用户名: 密码: 验证码:
基于储能的直驱风力发电系统优化控制策略
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着风电穿透率的不断增加,风电系统与电网之间的相互影响也变得越来越大。其主要表现在:一方面,由于风能资源具有波动性,导致风电出力也具有波动性,这在风电穿透率较高的情况下会对电网的电能质量及其稳定性产生较大的影响。另一方面,随着风电在电网中所占比例不断增大,若风电机组在电网发生故障时仍采取被动保护式的解列方式,则会增加整个系统的恢复难度,甚至可能加剧故障,严重影响到电网的安全运行。为此,在风电系统中配置一定容量的储能装置将起到平抑功率波动、提高低电压穿越能力、维持发电/负荷动态平衡、保持电压/频率稳定的作用,从而实现风力发电系统安全、经济、高效、优质地运行。本文将针对基于储能的直驱风力发电系统优化控制策略开展研究。
     1、根据直驱风力发电系统的运行特点,针对目前风电系统存在的功率平抑以及低电压穿越这两大核心问题,提出了三种综合控制策略,即:储能系统的双模功率控制、储能系统的直接功率控制以及储能系统的直接电压控制。在这三种控制策略下,直驱风电系统在电网正常运行时可实现平滑的有功输出,而当电网发生故障时,且同时具有较强的低电压穿越能力。并且,在储能系统直接电压控制的基础上,结合超级电容器和蓄电池在技术性能上的互补优势,进一步提出了一种混合储能系统的综合控制策略,从而可以大幅度地提高系统的经济性能和技术性能。
     2、根据风电低电压穿越运行的相关技术要求,当电网的故障持续时间超出一定范围后,风电系统将被允许脱离电网。为了最大利用风能资源以及提高当地负荷的供电可靠性,针对基于超导储能的直驱风力发电系统提出了一种协调控制策略,使其能够实现并网/离网这两种运行模式之间的快速平滑切换。
     3、结合风电功率的短期预测以及储能系统荷电状态的实时检测,提出了一种变平滑时间常数的双重模糊控制策略,从而能够有效地控制储能系统的充放电功率大小,使其在平滑风电功率波动的同时,还能够避免出现过度充电或深度放电的状况,并向着合适的荷电状态转变。
     4、根据风电系统接入电网的相关技术规定,提出了一种能够定量反映功率曲线平滑度的判据标准,并在此基础上建立了储能系统特性参数-风电功率平滑度的短期神经网络模型,然后综合考虑了储能系统的技术性能和经济成本,建立了储能系统特性参数-风电功率平滑度、储能系统成本特性的长期数学模型,进而通过遗传算法得到储能系统最佳的特性参数组合。
The interplay between wind power system (WPS) and grid is becoming increasinglysignificant with the increased penetration of wind power, as is shown in two aspects: Onone hand, since the wind energy resources are quite fluctuant and unstable, thecorresponding wind-generated electricity is also full of fluctuations, which has greatinfluence on the quality and stability of the grid power on condition that the penetration ofwind power is relatively high; on the other hand, as the proportion of wind power in thewhole electronic grid is gradually increasing, if the passively protective disconnectionmethod is still adopted when grid faults occur, the difficulty of recovering the whole systemwill be increased, and to make things worse, the faults may become more serious, whichwill have significantly negative effects on the safety of grid operation. Therefore,integrating the energy storage system (ESS) with certain capacity will help to smooth windpower fluctuations, enhance the low voltage ride-through (LVRT) capability, maintain thedynamic balance of power generation/load, and keep the voltage and frequency stable, andhence realize the safe, economic, effective and high-quality operation of WPS. In this paper,studies are carried out on the optimizing and controlling strategies toward energy storagebased direct drive WPS.
     1. According to the features of direct drive WPS operation, based on the two essentialissues (smoothing wind power fluctuation and low voltage riding-through) existing incurrent WPS, three comprehensive control strategies are proposed: Dual-mode control,direct power control and direct voltage control of energy storage system (ESS). Under thesethree controlling strategies, the direct drive WPS can output smoother active power undernormal conditions and maintain relatively high low voltage ride-through capability whengrid faults occur. More importantly, based on the direct voltage control of ESS andcombining the complementary advantages of supercapacitors and batteries to each other interms of technical performance, a comprehensive strategy for controlling hybrid ESS isfurther brought up, which can hence greatly enhance the economic and technical performance of the system.
     2. According to the related technical requirements of low voltage ride-through forwind power, the WPS will be permitted to be cut off from the grid when the duration of gridfault goes beyond a certain range. In order to make the most of wind resources and improvethe reliability of the local loads power supply, a coordinated controlling strategy forsuperconducting magnetic energy storage-based direct drive WPS is introduced, so as torealize the fast and smooth switch between grid-connected and off-grid modes.
     3. According to the short-period prediction of wind power and real-time detection ofthe state-of-charge for ESS, a double fuzzy logic control strategy optimizing themanagement of the ESS is proposed to effectively control the charging and dischargingpower of ESS. Therefore, the wind power fluctuations can be smoothed, overcharge anddeep discharge can be effectively avoided, and the transformation towards suitablestate-of-charge can be realized.
     4. Considering the relevant technical regulations of grid-connected WPS, this paperfurther comes up with a judgmental standard to quantitatively reflect the level-of-smoothing of power curves, based on which the short-period neural network model of ESScharacteristic parameters–level-of-smoothing of wind output power is established. Thentaken the technical and economic demand into the comprehensive consideration, along-term mathematical model of ESS characteristic parameters-lever-of-smooth of windoutput power and ESS cost is then established so that the optimized characteristicparameters of the ESS can be obtained through genetic algorithm.
引文
[1]李果仁,刘亦红.中国能源安全报告[M].北京:红旗出版社,2009.
    [2]倪健民,郭云涛.能源安全[M].杭州:浙江大学出版社,2009.
    [3]严陆光,顾国彪,孔力,等.中国电气工程大典-可再生能源发电工程[M].北京:中国电力出版社,2010.
    [4]王承煦,张源.风力发电[M].北京:中国电力出版社,2003.
    [5]尹烁,刘文洲.风力发电[M].北京:中国电力出版社,2001.
    [6]孙涛,王伟胜,戴慧珠,等.风力发电引起的电压波动和闪变[J].电网技术,2003,27(12):62-66.
    [7]迟永宁,王伟胜,刘燕华,等.大型风电场对电力系统暂态稳定性的影响[J].电力系统自动化,2006,30(15):10-14.
    [8]赵勇,胡雅娟,黄巍.风电场功率波动对电网电压影响[J].吉林电力,2007,35(2):22-24.
    [9]Eel-Hwan Kim, Jae-Hong Kim, Se-Ho Kim, et al. Impact Analysis of Wind Farms in the Jeju Island Power System[J]. IEEE Systems Journal,2012,6,(1):134-139.
    [10]Suvire, GO., Mercado, P.E. Wind farm:dynamic model and impact on a weak power system [J]. IEEE PES T&D LATINAMERICA, Bogota', Colombia,2008:1-8.
    [11]Smith, J.C., Milligan, E.M.R., DeMeo, A. Utility wind integration and operating impact state of the art[J]. IEEE Trans. Power Syst,2007,32:900-907.
    [12]H. Banakar, C. Luo, and B. T. Ooi. Impacts of wind power minute-to-minute variations on power system operation[J]. IEEE Trans. Power Syst,2008,23(1):150-160.
    [13]向大为,杨顺昌,冉立.电网对称故障时双馈感应发电机不脱网运行的励磁控制策略[J].中国电机工程学报,2006,26(3):164-170.
    [14]梁亮,李建林,许洪华.双馈感应式风力发电系统低电压穿越研究[J].电力电 子技术,2008,42(3):19-21.
    [15]张红光,张粒子,陈树勇,等.大容量风电场接入电网的暂态稳定特性和调度对策研究[J].中国电机工程学报,2007,27(31):45-51.
    [16]肖创英.欧美风电发展的经验与启示[M].北京:中国电力出版社,2010.
    [17]Global Wind Energy Council. Global Wind Statistics2012[R]. www.gwec.net,2013.
    [18]中华人民共和国国家电力监管委员会风电发展情况调研组.我国风电发展情况调研报告[R].北京,2012.
    [19]Xia C L, Song Z F. Wind energy in China:current scenario and future perspectives[J]. Renewable&Sustainable Energy Reviews,2009,13(8):1974-1996.
    [20]UNEP. Renewables2011global status report[R]. Paris:United nations environment programme,2011.
    [21]李俊峰,施鹏飞,高虎.中国风电发展报告2010[M].海口:海南出版社,2010.
    [22]中国可再生能源学会风能专业委员会(CWEA).2012年中国风电装机容量统计[R].2013.
    [23]全球风能理事会(GWEC).2012年全球风电市场统计[R].2013.
    [24]罗承先.世界风力发电现状与前景预测[J].中外能源,2012,17(3):24-31.
    [25]中国可再生能源专业委员会.中国风电及电价发展研究报告[R].北京,2009.
    [26]国家电网公司.国家电网公司风电场接入电网技术规定(修订版)[S].北京,2009.
    [27]庄凯.直驱永磁同步风电机组并网变换器关键技术研究:[博士学位论文].重庆:重庆大学,2012.
    [28]刘颖明.永磁式直驱风电机组控制技术研究:[博士学位论文].沈阳:沈阳工业大学,2010.
    [29]陈瑶.直驱型风力发电系统全功率并网变流技术的研究:[博士学位论文].北京:北京交通大学,2008.
    [30]Tan K, Islam S. Optimum control strategies in energy conversion of PMSG wind turbine system without mechanical sensors[J]. IEEE Transactions on Energy Conversion,2004,19(2):392-399.
    [31] Chinchilla M,Arnaltes S,Burgos J C.Control of permanent-magnet generatorsapplied to variable-speed wind-energy systems connected to the grid[J].IEEETransactions on Energy Conversion,2006,21(1)130-135.
    [32] Polinder H,van der Pijl F F A,de Vilder G-J,et al.Comparison of direct-drive andgeared generator concepts for wind turbines[J].IEEE Transactions on EnergyConversion,2006,21(3)725-733.
    [33] Carrasco J M,Franquelo L G,Bialasiewicz J T,et al.Power-Electronic systems forthe grid integration of renewable energy sources a survey[J].IEEE Transactions onIndustrial Electronics,2006,53(4)1002-1016.
    [34] Haque M E,Negnevitsky M,Muttaqi K M.A novel control strategy for avariable-speed wind turbine with a permanent-magnet synchronousgenerator[J].IEEE Transactions on Industry Applications,2010,46(1)331-339.
    [35] Baroudi J A,Dinavahi V,Knight A M.A review of power converter topologies forwind generators[C].IEEE International Conference on Electric Machinesand Drives,2005,458-465.
    [36] Chan T F, Lai L L.An axial-flux permanent-magnet synchronous generator for adirect-coupled wind-turbine system[J].IEEE Trans. on Energy Conversion,2007,22(1):86-94.
    [37] Polinder H,van der Pijl F F A,de Vilder G J,et al.Comparison of direct-drive andgeared generator concepts for wind turbines[J].IEEE Trans. on Energy Conversion,2006,21(3)725-733.
    [38] Brisset S,Vizireanu D,Brochet P.Design and optimization of a nine-phase axial-fluxPM synchronous generator with concentrated winding for direct-drive windturbine[J].IEEE Trans. on Industry Applications,2008,44(3)707-715.
    [39] Hui Li,Zhe Chen,Polinder H.Optimization of multibrid permanent-magnet windgenerator systems [J].IEEE Trans. on Energy Conversion,2009,24(1)82-92.
    [40] Grabic S,Celanovic N,Katic V A.Permanent magnet synchronous generator cascade for wind turbine application[J]. IEEE Trans. on Power Electronics,2008,23(3):1136-1142.
    [41]Haque M E, Negnevitsky M, Muttaqi K M. A novel control strategy for a variable-speed wind turbine with a permanent-magnet synchronous generator [J]. IEEE Trans. on Industry Applications,2010,46(1):331-339.
    [42]Barbosa P, Canales F, Lee F. Analysis and evaluation of the two-switch three-level boost rectifier[C]. IEEE32nd Annual Power Electronics Specialists Conference,2001,1659-1664.
    [43]Bel Haj Youssef N, Al-Haddad K, Kanaan H Y. Implementation of a new linear control technique based on experimentally validated small-signal model of three-phase three-level boost-type vienna rectifier[J]. IEEE Transactions on Industrial Electronics,2008,55(4):1666-1676.
    [44]Kazimierczuk M K, Starman L A. Dynamic performance of PWM DC-DC boost converter with Input voltage feedforward Control [J]. IEEE Transactions on Circuits and Systems-Ⅰ:Fundamental Theory and Applications,1999,46(12):1473-1481.
    [45]邓卫华,张波,丘东元,等.电流连续型Boost变换器状态反馈精确线性化与非线性PID控制研究[J].中国电机工程学报,2004,24(8):45-50.
    [46]N Bel Hadj-Youssef, K Al-Haddad, H Y Kanaan, et al. Small-signal perturbation technique used for DSP-based identification of a three-phase three-level boost-type Vienna rectifier[J]. Electric Power Applications,2007,1(2):199-208.
    [47]高朝晖,林辉,张晓斌.Boost变换器带恒功率负载状态反馈精确线性化与最优跟踪控制技术研究[J].中国电机工程学报,2007,27(13):70-75.
    [48]帅定新,谢运祥,王晓刚,等.Boost变换器非线性电流控制方法[J].中国电机工程学报,2009,29(15):15-21.
    [49]张崇魏,张兴.PWM整流器及其控制[M].北京:机械工业出版社,2003.
    [50]钱照明,徐德鸿,陆剑秋,等.中国电气工程大典-电力电子技术[M].北京:中国电力出版社,2009.
    [51]曾杰.可再生能源发电与微网中储能系统的构建与控制研究:[博士学位论文].武汉:华中科技大学,2009.
    [52]D.A.J.Rand,等.阀控式铅酸蓄电池[M].北京:机械工业出版社,2006.
    [53]张华民,周汉涛,赵平,等.储能技术的研究开发现状及展望[J].能源工程,2005,(3):1-7.
    [54]费万民,张艳莉,吕征宇.大容量静止无功发生器与电池储能的集成[J].电力系统自动化,2005,29(10):41-44.
    [55]Anderson M D, Carr D S. Battery energy storage technologies [J]. Proceedings of the IEEE,1993,81(3):475-479.
    [56]Chiang S J, Liaw C M, Chang W C, et al. Multi-module parallel small battery energy storage system[J]. IEEE Trans. on Energy Conversion,11(1):146-154.
    [57]Lu C-F, Liu C-C, Wu C-J. Dynamic modeling of battery energy storage system and application to power system stability [J]. IET Generation, Transmission and Distribution,1995,142(4):429-435.
    [58]周德璧,于中一.锌溴液流电池技术研究[J].电池,2004,34(6):442-443.
    [59]Sasaki T, Kadoya T, Enomoto K. Study on load frequency control using redox flow batteries [J]. IEEE Transactions on Power Systems,2004,19(1):660-667.
    [60]Miyake S, Tokuda N. Vanadium redox-flow battery applications [C]. IEEE Power Engineering Society Summer Meeting,2001,1:450-451.
    [61]Shibata A, Sato K. Development of vanadium redox flow battery for electricity storage [J]. Power Engineering Journal,1999,13(3):130-135.
    [62]文越华,程杰,张华民,等.液流储能电池电化学体系的进展[J].电池,2008,38(4):247-249.
    [63]张建成,黄立培,陈志业.飞轮储能系统及其运行控制技术研究[J].中国电机工程学报,2003,23(3):108-111.
    [64]Samineni S, Johnson B K, Hess H L, et al. Modeling and analysis of a flywheel energy Storage system for Voltage sag correction [J]. IEEE Transactions on Industry Applications,2006,42(1):42-52.
    [65]汤双清,阎丽芬,廖道训,等.飞轮电池在分布式发电系统中的应用研究[J].水力发 电,2004,30(2):58-62.
    [66]Wang M-H, Chen H-C. Transient stability control of multi-machine power systems using flywheel energy injection [J]. IET Generation, Transmission and Distribution,2005,152(5):589-596.
    [67]Cardenas R, Pena R, Perez M, et al. Power smoothing using a switched reluctance machine driving a flywheel [J]. IEEE Transactions on Energy Conversion,2006,21(1):294-295.
    [68]Sylvain Lemofouet, Alfred Rufer. Hybrid Energy Storage System based on Compressed Air and Super capacitors with MEPT (Maximum Efficiency Point Tracking)[C]. The2005International Power Electronics Conference,2005,(1):461-468.
    [69]何永秀,关雷,蔡琪,等.抽水蓄能电站在电网中的保安功能与效益分析[J].电网技术,2004,28(10):54-57,67.
    [70]蒋晓华.赋予能量管理角色的可控超导储能技术[J].电力系统自动化,2003,27(17):l-3,67.
    [71]陈星莺,刘孟觉,单渊达.超导储能单元在并网型风力发电系统的应用[J].中国电机工程学报,2001,21(12):63-66.
    [72]尹忠东,张哲然,周瑞臣.基于超级电容储能的可变速驱动抵御扰动研究[J].水电能源科学,2005,23(6):81-83.
    [73]吴俊玲,吴畏,周双喜.超导储能改善并网风电场稳定性的研究[J].电工电能新技术,2004,23(3):59-63.
    [74]赵彩宏,郭风,郭文勇,等.基于电压补偿原理的超导储能-限流集成系统[J].电力系统自动化,2006,30(2):68-71.
    [75]Nomura S, Ohata Y, Hagita T, et al. Wind farms linked by SMES systems [J]. IEEE Transactions on Applied Superconductivity,2005,15(2):1951-1954.
    [76]Nagaya S, Hirano N, Shikmachi K, et al. Development of MJ-class HTS SMES for bridging instantaneous voltage dips [J]. IEEE Transactions on Applied Superconductivity,2004,14(2):770-773.
    [77]Feng Liu, Sheng wei Mei, Deming Xia, et al. Experimental evaluation of nonlinear robust control for SMES to improve the transient stability of power systems [J]. IEEE Transactions on Energy Conversion,2004,19(4):774-782.
    [78]Buller S, Karden E, Kok D, et al. Modeling the dynamic behavior of supercapacitors using impedance spectroscopy [J]. IEEE Transactions on Industry Applications,2002,38(6):1622-1626.
    [79]Han C, Huang A Q, Li D, et al. Modeling and Design of a Transmission Ultra-capacitor (TUCAP) Integrating Modular Voltage Source Converter with Ultra-capacitor Energy Storage [C]. Twenty-First Annual IEEE Applied Power Electronics Conference and Exposition,2006:1104-1110.
    [80]Conroy J F, Watson R. Low-voltage ride-through of a full converter wind turbine with permanent magnet generator[J]. IET Renewable Power Generation,2007,1(3):182-189.
    [81]叶杭冶.风力发电机组的控制技术[M].第2版.北京:机械工业出版社,2007.
    [82]Salameh Z M, Casacca M A, Lynch W A. A mathematical model for lead-acid batteries[J]. IEEE Transaction on Energy Conversion,1992,7(8):93-98.
    [83]B E Conway. Electrochemical Supercapacitors:Scientific fundamentals and technological applications [M]. New York:plenum,1999.
    [84]Zubieta L,Bonert R. Characterization of double-layer capacitors for power electronics applications[J]. IEEE Transaction on Industry Applications,2000,36(1):199-205.
    [85]廖勇,何金波,姚骏,等.基于变桨距和转矩动态控制的直驱永磁同步风力发电机功率平滑控制[J].中国电机工程学报,2009,29(18):71-77.
    [86]Luo C, Banakar H, Shen B, et al. Strategies to smooth wind power fluctuations of wind turbine generator [J]. IEEE Transactions on Energy Conversion,2007,22(2):341-349.
    [87]Ushiwata K, Shishido S, Takahashi R, et al. Smoothing control of wind generator output fluctuation by using electric double layer capacitor[J]. International Conference on Electrical Machines and Systems, Seoul, Korea,2007.
    [88]Yoshimoto K, Nanahara T, Koshimizu Q et al. New Control Method for Regulating State-of-Charge of a Battery in Hybrid Wind Power/Battery Storage System[J]. Power Systems Conference and Exposition, PSCE2006:1244-1251.
    [89]Teleke, S. Baran, M.E. Bhattacharya, S.Huang, A.Q. Optimal Control of Battery Energy Storage for Wind Farm Dispatching[J]. IEEE Trans. Energy Convers.2010,25(3):787-794.
    [90]Xiangjun Li, Dong Hui, Li Wu, et al. Control strategy of battery state of charge for wind/battery hybrid power system [J].2010IEEE International Symposium on Industrial Electronics (ISIE), Bari,2010:2723-2726.
    [91]G.O. Suvire, and P.E. Mercado. Active power control of a flywheel energy storage system for wind energy applications[J]. IET Renew. Power Gener,2012,6(1):9-16.
    [92]张步涵,曾杰,毛承雄,等.电池储能系统在改善并网风电场电能质量和稳定性中的应用[J].电网技术,2006,30(15):54-58.
    [93]陈星莺,刘孟觉,单渊达.超导储能单元在并网型风力发电系统的应用[J].中国电机工程学报,2001,21(12):63-66.
    [94]刘昌金,胡长生,李霄,等.基于超导储能系统的风电场功率控制系统设计[J].电力系统自动化2008,32(16):83-88.
    [95]姚骏,廖勇,庄凯.电网故障时永磁直驱风电机组的低电压穿越控制策略[J].电力系统自动化,2009,33(12):91-95.
    [96]李建林,高志刚,胡书举,等.并联背靠背PWM变流器在直驱型风力发电系统的应用[J].电力系统自动化,2008,32(5):59-62.
    [97]胡书举,李建林,许洪华.直驱风电系统变流器建模和跌落特性仿真[J].高电压技术,2008,34(5):949-954.
    [98]李建林,胡书举,孔德国,等.全功率变流器永磁直驱风电系统低电压穿越特性研究[J].电力系统自动化,2008,32(19):92-95.
    [99]张兴,张龙云,杨淑英,等.风力发电低电压穿越技术综述[J].电力系统及其自动化学报,2008,20(2):1-8.
    [100]Ramtharan G, Arulampalam A, et al. Fault ride through of fully rated converter wind turbines with AC and DC transmission[J]. IET Renewable Power Generation,2009, 3(4):426-438.
    [101]王虹富,林国庆,邱家驹,等.利用串联制动电阻提高风电场低电压穿越能力[J].电力系统自动化,2008,32(18):81-85.
    [102]张坤,毛承雄,陆继明,等.基于储能的直驱风力发电系统的功率控制[J].电工技术学报,2011,26(7):7-14.
    [103]Kun Zhang, Yuping Duan, Jiandong Wu, et al. Low Voltage Ride through Control Strategy of Directly Driven Wind Turbine with Energy Storage System[C]. Proceeding of IEEE PES General Meeting, USA, Detroit,2011:1-7.
    [104]Kun Zhang, Chunsheng Li, Chengxiong Mao et al. Power control of directly-driven wind generation system with battery/ultra-capacitor hybrid energy storage [J]中国电机工程学报.2012,32(25):99-108.
    [105]刘其辉,贺益康,赵仁德.变速恒频风力发电系统最大风能追踪控制[J].电力系统自动化,2003,27(20):62-67.
    [106]徐金榜,何顶新,赵金,等.电压不平衡情况下PWM整流器功率分析方法[J].中国电机工程学报,2006,26(16):80-85.
    [107]Strunz K, Louie H. Cache energy control for strorage:power system integration and education based on analogies derived from computer engineering[J]. IEEE Transactions on Power Systems,2009,24(1):12-19.
    [108]Wei Li, Geza Joos. A power electronic interface for a battery supercapacitor hybrid energy storage system for wind applications [C]. Power Electronics Specialist Conference. Rhodes:IEEE,2008:1762-1768.
    [109]Potter C, Negnevitsky M.Very short-term wind forecasting for Tasmanian power generation [J]. IEEE Trans. Power Syst.2006,21(2):965-972.
    [110]Turbelin Q Ngae P, Grignon M. Wavelet cross correlation analysis of wind speed series generated by ANN based models [J]. Renew Energy.2009,34(4):1024-1032.
    [111]Andrew Kusiak, Zheng Haiyang, Song Zhe. Short-term prediction of wind farm power:A data mining approach [J]. IEEE Trans. Energy Convers.2009,24(1):125-136.
    [112]Sideratos Q Hatziargyriou N D. An advanced statistical method for wind power forecasting [J]. IEEE Trans. Power Syst.2007,22(1):258-265.
    [113]Methaprayoon K, Yingvanapong C, Lee W J. An integration of ANN wind power estimation into unit commitment considering the forecasting uncertainty [J]. IEEE Trans. Ind. Appl.2007,43(6):1441-1448.
    [114]Bludszuweit H, Dominguez-Navarro J A, Llombrt A. Statistical analysis of wind power forecast error [J]. IEEE Trans. Power Syst.2008,23(3):983-991.
    [115]黎春涅,张坤,毛承雄,等.不对称电网故障下直驱永磁风力发电系统电网侧变换器的模糊功率控制[J].水电能源科学,2012,30(10):196-199.
    [116]何致远,瞿晓.基于电源滤波的三相PWM整流器模糊控制策略研究[J].电工技术学报,2006,21(4):107-110.
    [117]陈鑫兵,何礼高.基于模糊控制的三电平逆变器中点电位平衡策略[J].电工技术学报,2007,22(10):103-108.
    [118]唐杰,罗安,欧剑波,等.配电静止同步补偿器的模糊自适应PI控制策略[J].电工技术学报,2008,23(2):120-126.
    [119]曾光,苏彦民,柯敏倩,等.用于无功静补系统的模糊-PID控制方法[J].电工技术学报,2006,21(6):40-44.
    [120]Jukka V P, Peter D L. Effect of energy storage on variations in wind power[J]. Wind Energy,2005,8(4):424-441.
    [121]Shiji W, Ryohei O. An investigation on optimal battery capacity in wind power generation system[R]. Dept. of EE&Bioscience, Waseda University, Tokyo, Japan,2004.
    [122]杨水丽,惠东,李建林,等.适用于风电场的最佳电池容量选取的方法[J].电力建设,2010,31(9):1-4.
    [123]丛爽.面向MATLAB工具箱的神经网络理论与应用[M].合肥:中国科学技术出版社,1998:45-73.
    [124]飞思科技产品研发中心.神经网络理论与MATLAB7实现应用[M].北京:电子工业出版社,2005:99-108.
    [125]毛颖科,关志成,王黎明,等.基于BP人工神经网络的绝缘子泄露电流预测[J].中国电机工程学报,2007,27(27):7-11.
    [126]琚亚平,张楚华.基于人工神经网络与遗传算法的风力机翼型优化设计方法[J].中国电机工程学报,2009,29(20):106-111.
    [127]Miu K N, Chiang H-D, Darling G. Capacitor placement, replacement and control in large-scale distribution system by a GA-based two-stage algorithm[J]. IEEE Trans. on Power Systems,1997,12(3):1160-1166.
    [128]Rudolf A, Bayrleithner R. A genetic algorithm for solving the unit commitment problem of a hydro-thermal power system[J]. IEEE Trans. on Power Systems,1999,14(4):1460-1468.
    [129]Enacheanu B, Raison B, Caire R, et al. Radial network reconfiguration using genetic algorithm based on the matroid theory[J]. IEEE Trans. on Power Systems,2008,23(1):186-195.
    [130]冯建军,罗兴锜.遗传算法在奇点法设计平面叶栅中的应用[J].中国电机工程学报,2002,22(11):97-99.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700