用户名: 密码: 验证码:
利用雨滴谱对移动双偏振雷达进行质量控制及降水估测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于T-Matrix对C波段双偏振雷达参数反演,本文首先拟合了江淮地区双偏振雷达ZH,ZDR,KDP等参数之间的关系,衰减系数以及滴谱结构特征。通过对数据进行分析,分析了影响双偏振雷达数据的主要参数,并且给出了对各种参数进行质量控制的方法。使用FIR迭代滤波,对ΦDP数据进行了滤波,得到KDP参数。结合江淮地区雨滴谱散射模拟的结果,提出了使用MKDP方法对ZH,ZDR进行衰减订正。另外,针对车载双偏振雷达的特点,分析了近距离遮挡物对各个双偏振参数的影响。最后,对2013年江淮地区一次梅雨过程进行了滴谱分析,使用Z-R,R-KDP,R-ZH-ZDR,R-KDP-ZDR四种方法进行了降水估测,并对误差进行了分析。论文的主要研究内容和研究成果如下:
     1)通过雨滴谱观测数据,使用T-Matrix方法能很好的对C波段双偏振雷达参数进行模拟。通过模拟得到的各种参数的相关性较高,并且,结合模拟结果,可以得到u-Λ曲线,配合观测得到的双偏振参数,可以实现滴谱Gamma分布的参数反演。
     2)在双偏振雷达质量控制中,采样点数M,信噪比SNR,相关系数ρHV是影响双偏振参数质量的重要因素。研究结果表明,只有SNR大于20dB的双偏振参数才具有可信度。ZDR系统误差在20-34dB会随着SNR的增加而增加。在观测过程中ZDR系统误差变化不大,但是,在阵地迁移,系统故障等情况发生时,系统误差变化较大,需要重新进行标定。
     3)使用FIR迭代滤波方法可以很好的对ΦDP进行滤波。最后使用最小二乘法求取KDP可以得到比较满意的结果。
     4)采用对雨滴进行分类,使用雨滴谱数据拟合出不同雨滴大小的衰减系数,对ZH,ZDR进行衰减订正(MKDP法)。通过对不同订正方法的分析,并使用S波段雷达对订正结果进行分析,结果表明,MKDP法效果明显。
     5)由于车载雷达容易遭受附近遮挡物的影响,文章分析了近距离遮挡物对各个参数的影响。反射率因子ZH受遮挡影响后基本会减小,遮挡越大,衰减越强。ZDR在受到尖状遮挡物影响时,会出现正的偏差,ΦDP受到遮挡情况和ZDR类似,KDP和ρHV基本不受到部分遮挡的影响。
     6)利用雨滴谱散射模拟的结果,得到R(Z),R(KDP),R(ZDR,ZH),R(ZDR,KDP)四种降水估测方法的拟合系数。使用2013年江淮地区的一次梅雨过程,对滴谱结构及降水估测结果进行分析。结果表明,该次过程滴谱结构比较稳定,各种方法订正的效果相当。使用小时雨量与降水估测的结果比较,能减少分钟雨量与雷达估测的结果的误差。
Based on T-Matrix scattering simulation, The relationship between polarimetricradar measurements, attenuation coefficients, raindrop DSD of Jianghuai area wasfitted. The main parameters which had influence on radar data was analyzed and basicquality control was conducted. By using a iterative range filtering technology onΦDP,the KDPwas obtained. Combining the Jianghuai area raindrop spectrum scatteringsimulation results, attenuation correction of ZH, ZDRwere conducted by using theMKDP method.In addition, according to the characteristics of mobile dualpolarization radar, the influence of short distance blockage on different dual-polarizedparameters are analyzed. Finally, the DSD characteristics of a Jianghuai meiyu-frontin July,2013was analyzed and four QPE methods(R(Z), R(KDP), R(ZDR,ZH),R(ZDR,KDP)) and Error analysis were discussed,The main contents and conclusionsare as follows:
     (1)Parameters of mobile C-band dual-polarization radar are inverted based onT-Matrix scattering simulation using raindrop size distribution. The parametersobtained through simulation have a high correlation between each other. u-Λcurvewas obtained by using simulation results, and Gamma distribution of raindrop DSDsimulation was obtained by using polarimetric radar parameters.
     (2) In the process of basic quality control, number of samples M,SNR andcorrelation coefficient ρHVare significant elements which influence the quality ofradar polarimetric paraments.The results showed that radar polarimetric paraments iscreditable when SNR is larger than20dB.Systemic error of ZDRin scope of20-34dBwill increase with SNR. ZDRsystem error had no obvious change during theobservation, but ZDRneed to be calibrated when position removal and systemmalfunction occur.
     (3) It is good to use iterative range filtering technology on ΦDP. Finally usingleast squares method to calculate KDPcan get satisfactory results.
     (4) ZH, ZDRwere attenuation corrected using MKDP method based on raindropclassification which was on the basis of different DSD and attenuation coefficientsfitted using raindrop size distribution.. Analysis of different correction methods and correction results by comparison with s-band radar showed that the MKDP methodeffect is obvious.
     (5)According to the characteristics of mobile radar, the influence of shortdistance blockage on different dual-polarized parameters were analyzed. Theattenuation of reflectivity factor ZHwas always in proportion to the degree ofblockage, while ZDRand ΦDPwill increase when encounter the cuspate blockage.KDPand ρHVwere always immune to the partial blockage.
     (6)Simulation coefficient of four QPE methods (R(Z),R(KDP),R(ZDR,ZH),R(ZDR,KDP)) were obtained by scattering simulation of raindrop size distribution. TheDSD characteristics of a jianghuai meiyu-front in July,2013were analyzed and erroranalysis were discussed. The results showed that drop spectrum structure was stable,the effect of various methods correction were similar. Rainfall error of using minutesdata of rain gauge and radar rainfall estimate results can be reduced when using hoursdata compared with precipitation estimation results.
引文
[1]蔡启铭,徐宝祥,刘黎平.降雨强度、雨区衰减与双线偏振雷达观测量关系的研究.高原气象[J],1990,9(4):347-355.
    [2]曹俊武,刘黎平,葛润生等.模糊逻辑法在双线偏振雷达识别降水粒子相态中的研究.大气科学[J],2005,29(5):826-836.
    [3]曹俊武,刘黎平.双线偏振多普勒天气雷达识别冰雹区方法研究.气象[J],2006,32(6):13-19.
    [4]曹俊武,刘黎平,陈晓辉等.3836C波段双线偏振多普勒雷达及其在一次降水过程中的应用研究.应用气象学报[J],2006,17(2):192-200.
    [5]曹俊武.双线偏振多普勒雷达的资料质量控制及降水粒子相态识别方法研究(博士论文).2006.
    [6]曹俊武,刘黎平.双线偏振雷达判别降水粒子类型技术及其检验.高原气象[J],2007,26(1):116-127.
    [7]曹俊武,胡志群,陈晓辉等.影响双线偏振雷达相位探测精度的分析.高原气象[J],201130(3):817-822.
    [8]楚荣忠,王致君,刘黎平等.双线偏振雷达降雨估测分析.气象学报[J],1997,55(1):103-109.
    [9]丁青兰,刘黎平,葛润生等.双线偏振多普勒雷达测量精度的理论分析.应用气象学报[J],2003,14(1):30-38.
    [10]杜牧云,刘黎平,胡志群等. C波段双线偏振多普勒雷达资料质量分析.暴雨灾害[J],2011,30(4):328-334.
    [11]胡志群,刘黎平,楚荣忠等. X波段双线偏振雷达不同衰减订正方法对比及其对降水估测影响研究.气象学报[J],2008,66(2):251-261.
    [12]胡志群,刘黎平,肖艳姣等.降水粒子空间取向对双线偏振雷达观测影响模拟研究.应用气象学报[J],2008,19(3):362-366.
    [13]刘黎平,徐宝祥,蔡启铭.雨区衰减和雷达取样误差对713型双线偏振雷达测量精度的影响.高原气象[J],1989,8(2):181-188.
    [14]刘黎平,徐宝祥.双线偏振雷达雨区衰减订正问题的模拟计算与讨论.高原气象[J],1992,11(3):235-240.
    [15]刘黎平,徐宝祥,王致君等.用C波段双线偏振雷达研究冰雹云.大气科学[J],1992,16(3):370-376.
    [16]刘黎平,张鸿发,王致等.利用双线偏振雷达识别冰雹区方法初探.高原气象[J],1993,12(3):333-337.
    [17]刘黎平,钱永甫.用双线偏振雷达研究云内粒子相态及尺度的空间分布.气象学报[J],1996,54(5):590-599.
    [18]刘黎平,钱永甫,王致君.双线偏振雷达测雨效果的对比分析.大气科学[J],1996,20(5):615-619.
    [19]刘黎平,王致君.双线偏振雷达探测的云和地物回波的特性及其识别方法.高原气象[J],1996,15(3):303-310.
    [20]刘黎平,王致君,钱永甫. C波段双线偏振雷达退偏振因子的应用潜力.高原气象[J],1997,16(4):417-424.
    [21]刘黎平,王致君,徐宝祥等.我国双线偏振雷达探测理论及应用研究.高原气象[J],1997,16(1):99-104.
    [22]刘黎平.双线偏振多普勒天气雷达估测混合区降雨和降雹方法的理论研究.大气科学[J],2002,26(6):761-772.
    [23]刘黎平,葛润生,张沛源.双线偏振多普勒天气雷达遥测降水强度和液态含水量的方法和精度研究.大气科学[J],2002,26(5):709-720.
    [24]王柏忠,王广河等.基于人工影响天气的气象灾害减灾技术[J].自然灾害学报,2005,14(3):15-21.
    [25]王建林,刘黎平,曹俊武.双线偏振多普勒雷达估算降水方法的比较研究.气象[J],2005,31(8):25-30.
    [26]王叶红,赵玉春,崔春光.多普勒雷达估算降水和反演风在不同初值方案下对降水预报影响的数值研究[J].气象学报,2006,64(4):485-499.
    [27]徐坤,谢明元,刘黎平等. C、X波段双线偏振多普勒雷达资料质量分析.成都信息工程学院学报[J],2009,24(4):329-332.
    [28]张鸿发,左洪超,郄秀书,等.平凉冰雹云回波特征分析[J].气象学报,2002,60(1):110-115.
    [29]郑媛媛,谢亦峰,吴林林等.多普勒雷达定量估测降水的三种方法比较试验.热带气象学报[J],2004,20(2):192-197.
    [30]Aydin,k.and Y.Zhao,A computational study of polarimetric radarobservables in hail. IEEETrans. Geosci. Remote Sens.,1990,28,412-421.
    [31]andrieu, H., J. D. Creutin, G. Delrieu, and D. Faure,.Use of a weather radar for the hydrologyof a mountainous area. Part I: Radar measurement interpretation. J. Hydrol.,1997,193,1–25.
    [32]Alberoni, P. P., ZRni′c, D. S., Ryzhkov, A. V., and Guerrieri, L.: Use of a fuzzy logicclassification scheme with a C-band polarimetric radar: first results, Proceedings of ERAD,2002,324–327.
    [33]Atlas, D., Radar calibration: Some simple approaches. Bull. Amer. Meteor. Soc.,2002,83,1313–1316.
    [34]Balakrishnan, N., and D. S. ZRnic′. Estimation of rain and hail rates in mixed-phaseprecipitation. J. Atmos. Sci.,1990,47,565–583.
    [35]Balakrishnan, N.; ZRnic, D. S. Use of polarization to characterize precipitation anddiscriminate large hail Journal of the Atmospheric Sciences,1990,47(13). pp.1525-1540. ISSN0022-4928
    [36]Bringi, V. N., and A. Hendry, Technology of polarization diversity radars for meteorology.Radar in Meteorology: Battan Memorial and40th Anniversary Radar Meteorology Conference, D.Atlas, Ed., Amer. Meteor. Soc.,1990,153–190.
    [37]Bringi, V. Chandrasekar, N. Balakrishnan, and D. S. ZRnic′.An examination of propagationeffects in rainfall on radar measurements at microwave frequencies.J. Atmos. OceanicTechnol.,1990,7,829–840.
    [38]Blackman, M., and A. J. Illingworth, Differential phase measurement of precipitation. Preprints,26th Int. Conf. on Radar Meteorology, Norman, OK, Amer. Meteor. Soc.,1993,745–747.
    [39]Bringi, V. N., and V. Chandrasekar, Polarimetric Doppler Weather Radar: Principles andApplications. Cambridge Uni-versity Press,2001,636.
    [40] Bringi,T. D. Keenan, and V. Chandrasekar.Correcting C band radar reflectivity anddifferential reflectivity data for rain attenuation: A self-consistent method with constraints.IEEETrans. Geosci. Remote Sens.,2001,39,1906–1915.
    [41]Bringi, V. N. and Chandrasekar, V.:Polarimetric Doppler weather radar, Cambridge UniversityPress,2001.
    [42]Brandes, E., Zhang, G., and Vivekanandan, J.: Experiments in rainfall estimation with apolarimetric radar in a subtropical environment, J. Appl. Meteor.,2002,41,674–685.
    [43]Bech, J., B. Codina, J. Lorente, and D. Bebbington,.The sensitivity of single polarizationweather radar beam blockage correction to variability in the vertical refractivity gradient. J. Atmos.Oceanic Technol.,2003,20,845–855.
    [44]Baldini, L., Gorgucci, E., and Chandrasekar, V.: Hydrometeor classification methodology forC-band polarimetric radars, Proceedings of ERAD,2004,62–66.
    [45]Baldini, L., Gorgucci, E., and Chandrasekar, V.: Hydrometeor classification methodology forC-band polarimetric radars, Proceedings of ERAD,2004,62–66.
    [46]Chandrasekar, V., and V. N. Bringi.Simulation of radar reflectivity and surface measurementsof rainfall. J. Atmos. Oceanic Technol.,1987,4,464–478.
    [47]Carey, L. D., and S. A. Rutledge,.A multiparameter radar case study of the microphysical ankinematic evolution of a lightning producing storm. Meteor. Atmos. Phys.,1996,59,33–66.
    [48]Creutin, J. D., H. andrieu, and D. Faure,.Use of a weather radar for the hydrology of amountainous area. Part II: Radar measurement validation. J. Hydrol.,1997,193,26–44.
    [49] Carey, L.D., S. A. Rutledge, D. A. Ahijevych, and T. D. Keenan,.Correcting propagationeffects in C-band polarimetric radar observations of tropical convection using differentialpropagation phase. J. Appl. Meteor.,2000,39,1405–1433.
    [50]Cifelli, R.,W.A. Petersen, L.D. Carey, S.A. Rutledge, andM. A. F. Silva Dias. Radarobservations of kinematic, microphysical,and precipitation characteristics of two MCSs in TRMMLBA. J. Geophys. Res.,2002,107,8077.
    [51]Doviak, R. J., and D. S. ZRnic,.Doppler Radar and Weather Observations. Academic Press,1993,562pp.
    [52]Dinku, T., E. N. Anagnostou, and M. Borga,.Improving radar-based estimation of rainfall overcomplex terrain. J. Appl. Meteor.,2002,41,1163–1178.
    [53]Friedrich, K., U. Germann, J. J. Gourley, and P. Tabary,.Effects of radar beam shielding onrainfall estimation for the polarimetric C-band radar. J. Atmos. Oceanic Technol.,2007,24,1839–1859.
    [54]F. Teschl, W. L. Randeu, M. Sch¨onhuber, and R. Teschl.Simulation of polarimetric radarvariables in rain at S-, C-and X-band wavelengths.Adv. Geosci.,2008,16,27–32.
    [55] Gorgucci, E., G. Scarchilli, and V. Chandrasekar,.Calibration of radars using polarimertrictechniques. IEEE Trans. Geosci. Remote Sens.,1992,30,853–858.
    [56] Goddard, J., J. Tan, and M. Thurai,.Technique for calibration of meteorological radars usingdifferential phase. Electron. Lett.,1994,30,166–167.
    [57]Gorgucci, E., G. Scarchilli, and V. Chandrasekar.Operational monitoring of rainfall over theArno River basin using dualpolarized radar and rain gauges. J. Appl. Meteor.,1996,35,1221–1230.
    [58]Gorgucci, E., G. Scarchilli, and V. Chandrasekar,.A procedure to calibrate multiparameterweather radar using properties of the rain medium. IEEE Trans. Geosci. Remote Sens.,1999,37,269–276.
    [59]Germann, U., and J. Joss,.Operational measurement of precipitation in mountainous terrain.Weather Radar: Principles and Advanced Applications, P. Meischner, Ed., Springer-Verlag,2003,52–77.
    [60] Gourley, J., B. Kaney, and R. Maddox.Evaluating the calibrations of radars: A softwareapproach. Preprints,31st Int. Conf. on Radar Meteorology, Seattle, WA, Amer. Meteor. Soc.,2003,459–462.
    [61]Giangrande, S. E., and A. V. Ryzhkov,.Calibration of dualpolarization radar in the presence ofpartial beam blockage.J. Atmos. Oceanic Technol.,2005,22,1156–1166.
    [62]Germann, U., G. Galli, M. Boscacci, and M. Bolliger,.Radar precipitation measurement in amountainous region. Quart. J. Roy. Meteor. Soc.,2006,132,1669–1692.
    [63]Gourley, J. J., P. Tabary, and J. Parent du Chatelet.Data quality of the Meteo-France C-bandpolarimetric radar. J. Atmos. Oceanic Technol.,2006a:,23,1340–1356.
    [64]Gourley,P. Tabary, and J. Parent du Chatelet,Empirical estimation of attenuation fromdifferential propagation phase measurements at C band. J. Appl. Meteor. Climatol.,2007,46,306–317.
    [65] Hubbert, J., V. Chandrasekar, V. N. Bringi, P. Meischner,.Processing and Interpretation ofCoherent Dual-Polarized Radar Measurements. J. Atmos. Oceanic Technol.,1993,10,155–164.
    [66]Holler, H., V. N. Bringi, J. Hubbert, M. Hagen, and P. F. Meischner, Life cycle and precipitationformation in a hybrid-type hailstorm revealed by polarimetric and Doppler radar measurements. J.Atmos. Sci.,1994,51,2500–2522.
    [67] Hubbert, J., V. N. Bringi,.An Iterative Filtering Technique for the Analysis of CopolarDifferential Phase and Dual-Frequency Radar Measurements. J. Atmos. Oceanic Technol.,1995,12,643–648.
    [68]Illingworth, A., and T. Blackman.The need to represent raindrop size spectra as normalizedGamma distributions for the interpretation of polarization radar observations. J. Appl. Meteor.,2002,41,286–297.
    [69]Jameson, A. R.,1991a: A comparison of microwave techniques for measuring rainfall. J. Appl.Meteor.,30,32–54.
    [70]Joe, P., and P. L. Smith, Summary of the Radar Calibration Workshop. Preprints,30th Int.Conf. on Radar Meteorology, Munich, Germany, Amer. Meteor. Soc.,2001:174–176.
    [71]Keenan, T. D.: Hydrometeor classification with a C-band polarimetric radar, AustralianMeteorological Magazine,2003,52,1,23–31,.
    [72]Kucera, P. A., W. F. Krajewski, and C. B. Young.Radar beam occultation studies using GISand DEM technology:An example study of Guam. J. Atmos. Oceanic Technol.,2004,21,995–1006.
    [73]Lopez, R. E., and J. P. Aubagnac, The lightning activity of a hailstorm as a function of changesin its microphysical characteristics inferred from polarimetric radar observations. J. Geophys.Res.,1997,102,16799–16813.
    [74]Liu, H., and V. Chandrasekar,.Classification of hydrometeor type based on multiparameterradar measurements: Development of a neuro-fuzzy system and in situ verification. J. Atmos.Oceanic Technol.,2000,17,140–164.
    [75]Lang, T. J., D. A. Ahijevych, S. W. Nesbitt, R. E. Carbone, S. A. Rutledge, and R. Cifelli,2007: Radar-observed characteristics of precipitating systems during NAME2004. J. Climate,20,1713–1733.
    [76]Lim, S., Chandrasekar, V., and Bringi, V. N.: Hydrometeor classification system usingdual-polarization radar measurements: model improvements and in situ verification,2005,43,4,792–801.
    [77]Morrison, J. A. and Cross, M. J.: Scattering of a plane electromagnetic wave by axisymmetricraindrops, Bell Syst. Tech. J.,1974,53,955–1019.
    [78] Meischner, P. F., V. N. Bringi, D. Heimann, H. H ller, A Squall Line in Southern Germany:Kinematics and Precipitation Formation as Deduced by Advanced Polarimetric and Doppler RadarMeasurements. Mon. Wea. Rev.,1991:119,678–701.
    [79]Matrosov,S.Y,K.A.Clark, B. E. Martner, and A. Tokay,: X-band polarimetric radarmeasurements of rainfall. J. Appl. Meteor.,2002,41,941–952.
    [80]Oguchi, T.: Attenuation and phase rotation of radio waves due to rain: Calculations at19.3and34.8GHz, Radio Sci.,1973,8,31–38,
    [81]Pruppacher, H. R., and Beard, K. V.: A wind tunnel investigation of the internal circulation andshape of water drops falling at terminal velocity in air, Quart. J. Roy. Meteor. Soc.,1970,96,247–256.
    [82]Pruppacher, H. R. and Pitter, R. L.: A semi-empirical determination of the shape of cloud andrain drops, J. Atmos. Sci.,1971,28,86–94..
    [83]Potential Use of Radar Differential Reflectivity Measurements at Orthogonal Polarizations forMeasuring Precipitation. J. Appl. Meteor.,1976(15):69-76.
    [84]Ray, P. S., BroadBand complex refractive indices of ice and water. Appl. Opt.,1972:11,1836–1844
    [84]Ryzhkov, A. V., and D. S. ZRnic′, Precipitation observed in Oklahoma mesoscale convectivesystems with a polarimetric radar. J. Appl. Meteor.,1994:33,455–464.
    [85]Ryzhkov, A., and D. S. ZRnic, Assessment of rainfall measurement that uses specificdifferential phase. J. Appl. Meteor.,1996:35,2080–2090.
    [86]Seliga, T. A., and V. N. Bringi, Potential use of the radarreflectivity at orthogonal polarizationsfor measuring precipitation.J. Appl. Meteor.,1976,15,69–76.
    [87]Seliga, T. A., and V. N. Bringi, Differential reflectivity and differential phase shift: Applicationsin radar meteorology. Radio Sci.,1978:,13,271–275.
    [88]Sachidananda, M., and D. S. ZRnic′,: Differential propagation phase shift and rainfall rateestimation. Radio Sci.,1986,21,235–247.
    [89]Scarchilli, G., E. Gorgucci, V. Chandrasekar, and A. Dobaie, Self-consis,measurement ofainfall. IEEE Trans. Geosci. Remote Sens.,1996:,34,22–26.
    [90]Straka, J. M., Hydrometeor fields in a supercell storm as deduced from dual-polarization radar.Preprints,18th Conf. on Severe Local Storms, San Francisco, CA, Amer. Meteor. Soc.,1996:551–554.
    [91Straka, J. M.,D. S. ZRnic,and A. V. Ryzhkov, Bulk hydrometeor classification and quantificationusing polarimetric radar data: Synthesis of relations. J. Appl. Meteor.,2000:39,1341–1372.
    [92]Thurai, M. and Bringi, V. N.: Drop Axis Ratios, from a2D-Video Disdrometer, J. Atmos. Ocean.Technol.,22,963–975,2005.
    [93]Vivekanandan, J., D. N. Yates, and E. A. Brandes,The influence of terrain on rainfall estimatesfrom radar reflectivity and specific propagation phase observations. J. Atmos. Oceanic Technol.,1999:16,837–845.
    [94]Vivekanandan, J., D. S. ZRnic, S. M. Ellis, R. Oye, A. V. Ryzhkov, and J. Straka,1999: Cloudmicrophysics retrieval using S-band dual-polarization radar measurements. Bull. Amer. Meteor.Soc.,80,381–388.
    [95]Vivekanandan, J., G. Zhang, S. Ellis, D. Rajopadhyaya, and S. Avery, Radar reflectivitycalibration using differential propagation phase measurement. Radio Sci.,2003:38,8049,doi:10.1029/2002RS002676.
    [96]Vulpiani, G., Marzano, F. S., Chandrasekar, V., and Lim, S.: Constrained Iterative Techniquewith Embedded Neural-Network for Dual-Polarization Radar Correction of Rain Path Attenuation,IEEE Trans. Geosci. Rem. Sensing,2005,43,2305–2314,.
    [97]Vulpiani, Gianfranco, Pierre Tabary, Jacques Parent du Chatelet, Frank S. Marzano,Comparison of Advanced Radar Polarimetric Techniques for Operational Attenuation Correctionat C Band. J. Atmos. Oceanic Technol.,2008:25,1118–1135.
    [98]Willis, P. T., Functional fit to some observed drop size dis-tributions and parameterizationof rain. J. Atmos. Sci.,1984:41,1648–1661.
    [99] ZRnic, D. S.; Balakrishnan, N.; Ziegler, C. L.; Bringi, V. N.; Aydin, K.; Matejka,T. Polarimetric signatures in the stratiform region of a mesoscale convective system Journal ofApplied Meteorology,1993,32(4). pp.678-693.
    [100]ZRni′c, D. S., Keenan, T. D., Carey, L. D., and May, P.: Sensitivity analysis of polarimetricvariables at a5-cm wavelength in rain, J. Appl. Meteor.,2000,39,1514-1526.
    [101]ZRni′c, D. S., Ryzhkov, A. V., Straka, J., Liu, Y., and Vivekanandan, J.: Testing a procedure for
    automatic classification of hydrometeor types, J. Atmos. Oceanic Technol.,2001,18,6,892–913.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700