005.
    [15] K.H. Hussein,I. Muta,T. Hoshino,M. Osakada.Maximum photovoltaic power tracking-an algorithm for rapidly changing atmospheric conditions[J].IEE Proceedings-GenerationTransmission and Distribution,1995,142(1):59-64.
    [16] Wu Wenkai, N. Pongratananukul, Qiu Weihong, K. Rustom, T. Kasparis, I.Batarseh. DSP-based multiple peak power tracking for expandable powersystem[C]//Proceedings of the18th Annual IEEE Applied Power Electronics Conference andExposition (APEC2003).Miami,FL,USA:IEEE,2003:525-530.
    [17] Eduardo Román,Ricardo Alonso,Pedro Iba ez,Sabino Elorduizapatarietxe,DamiánGoitia.Intelligent PV module for grid-connected PV systems[J].IEEE Transactions onIndustrial Electronics,2006,53(4):1066-1073.
    [18] Azadeh Safari,Saad Mekhilef.Simulation and hardware implementation of incrementalconductance MPPT with direct control method using cuk converter[J].IEEE Transactions onIndustrial Electronics,2011,58(4):1154-1161.
    [19] Xuejun Liu,Luiz A. C. Lopes.An improved perturbation and observation maximum powerpoint tracking algorithm for PV arrays[C]//Proceedings of the35th Annual IEEE PowerElectronics Specialists Conference (PESC04).Aachen,Germany:IEEE,2004:2005-2010.
    [20] Nicola Femia,Giovanni Petrone,Giovanni Spagnuolo,Massimo Vitelli.Optimization ofperturb and observe maximum power point tracking method[J].IEEE Transactions on PowerElectronics,2005,20(4):963-973.
    [21]崔岩,蔡炳煌,李大勇,胡宏勋,董静微.太阳能光伏系统MPPT控制算法的对比研究[J].太阳能学报,2006,27(6):535-539.
    [22] Mohamad A. S. Masoum, Seyed Mahdi Mousavi Badejani, Ewald F.Fuchs.Microprocessor-controlled new class of optimal battery chargers for photovoltaicapplications[J].IEEE Transactions on Energy Conversion,2004,19(3):559-606.
    [23] I.H. Altasa,A.M. Sharaf.A novel maximum power fuzzy logic controller for photovoltaicsolar energy systems[J].Renewable Energy,2008,33(3):388-399.
    [24] Takashi Hiyama,Shinichi Kouzuma,Tomofumi Imakubo,Thomas H. Ortmeyer.Evaluationof neural network based real time maximum power tracking controller for PVsystem[J].IEEE Transactions on Energy Conversion,1995,10(3):543-548.
    [25]吴小进.光伏阵列及并网逆变器关键技术研究[D].北京:北京交通大学,2012.
    [26]林渭勋.现代电力电子电路[M].杭州:浙江大学出版社,2002.
    [27]余运江.单相光伏并网逆变器的研究[D].杭州:浙江大学,2008.
    [28]赵为.太阳能光伏并网发电系统的研究[D].合肥:合肥工业大学,2003.
    [29]赵振波,李和明,董淑惠.采用电流滞环调节器的电压矢量控制PWM整流器系统[J].电工技术学报,2004,19(1):31-43.
    [30]王兆安,杨君,刘进军.谐波抑制和无功功率补偿[M].北京:机械工业出版社,2004.
    [31]易灵芝,彭寒梅,王根平,邓文浪,李卫平.光伏并网逆变器限定轨迹双调制ANN-SVPWM研究[J].计算机工程与设计,2010,31(23):5133-5138.
    [32]戴训江,晁勤.光伏并网逆变器自适应电流滞环跟踪控制的研究[J].电力系统保护与控制,2010,38(4):25-30.
    [33]霍群海,孔力,韦统振.2种改进的滑模并网逆变器控制策略[J].电力自动化设备,2009,29(4):32-35.
    [34]魏少翀,张广明,嵇保健.模糊PID控制在光伏并网逆变器中的应用[J].现代电力,2013,30(1):27-31.
    [35]刘东冉,陈树勇,马敏,王皓怀,侯俊贤,马世英.光伏发电系统模型综述[J].电网技术,2011,35(8):47-52.
    [36]黄汉奇,毛承雄,陆继明,王丹.光伏发电系统的小信号建模与分析[J].中国电机工程学报,2012,32(22):7-14.
    [37]艾欣,韩晓男,孙英云.大型光伏电站并网特性及其低碳运行与控制技术[J].电网技术,2013,37(1):15-23.
    [38]曾正,赵荣祥,杨欢.含逆变器的微电网动态相量模型[J].中国电机工程学报,2012,32(10):65-71.
    [39]王志贤.最优状态估计与系统辨识[M].西安:西北工业大学出版社,2004.
    [40]李鹏波,胡德文.系统辨识基础[M].北京:中国水利水电出版社,2006.
    [41]牛培峰,张秀玲,罗小元,彭策.过程控制系统[M].北京:电子工业出版社,2011.
    [42]董文永,刘进,丁建立,朱福喜.最优化技术与数学建模[M].北京:清华大学出版社,2010.
    [43]刘党辉,蔡远文,苏永芝,尹云霞.系统辨识方法及应用[M].北京:国防工业出版社,2010.
    [44]庞中华,崔红.系统辨识与自适应控制MATLAB仿真[M].北京:北京航空航天大学出版社,2009.
    [45] R.D. Middlebrook,Slobodan Cuk.A general unified approach to modeling-switchingconverter power stages[C]//Proceedings of the IEEE Power Electronics SpecialistsConference.Cleveland,Ohio:IEEE,1976:73-68.
    [46]魏克银,刘德志,欧阳斌,翟小飞,晏明.三相四线制二极管整流桥的动态平均值模型[J].电工技术学报,2009,24(11):102-107.
    [47]马西奎,李明,戴栋,张浩,邹建龙.电力电子电路与系统中的复杂行为研究综述[J].电工技术学报,2006,21(12):1-11.
    [48] Soumitro Banerjee,George C. Verghese.Nonlinear Phenomena in Power Electronics:Attractors, Bifurcations, Chaos, and Nonlinear Control[M].New Jersey:Wiley-IEEE Press,2001.
    [49] Chi Kong Tse.Complex Behavior of Switching Power Converters[M].Boca Raton:CRCPress,2004.
    [50] Chi K. Tse, Mario di Bernardo. Complex behavior in switching powerconverters[J].Proceeding of the IEEE,2002,90(5):768-781.
    [51]谢玲玲,龚仁喜,李畸勇.光伏发电最大功率点跟踪交错并联Boost变换器的动力学特性分析[J].中国电机工程学报,2013,33(6):38-45.
    [52] D. Mezghanni,R. Andoulsi,A. Mami,G. Dauphin-Tanguy.Bond graph modelling of aphotovoltaic system feeding an induction motor-pump[J].Simulation Modelling Practice andTheory,2007,15(10):1224-1238.
    [53] Marisol Delgado,Hebertt Sira-Ramirez.A bond graph approach to the modeling andsimulation of switch regulated DC-to-DC power supplies[J].Simulation Practice and Theory,1998,6(7):631-646.
    [54] Rui Esteves Araújo,Américo Vicente Leite,Diamantino Silva Freitas.Modelling andsimulation of power electronic systems using a bond formalism[C]//Proceedings of the10thMediterranean Conference on Control and Automation (MED2002).Lisbon,Portugal:Institute for Systems and Robotics,2002:1-9.
    [55] Keyue Smedley,Slobodan Cuk.Switching flow-graph nonlinear modeling technique[J].IEEETransactions on Power Electronics,1994,9(4):405-413.
    [56] Mummadi Veerachary,Tomonobu Senjyu,Katsumi Uezato.Signal flow graph modelling ofinterleaved buck converters[J].International Journal of Circuit Theory and Applications,2003,31(3):249-264.
    [57] Luis Castaner, Santiago Silvestre. Modelling photovoltaic systems usingPSpice[M].England:John Wiley&Sons Ltd,2002.
    [58] Dalibor Biolek,Viera Biolkova,Zdenek Kolka.Averaged modeling of switched DC-DCconverters based on Spice models of semiconductor switches[C]//Proceedings of the7thWSEAS International Conference on Circuits, Systems, Electronics, Control and SignalProcessing (CSECS'08).Puerto de la Cruz,Spain:World Scientific and Engineering ACADand SOC,2008:162-167.
    [59] Guven Onbilgin,Okan Ozgonenel,Veli Turkmenoglu.Modeling of power electronics circuitsusing wavelet theory[J].Sampling Theory in Signal and Image Processing,2007,6(3):307-322.
    [60]刘兴堂.现代辨识工程[M].北京:国防工业出版社,2006.
    [61]沈善德.电力系统辨识[M].北京:清华大学出版社,1993.
    [62] Mehdi Karrari,O. P. Malik.Identification of physical parameters of a synchronous generatorfrom online measurements[J].IEEE Transactions on Energy Conversion,2004,19(2):407-415.
    [63] H. Bora Karayaka,Ali Keyhani,Gerald Thomas Heydt,Baj L. Agrawal,Douglas A.Selin.Synchronous generator model identification and parameter estimation from operatingdata[J].IEEE Transactions on Energy Conversion,2003,18(1):121-126.
    [64] Shen Feng,He Renmu.A feasibility study of excitation system parameters identificationbased on measured perturbation[C]//Proceedings of the8th International Power EngineeringConference (IPEC2007).Singapore:IEEE,2007:904-909.
    [65]贺仁睦,沈峰,韩冬,韩志勇.发电机励磁系统建模与参数辨识综述[J].电网技术,2007,31(14):62-67.
    [66]沈善德,朱守真,焦连伟,门琨,郑竞宏,曲祖义,蒋建民,朱万国,李伟清,许伟,蒋蕾.电力系统辨识建模和暂态稳定校核分析[J].电力系统自动化,1999,23(19):43-47.
    [67] M. Azubalis,V. Azubalis,A. Jonaitis,R. Ponelis.Identification of model parameters of steamturbine and governor[J].Oil Shale,2009,26(3):254-268.
    [68] Ju Ping,Qin Chuan,Wu Feng,Xie Huiling,Ning Yan.Load modeling for wide area powersystem[J].International Journal of Electrical Power&Energy Systems,2011,33(4):909-917.
    [69] Bai Hua,Zhang Pei,Venkataramana Ajjarapu.A novel parameter identification approach viahybrid learning for aggregate load modeling[J].IEEE Transactions on Power System,2009,24(3):1145-1154.
    [70] Jin S. Heo,Kwang Y. Lee.A multi-agent system-based intelligent identification system forpower plant control and fault-diagnosis[C]//Proceedings of the IEEE Power EngineeringSociety General Meeting.Montreal,Canada:IEEE,2006:2288-2293.
    [71]门锟,沈善德,朱守真,杨常府.综合测辨法用于无刷励磁系统故障诊断的研究[J].电力系统自动化,2001,25(24):26-67.
    [72] Y M Park,W Kim.Discrete-time adaptive sliding mode power system stabilizer with onlyinput/output measurements[J].International Journal of Electrical Power&Energy Systems,1996,18(8):509-517.
    [73] Edwin N. Lerch,Dusan Povh,Xu Liwen.Advanced SVC control for damping power systemoscillations[J].IEEE Transactions on Power System,1991,6(2):524-535.
    [74] Robert Eriksson,Lennart S der.Centrally coordinated control of multiple HVDC links forpower oscillation damping[C]//Proceedings of the3rd Global Conference on Power Controland Optimization.Gold Coast,Australia:AMER INST PHYSICS,2010:134-140.
    [75] Toshiya Nanahara, Koji Yamashita, Toshio Inoue, Atsushi Iramina, SadaoAsato.Identification of system characteristics of a power system with time series data.Identification of frequency fluctuation characteristics of a small-scale isolatedsystem[J].Electrical Engineering in Japan,2005,150(3):23-31.
    [76]唐卓尧,仁震.HVDC系统DC侧有源直流滤波器的自适应控制[J].中国电机工程学报,1999,19(8):45-48.
    [77] K.M. Tsang,W.L. Chan.Adaptive control of power factor correction converter usingnonlinear system identification[J].IEE Proceedings-Electric Power Applications,2005,152(3):627-633.
    [78] Maryam Dehghani,Seyyed Kamaleddin Yadavar Nikravesh.State-space model parameteridentification in large-scale power systems[J].IEEE Transactions on Power System,2008,23(2):1449-1457.
    [79]熊小伏,陈康,郑伟,M. Shahzad Nazir.基于最小二乘法的光伏逆变器模型辨识[J].电力系统保护与控制,2012,40(22):52-63.
    [80]郑凌蔚,刘士荣,谢小高.基于改进小波神经网络的光伏发电系统非线性模型辨识[J].电网技术,2011,35(10):159-164.
    [81] K.T. Chau,C.C. Chan.Nonlinear identification of power electronic systems[C]//Proceedingsof the1995International Conference on Power Electronics and Drive Systems (PEDS95).Singapore:IEEE,1995:329-334.
    [82] Nopporn Patcharaprakiti,Krissanapong Kirtikara,Veerapol Monyakul,Dhirayut Chenvidhya,Jatturit Thongpron,Anawach Sangswang,Ballang Muenpinij.Modeling of single phaseinverter of photovoltaic system using Hammerstein-Winener nonlinear systemidentification[J].Current Applied Physics,2010,10(3):532-536.
    [83]张波.电力电子学亟待解决的若干基础问题探讨[J].电工技术学报,2006,21(3):24-35.
    [84]刘邦银.电压源型逆变器的智能控制技术研究[D].武汉:华中科技大学,2004.
    [85] B S Billings, I J Leontaritis. Parameter estimation techniques for nonlinearsystems[C]//Proceedings of the6th IFAC symposium on Identification and System ParameterEstimation.Washington DC,USA:IEEE,1982:505-510.
    [86] E. Radmaneshfar,M. Karrari.A new method for structure detection of nonlinear ARX model:ANOVA_BSD[C]//Proceedings of the World Congress on Engineering2007(WCE2007).London,UK:INT ASSOC ENGINEERS-IAENG,2007:407-411.
    [87] Selami Beyhan,Musa Alci.Fuzzy functions based ARX model and new fuzzy basis functionmodels for nonlinear system identification[J].Applied Soft Computing,2010,10(2):439-444.
    [88]郭科,陈聆,魏友华.最优化方法及其应用[M].北京:高等教育出版社,2007.
    [89] John A. Duffie,Wiliam A. Beckman.Solar Engineering of Thermal Processes[M].Hoboken:John Wiley&Sons, Inc.,2006.
    [90] J. A. Gow,C. D. Manning.Development of a photovoltaic array model for use inpower-electronics simulation studies[J]. IEE Proceedings-Electric Power Applications,1999,146(2):193-200.
    [91] Daniel S. H. Chan,Jacob C. H. Phang.Analytical methods for the extraction of solar-cellsingle-and double-diode model parameters from I-V characteristics[J].IEEE Transactions onElectron Devices,1987,34(2):286-293.
    [92] Kensuke Nishioka,Nobuhiro Sakitani,Yukiharu Uraoka,Takashi Fuyuki.Analysis ofmulticrystalline silicon solar cells by modified3-diode equivalent circuit model takingleakage current through periphery into consideration[J].Solar Energy Materials and SolarCells,2007,91(13):1222-1227.
    [93] C. Carrero,J. Amador,S. Arnalts.A single procedure for helping PV designers to selectsilicon PV modules and evaluate the loss resistances[J].Renewable Energy,2007,32(15):2579-2589.
    [94] Anna Rita Di Fazio,Mario Russo.Photovoltaic generator modelling to improve numericalrobustness of EMT simulation[J].Electric Power Systems Research,2012,83(1):136-143.
    [95] IEEE Standards Coordinating Committee21Photovoltaics.ANSI/IEEE Std928-1986.IEEErecommended criteria for terrestrial photovoltaic power systems[S].New York,USA:IEEE,1986,2-3.
    [96] Lennart Ljung.System identification:theory for the user[M].London:Prentice Hall PTR,1999.
    [97] Zhang Qinghua,Albert Benveniste.Wavelet networks[J].IEEE Transactions on NeuralNetworks,1992,3(6):889-898.
    [98]谢政,李建平,陈挚.非线性最优化理论与方法[M].北京:高等教育出版社,2010.
    [99]张光澄.非线性最优化计算方法[M].北京:高等教育出版社,2005.
    [100] Dragan Maksimovic, Aleksandar M. Stankovic, V. Joseph Thottuvelil, George C.Verghese.Modeling and simulation of power electronic converters[J].Proceedings of theIEEE,2001,89(6):898-912.
    [101] Akira Nabae, Isao Takahashi, Hirofumi Akagi. A new neutral-point-clamped PWMinverter[J].IEEE Transactions on Industry Applications,1981,17(5):518-523.
    [102] W.-Toke Franke,Nils Oestreich,Friedrich W. Fuchs.Comparison of transformerless convertertopologies for photovoltaic application concerning efficiency and mechanicalvolume[C]//Proceedings of the IEEE International Symposium on Industrial Electronics (ISIE2010).Bari,Italy:IEEE,2010:724-729.
    [103] José Rodríguez,Jih-Sheng Lai,Fang Zheng Peng.Multilevel inverters: A survey of topologies,controls, and applications[J].IEEE Transactions on Industrial Electronics,2002,49(4):724-738.
    [104] Jih-Sheng Lai, Fang Zheng Peng. Multilevel converters-a new breed of powerconverters[J].IEEE Transactions on Industry Applications,1996,32(3):509-517.
    [105] Leon M. Tolbert,Fang Zheng Peng,Thomas G. Habetler.Multilevel converters for largeelectric drives[J].IEEE Transactions on Industry Applications,1999,35(1):36-44.
    [106] José Rodríguez,Steffen Bernet,Wu Bin,Jorge O. Pontt,Samir Kouro.Multilevelvoltage-source-converter topologies for industrial medium-voltage drives[J]. IEEETransactions on Industrial Electronics,2007,54(6):2930-2945.
    [107] José Rodríguez,Leopoldo G. Franquelo,Samir Kouro,José I. León,Ramón C. Portillo,Ma ángeles Martín Prats,Marcelo A. Pérez.Multilevel converters: An enabling technologyfor high-power applications[J].Proceedings of the IEEE,2009,97(11):1786-1817.
    [108] S. Chiniforoosh,J. Jatskevich,A. Yazdani,V. Sood,V. Dinavahi,J. A. Martinez,A.Ramirez.Definitions and applications of dynamic average models for analysis of powersystems[J].IEEE Transactions on Power Delivery,2010,25(4):2655-2669.
    [109]王飞,谢磊,周毅人,马利明.单相光伏并网逆变器的控制策略研究及实现[J].电力电子技术,2009,43(11):24-40.
    [110]马幼捷,程德树,陈岚,郭润睿,周雪松.光伏并网逆变器的分析与研究[J].电气传动,2009,39(4):25-29.
    [111] Paul C. Krause.Analysis of Electric Machinery[M].New York:McGraw-Hill,1994.
    [112]倪以信,陈寿孙,张宝霖.动态电力系统的理论和分析[M].北京:清华大学出版社,2002.
    [113] Marcelo Gustavo Molina,Pedro Enrique Mercado.Control design and simulation ofDSTATCOM with energy storage for power quality improvements[C]//Proceedings of theIEEE/PES Transmission and Distribution Conference and Exposition LatinAmerica.Caracas,Venezuela:IEEE,2006:1062-1068.
    [114] S. Kouro,K. Asfaw,R. Goldman,R. Snow,B. Wu,J. Rodríguez.NPC multilevel multistringtopology for large scale grid connected photovoltaic systems[C]//Proceedings of the2nd IEEEInternational Symposium on Power Electronics for Distributed Generation Systems (PEDG2010).Heifei,China:IEEE,2010:400-405.
    [115] Lennart Ljung.System identification toolbox user's guide[M].Natick:The MathWorks Inc.,2011.
    [116]中华人民共和国国家质量监督检验检疫总局.GB/T18911-2002/IEC61649:1996.地面用薄膜光伏组件设计鉴定和定型[S].北京:中华人民共和国国家质量监督检验检疫总局,2002,3-6.
    [117] Juan Luis Agorreta,Luis Reinaldos,Roberto González,Mikel Borrega,Julián Balda,LuisMarroyo.Fuzzy switching technique applied to PWM boost converter operating in mixedconduction mode for PV systems[J].IEEE Transactions on Industrial Electronics,2009,56(11):4363-4373.
    [118] Li Wuhua,He Xiangning.Review of nonisolated high-step-up DC/DC converters inphotovoltaic grid-connected applications[J].IEEE Transsctions on Industrial Electronics,2011,58(4):1239-1250.
    [119] Geoffrey R. Walker,Paul C. Sernia.Cascaded DC-DC converter connection of photovoltaicmodules[J].IEEE Transactions on Power Electronics,2004,19(4):1130-1139.
    [120] Standards Coordinating Committee21. IEEE Std1547-2003. IEEE standard forinterconnecting distributed resources with electric power systems[S].New York,USA:IEEE,2003,9-10.
    [121] Hanju Cha,Trung-Kien Vu.Comparative analysis of low-pass output filter for single-phasegrid-connected photovoltaic inverter[C]//Proceedings of the25th Annual IEEE Applied PowerElectronics Conference and Exposition (APEC2010).Palm Springs,CA,USA:IEEE,2010:1659-1665.
    [122] Amirnaser Yazdani,Anna Rita Di Fazio,Hamidreza Ghoddami,Mario Russo,MehrdadKazerani,Juri Jatskevich,Kai Strunz,Sonia Leva,Juan A. Martinez.Modeling guidelinesand a benchmark for power system simulation studies of three-phase single-stage photovoltaicsystems[J].IEEE Transactions on Power Delivery,2011,26(2):1247-1264.
    [123]邬伟扬,郭小强.无变压器非隔离型光伏并网逆变器漏电流抑制技术[J].中国电机工程学报,2012,32(18):1-8.
    [124] Martina Calais,Vassilios G. Agelidis,Mike Meinhardt.Multilevel converters for single-phasegrid connected photovoltaic systems: An overview[J].Solar Energy,1999,66(5):325-335.
    [125] Hydro-Quebec.SimPowerSystems User’s Guide[M].Natick:The MathWorks Inc.,2011.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700