用户名: 密码: 验证码:
农杆菌介导甘蔗ACC氧化酶基因的遗传转化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
根据已报道的甘蔗ACO基因的序列,在读码框外设计特异引物,通过RT-PCR技术,克隆了甘蔗ACO基因编码区969bp的cDNA片段,分别正向和反向插入植物表达载体pBI121的CaMV35S启动子和NOS终止子之间,构建了ACO基因的正义植物表达载体pBIaco和反义植物表达载体pBIantiaco,该载体的抗性选择标记为NPTⅡ基因。
     利用冻融法分别将正义植物表达载体pBIaco和反义植物表达载体pBIantiaco导入根癌农杆菌菌株EHA105中,通过农杆菌介导法,将ACO正、反义基因导入烟草K346。经PCR筛选,获得34株正义和28株反义转基因植株,转化率分别为24%和31%。取部分PCR阳性植株进行Dot-Southern杂交检测,证明外源基因已整合入烟草的基因组中。采用气相色谱法对转基因烟草进行内源乙烯释放量测定,结果显示,正义转基因烟草的乙烯释放比对照平均增加77.22%,面反义转基因烟草的乙烯释放量仅为对照的31.67%,达到极显著差异。说明甘蔗ACO正、反义基因可在异源真核系统中实现功能性表达。转基因烟草移栽后,反义转基因烟草表现出前期生长延缓、后期开花延迟特性,正义转基因烟草表现出前期生长快、后期开花早特性。
     通过农杆菌介导法将ACO反义基因遗传转化甘蔗ROC22,经过G418抗性筛选,获得19株抗性植株。对选择标记NPTⅡ基因进行PCR检测,有2株呈现阳性,该阳性转基因植株生长状况较野生型和PCR阴性的植株差,生长迟缓,矮化。
Primers were designed according to the reported sequence of ACO gene in sugarcane.A 969bp fragment of ACC oxidase was amplified from cDNA of sugarcane through RT-PCR and then cloned.The cloned ACC oxidase gene was then inserted into a binary vector pBI121 with the forward or reverse orientation between the CaMV35S promoter and NOS terminator sequence respectively,to construct the sense plant expression vector pBIaco and the antisense plant expression vector pBIantiaco,both contained a Km resistance gene(NPTⅡ).
     The recombinant vectors of pBIaco and pBIantiaco were introduced into Agrobacterium tumefaciens strain EHA105 with freeze-thaw method, respectively.Then the leaf discs of tobacco plants were transformed with ACO gene and ACO antisense gene.34 sense transgenic plants and 28 antisense transgenic plants had been confirmed by PCR analysis,with the transformation efficiency of 24%and 31%,respectively.Parts of regenerated kanamycin-resistant plants were selected and proven to be positive by Dot-Southern bloting,indicating that the ACO gene and the antisense gene had been integrated into tobacco genome.The ethylene production from leaves of transgenic and nontransgenic tobacco were determined by gas chromatography(GC).The ethylene productions from ACO sense transgenic plants was increased by 77.22%,and that from ACO antisense transgenic plants was reduced by 68.33%,respectively,in compared with that from nontransgenic plantlet.The results confirmed the expression of sugarcane ACO gene in heterologous eukaryotic system.The tobacco transformed with sense ACO grew faster and flowered earlier than the antisense transformers.
     Subsequently,sugarcane ROC22 was transformed with ACO antisense gene mediated by Agrobacterium tumefaciens.The transformed shoots were screened under the selective pessure of G418 and 19 resistants were obtained, and two of which were further proven to be positive through detecting NPTⅡby PCR.The positive plants grew slowlier and were dwarf than the wild type and the untransformed sugarecane as well.
引文
陈明,陈金印.调控果实成熟的基因工程研究进展.中国农学通报,2004,20(2):15-19
    陈平华,陈如凯,潘大仁,等.HS1~(Pro-1)cDNA单子叶表达载体的构建和转化甘蔗研究初报.见:陈如凯等.作物生物工程技术.北京:中国农业出版社,2003,149-153
    陈平华,林美娟,薛志平,等.GNA基因遗传转化甘蔗研究.甘蔗,2004,11(3):1-6
    陈如凯著.现代甘蔗育种的理论与实践.北京:中国农业出版社,2003,348
    陈如凯著.现代甘蔗育种的理论与实践.北京:中国农业出版社,2003,371
    陈英,黄敏仁,王明庥.植物遗传转化新技术和新方法.中国生物工程杂志,2005,25(9):94-98
    成萍,陈西凯.乙烯利对甘蔗生长发育的影响.西南农业大学学报,1993,15(6):489-491
    邓智年.野苋菜凝集素基因的克隆及转基因研究:[学位论文].南宁:广西大学,2007
    郭春芳,张积森,张木清,等.外源ABA和乙烯利胁迫下斑茅ACO基因表达的实时PCR分析.农业生物技术科学,2008,24(2):48-52
    胡凤仙.转系统获得抗性调节基因(NPR1)烟草的获得极其遗传分析:[学位论文].南宁:广西大学,2002
    何光源主编.植物基因工程实验手册.北京:清华大学出版社,2007,44-46
    黄健,叶燕萍,李杨瑞,等.叶面喷施乙烯利对甘蔗碳氮代谢和农艺性状及品质的影响.中国作物学会甘蔗专业委员会第十一次学术讨论会论文集,2004,105-111
    黄学林,李筱菊,傅家瑞,等.Thidiazuron对苜蓿愈伤组织的乙烯生成及其体细胞胚胎发生的影响.植物生理学报,1994,20(4):367-372
    黄永红,陶兴林,陆璐,等.甜瓜ACC氧化酶反义基因植物表达载体的构建及转化烟草的研究.西北植物学报,2005,25(2):262-268
    胡钟东,乔玉山,王三红,等.梨ACC氧化酶基因(ACO)的片段克隆及其RNAi载体构建.果树学报,2006,23(6):877-879
    J.萨姆布鲁克,E.F.弗里奇,T.曼尼阿蒂斯著(金冬雁等译).分子克隆实验指南(第二版).北京:科学出版社,2002,26-28
    金勇丰,张耀洲,陈大明,等.桃ACC氧化酶基因的克隆和植物表达载体的构建.园艺学报,1998,25(1):37-43
    李克贵,潘大仁,许莉萍.基因枪法将LEAFY基因导人甘蔗的研究.作物学报,2003,29(4): 541-544
    李明亮,韩一凡,李玲,等.ACC氧化酶cDNA克隆及其对美洲黑杨体内乙烯产生的反义抑制.林业科学研究,1999,12(3):223-228
    李永健,杨丽涛,李杨瑞,等.不同时期喷施乙烯利对甘蔗生长、主要农艺性状及抗旱性的影响.甘蔗,2002,9(1):12-18
    梁和,杨瑞,满志文,等.不同浓度乙烯利对甘蔗经济性状的效应.广西农业大学学报,1995,14(2):101-106
    廖江雄,武金榜,林炎坤,等.三种催熟剂对甘蔗成熟期光合及糖分积累的生理生化影响.广西农业大学学报,1997,16(3):204-209
    廖维政,李杨瑞,林炎坤,等.甘蔗生长后期不同时间乙烯利催熟增糖的效应.西南农业学报,2003,16(4):60-64
    林俊芳,张东银,陈如凯,等.基因枪法转化甘蔗胚性愈伤组织获得白化苗.福建农林大学学报,1997,26(1):18-23
    林炎坤,李杨瑞,叶燕萍.三种生长调节剂对甘蔗若干生理生化特性的影响.广西农业大学学报,1992,11(3):25-30
    罗敬萍,张树珍,杨本鹏.农杆菌介导甘蔗基因遗传转化技术的优化.热带作物学报,2003,24(1):23-28
    罗素兰,陈如凯.GNA基因遗传转化甘蔗的研究.见:陈如凯等.作物生物工程技术.北京:中国农业出版社,2003,182-194
    Moore P H,Osgood R V,喷施乙烯利抑制甘蔗开花提高糖产量.Journal of plant Regulation,1989(8):205-210
    Moore P H,Osgood R V.喷施乙烯利抑制甘蔗开花提高糖产量.国外农学-甘蔗,1990,35(2):31-33
    莫萍丽,林炎坤,叶燕萍,等.水杨酸和乙烯利对甘蔗抗旱性的影响.中国作物学会甘蔗专业委员会第十一次学术讨论会论文集,2004,121-130
    Page D L,乙烯利-一种优越广用的植物生长调节剂.国外农学-甘蔗,1984,13(3):9-11
    秦新民,叶云,于兰.基因枪介导甘蔗遗传转化几个影响因素的研究.广西植物,2003,23(4):339-342
    石清琢,姜敏.玉米转基因育种技术概述.杂粮作物,2005,25(4):230-231
    汤富强,刘愚,施教耐,等.ACC合酶基因及其反义基因转化番茄获得转基因植株.科学通报, 1994,39(24):2280-2283
    王爱勤,范业赓,赵晓艳,等.甘蔗茎RNA提取方法的比较.广西农业生物科学,2007,26(2):175-178
    王爱勤,王自章,杨丽涛,等.乙烯生物合成途径中的两个关键酶基因的研究进展.广西农业生物科学,2004,23(2):164-169
    王爱勤,杨丽涛,王自章,等.甘蔗ACC氧化酶基因全长cDNA克隆与序列分析.广西植物,2006,26(2):194-199
    韦波.甘蔗ACC氧化酶的cDNA在大肠杆菌中的表达及植物表达载体构建:[学位论文].南宁:广西大学,2006
    王关林,方宏筠主编.植物基因工程.第二版.北京:科学出版社,2002,776-777
    王自章,张树珍,罗敬萍,等.甘蔗根癌农杆菌介导遗传转化研究.农业生物技术学报,2002,10(3):237-240
    王自章,张树珍,杨本鹏,等.甘蔗根癌农杆菌介导转化海:藻糖合酶基因获得抗渗透胁迫能力增强植株.中国农业科学,2003,36(2):140-146
    文颖,吴文涌,刘世杰.不同浓度乙烯利浸种处理对砂培甘蔗萌发芽及芽鞘和根系生长的影响.甘蔗糖业,1989,(1):25-27
    吴波,罗光明,刘红宁.酸橙ACC氧化酶基因片段克隆及序列分析.江西农业大学学报,2006,28(6):924-926
    吴凯朝,叶燕萍,李杨瑞,等.喷施乙烯利对甘蔗群体冠层结构及一些抗旱生理指标的影响.见:中国作物学会甘蔗专业委员会第十一次学术讨论会论文集,2004,113-120
    刑永秀,杨丽涛,李杨瑞.乙烯利对不同甘蔗品种光合特性的影响.广西农业生物科学,2003,22(2):109-113
    徐昌杰,陈昆松,张上隆.乙烯生物合成及其控制研究进展.植物学通报,1998,15(增刊):54-61
    徐晓峰,黄学林,黄霞.ACC氧化酶反义基因转化青花菜的研究.中山大学学报(自然科学版),2003,42(4):64-68
    徐忠传.成熟猕猴桃果实不同组织中ACC氧化酶基因的表达差异研究.中国科学技术大学学报,2001,31(2):235-240
    许莉萍,陈如凯.基因工程甘蔗:潜能、现状和前景.见:陈如凯等著,作物生物工程技术.北京:中国农业出版社,2003,3-9
    叶燕萍,李永健,李杨瑞,等.喷施乙烯利对两个品种甘蔗一些生理生化及农艺性状影响.中国作物学会甘蔗专业委员会第十一次学术讨论会论文集,2004,131-136
    姚伟,余爱丽,徐景升,等.转ScMV CP基因甘蔗的分子生物学分析与鉴定.分子植物育种,2004,2(1):13-18
    叶志彪,李汉霞,郑用琏,等.反义ACC氧化酶基因的导入对番茄乙烯生成的抑制作用.华中农业大学学报,1996,15(4):305-309
    余义勋,包满珠,孙振元.香石竹ACC氧化酶重复基因植物表达载体的构建及转基因植株的获得.林业科学研究,2004,17(1):1-5
    张树珍,汤火龙,杨本鹏,等.康乃馨ACC氧化酶反义基因遗传转化康乃馨的研究.园艺学报,2003,30(6):699-702
    张树珍,郑学勤,林俊芳,等.海藻糖合酶基因的克隆及其转化甘蔗的研究.农业生物技术学报,2000,8(4):385-388
    张树珍,郑学勤.基因枪介导甘蔗遗传转化研究初报.热带作物学报,2001,22(1):35-41
    张宪省,钟海文,吕程.授粉诱导蝴蝶兰雌蕊中乙烯合成和ACC氧化酶基因表达.植物学报,1996,3(5):375-378
    朱俊杰,叶燕萍,李杨瑞,等.乙烯利及其与赤酶素相结合对甘蔗光合特性的影响.中国作物学会甘蔗专业委员会第十一次学术讨论会论文集,2004,96-104
    长孙东亭,李贤彩,罗素兰.重组GNA对蚜虫的抗生效应.2005,15(3):58-60
    朱玉贤,李毅编著.现代分子生物学.北京:高等教育出版社,2001,435-451
    A P S Mann,Monica Sachdeva,Suresh K Batta,Parveen.Purification and characterization of proteinaceous invertase inhibitor fromsugarbeet roots and its interaction with sugarcane invertase.Sugar Cane International,2003,9(10):25-29
    A Q Wang,Y G Fan,X Y Zhao,L F He,et al.Expression of ACC oxidase gene from sugarcane induced by hormones and environmental force.Agricultural Science in China,2005,4(8):609-613
    Abeles F B.Ethylene in plant biology.Academic press,1973
    Adams D O,Yang S F.Ethylene biosynthesis identification of 1-aminocyclopropane-1-Carboxylic acid as an intermediate in the conversion of methionine to ethylene.Proc.Natl.Acad.Sci.USA,1979,76:170-174
    Alt-Morbe J,Kulhmann H,Schroder J.Differences in induction of fi-plasmid virulence genes Vir G and Vir D.and contivued control of Vir D expression by four external factors.Mol Plant-Microbe Interact, 1989, 2: 301-308
    Arebciba A D, Cormona E R, Telleze P, et al. An efficient protocol for sugarcane (Saccharum spp. L ) transformation mediated by Agrobacterium tumefaciens. Transgrnic Research, 1998, 7: 213-222
    Arebciba A D, Cormona E R, Telleze P, et al. An efficient protocol for sugarcane (Saccharum spp. L ) transformation mediated by Agrobacterium tumefaciens. Transgrnic Research, 1998,7:1-10
    Arencibia A D, Vazquez R, Prieto D, et al. Transgenic sugarcane plants Resistant to stem-borer attack. Mol. Breed, 1997,3: 247-255
    Ayub R, Guis M, Ben Amor M. Expression of ACC Oxidase antisense gene inhibits ripening of cantaloupe melon fruits. Nature Biotechn, 1996,14: 862-866
    Balague C, Walson C F, Turner A J, et al. Isolation of a ripening and wound-induced cDNA from Cucumis melon L. encoding a protein with homology to the ethylene forming enzyme. European Journal of Biochemistry, 1993, 212(1): 27-34
    Barry J P, Christo Pher G D, Kevin M D. Diferential expression of two 1-aminocyclopropane-1-carboxylic acid Oxidase genes in Broccoli after harves. Plant Physiol, 1995,108(2): 651-657
    Borochov A, Wooson W R. Physiology and biochemistry flower petal senescence. Hort Rep, 1989, (11): 15-43
    
    Bower R, Brich R G.Transgenic Sugarcane plants via micprojectile Bombardment. Plant J., 1992, 2: 409-416
    Chen W H, Gartland K M A, Davery M R, et al. Transformation of sugarcane protoplasts by direct uptacke of a selectable chimaeric gence. Plant Cell Report, 1987, 6: 297-301
    Chen Yinhua, Zhang Guangping, Wang Hai, et al. Isolation and analysis of pepper ACC Oxidase gene partial sequence. Agiculture Science and technology, 2006, 7(1): 2-7
    Chowdhury M K U, Vasil I K. Stably transformed hebicide resistant callus of sugarcane via microprojectile bombardment of cell suspension and lectroporation of protoplasts. Plant Cell Report, 1992, 11: 494-498
    Davies K M. Identification of cDNA clones for Tomoto (Ly-copersioon escuientum Mill) mRNA that accumulate during ripening and leaf sencence in respotme to ethylene. Plants, 1989, 179: 73-80
    De Cleene M, Deley J. The host range of crown gall. Bot rev, 1976, 42: 398-466
    
    Donaldson R A, Stoden J Van. Review of sugarcane chemical ripeners in South Africa. Proc 20th ISSCT, 1990:647-653
    Eastwood D, Davis H B. Chemical ripening in Guyana-progress and prospects. Sugarcane, 1997, 3: 4-17
    Elliott A R,Campbell J A, Brettel R I S, et al. Agrobacterium-mediated transformation of sugarcane using GFP as a screenable marker. Plant Physiology, 1998, 25:739-743
    Enriquez-Obregon G A, Vazquez-Padron R I, prieto-samsonov D L, et al. Herbicide resistant sugarcane (Saccharum officinarum L.) Plants by Agrobacterium-mediated transformation. Planta, 1998, 206: 20-27
    Eugenio C U, Daniella P V B, Paul B L, et al. Transgenic sugarcane plants for RoundupTM obtained through microprojectile bombardment. San Diego, CA, 2000: 9-12
    Falco M C. Transformation and expression of a gene for herbicide resistance in a Brazilian sugarcane. Plant Cell Reports, 2000,19 (12): 301-304
    Falco M C., Silva M C. Expression of soybean proteinase inhibitors in transgenic sugarcane plants: effects on natural defense against Diatraea saccharalis. Plant Physiology and Biochemistry, 2003, 41(8): 761-766
    Finlayson S A, Lee I J, Mullet J E. The mechanism of rhythmic ethylene production in sorghum. The role of phytochrome B and simulated shading. Plant Physiol, 1999,119(3): 1083-1089
    Gallie D R, Young T E. The ethylene biosynthetic and perception machinery is differentially expressed during endosperm and embryo development in maize. Mol. Genet. Genomics, 2004, 271(3): 267-281
    Gallo Meagher M, Irving J E. Herbicide resistant transgenic sugarcane plants containing the bar gene. Crop science, 1996, 36(5): 1367-1374
    Graves A E. Goldman S L. The transformation of Zea mays seedling with Agrobacterium tumefaciens. plant Mol Biol, 1986
    Graves A C F, Glodman S L. Agrobacterium tumefaciens mediated transformation of the monocot genus Gladiolus: detection of expression of T-DNA encoded genes. J Bacteriol, 1987, 169: 1745-1746
    Hamilton A J, Bouzayen M, Grierson D. Identification of a tomato gene for the ethylene-forming enzyme by expression in yeast. Proc. Natl. Acad. Sci. USA, 1991, 88: 7434-7437
    Hamilton A J, Lycett G W, Grierson D. Antisense gene that inhibits synthesis of the hormone ethylene in tansgenic plants. Nature, 1990, 346: 284-287
    Hernalsteens J P, Thia-Toong L. Schell J. et al. An Agrobacterium-transforned cell culture from the monocot Asparagus officinalis. EMBO J, 1984,13: 3039
    Hooykaas-van, Slogteren G M S, Hooykaas P J J, Schilperoort.Expression of Ti plasmid genes in monocotyledonous plants infected with Agrobacterium tumefaciens. Nature, 1984, 311: 763-764
    Horsch R B. A simple and general method for transferring genes into plants. Science, 1985, 227(4691): 1229-1231
    
    Joyce P. Gene research in targeting mosaic. Sugar Cane, 1997, (3): 25
    Kieber J J, Rothenber G M, Romang, et al. CTR1, a negative regulator of the ethylene response pathway in Arabidopsis, encodes a member of the Raf family of protein kinases. Cell, 1993, 72: 427-441
    Lasserre E, Bouquint T, Hernadez J A, et al. Structure and exjpression of three genes encoding ACC Oxidase homologs from melon. Mol Gen Genet, 1996,251: 81-90
    Leibbrandt N B, Snyman S J. Stability of gene expression and agronomic performance of a transgenicherbicide-resistant sugarcane line in South Africa. Crop Science, 2003, 43(2): 671-677
    Li Y R. Beneficial effects of ethephon application on sugarcane under sub-tropical climate of China. Sugar Tech, 2004, 6(4): 235-240
    
    Lieberman M, Mapson L W. Genesis and Biogenesis of ethylene. Nature, 1964,204: 343-345
    Liliya Serazetdinova, klaus H. Oldach, Horst Lorz. Expression of transgenic stilbene synthases in heat causes the accumulation of unknown stilbene derivatives with antifungal activity. Plant hysiology, 2004, 8:166-170
    Liu X, Shiomi S, Nakatsuka A, et al. Characterization of ethylene biosynthesis associated with ripening in banana fruit. Plant Physiology, 1999, 121: 1257-1265
    Mac Diarmid C W, Gardner R C. A cDNA sequence from kiwifruit homologous to 1-aminocyclopropane-1-carboxylic acid Oxidase. Plant Physoil, 1993, 101: 691-692
    Mathooko F M. Regulation of ethylene biosynthesis in higher plants by carbon dioxide. Postharv. Biol. Technol. 1996,7(1): 1-26
    Mccallum J, Snyman. Proceedings of the Annual Congress South African Sugar Technoiogists' Association, 1998,72: 140-142
    McQualter R B, Dale J L, Harding RM, et al. duction and evaluation of transgenic sugarcane containing a Fiji disease virus (FDV) genomesegment S9-derived synthetic resistance gene. Australian Journal of Agricultural Research, 2004, 55(2): 139-145
    Mekhedov S L, Kende H. Submergence enhances expression of a gene encoding 1-aminocyclopropane-1-carboxylic acid Oxidase in deepwater rice. Plant Cell Physiol, 1996, 37: 531-537
    Mita S, Kawamura S, Yamawaki K, et al. Differential expression of genes involved in the biosynthesis and perception of ethylene during ripening of passion fruit (Passiflora edulis Sims). Plant Cell Physiol, 1998, 39:1209-1217
    Nand L, Lal N. Transforming sugarcane plants through gene delivery. Bharatiya Sugar, 1991, 16(6): 59-60
    Nickell L G.A review of plant growth regulators in the sugarcane industry. Sugar Y Azucar, 1984,7 9(5): 17-20
    Nutt K A, Allsopp P G, McGhie T K, et al. Transgenic sugarcane with increased resistance to canegrubs. In: Hoga-rth D M. Proceedings of the 1999 conference of the Australian society of sugar cane technologists. Townsville: Brisbane, 1999,171-176
    Pau E C, Lee J E E. Enhanced de nove shoot morphogenesis in vitro by expression of antisense 1-Aminocycolpropane-1-carboxylate Oxidase gene in transgenic mustard plants. Planta, 1995,196: 69-76
    Rathus C, Birch R G.Stable transformation of callus from electroporated sugarcane protoplasts. Plant Science Limerick, 1992, 82: 81-89
    R G Birch, R Bower, A Elliott. Regulation of transgene expression: progress towards practical development insugarcane, and implications for other plant species. Developments in plant genetics and breeding, 2000, 5: 118-125
    Ross G S, Knighton M L, Lay-Yee M. An ethylene relate cDNA from ripening apples. Plant Mol Biol, 1992, 19: 231-238
    Savin K W, Baunidette S C, Graham M W, et al. Antisense ACC Oxidase RNA delays carnation petal senescence. HortSci, 1995, 30: 970-972
    Shiomi S, Yamamoto M, Ono T, et al. cDNA cloning of ACC synthase and ACC Oxidase in cucumber fruit and their differential expression by wounding and auxin. Japan Soc Hort Sci, 1998, 67: 685-692
    Slater A, Maunders M J, Edwards K, et al. Isolation and characterization of cDNA clones for tomato polygalacturonase and other Ripening related proteins. Plant Molecular Biology, 1985, 5: 137-147
    Smith C J S. Rapid appearance of an mRNA correlated with ethylene synthesis encoding a protein of molecular weight 35000. Planta, 1986,168: 94-100
    Smith G R, Joyce P A, Handley J A, et al. Genetically engineering resistance to sugarcane mosaic and fiji disease viruses in sugarcane. In: Sugar 2000 Symposium Sugarcane research towards efficient and sustainable production, 1996, pp.138-140
    Smith R H, Hood E E. Review and interpretation: Agrobacterium tumefaciens transformation of monocotyledons. Crop Sei, 1995, 35: 301-309
    
    Snyman S J, Meyer G M. South African Journal of Botany, 1996, 62(3): 151-154
    Solomon S, Li Y R. Chemical ripening of sugarcane: global progress and recent development in China. Sugar Tech, 2004,6(4): 241-249
    Spanu P, Reinhardt D, Boiler T. Analysis and cloning of the ethylene-forming enzyme from tomato by functional expression of its mRNA in Xenopus lae6is oocytes. EMBO J, 1991,10: 2007-2013
    Usami S, Okamoto S, Takebe I, et al. Factor inducing Agrobacterium tumefaciens Vir gene expression is present in monocotyledonous plant. Proc Natl Acad Sci USA, 1998, 85: 3748-3752
    Vasil I, Vasil V. Regeneration in cereals and other grass species. In:Vasil I K ed. Cell culture and somatic cell genetics of plants. Orland Florda USA: Acedemic press, 1986
    Vickers J E, Grof C P L, Bonnett G D, et al. Effects of tissue culture, biolistic transformation, and introduction of PPO and SPS gene constructs on performance of sugarcane clones in the field. Australian Journal of Agricultural Research, 2005, 56(1): 57-68
    Wang Aiqin, Yang Litao, Wang Zizhang. Expression of ACC Oxidase gene from sugarcane induced by hormones and environmental force. Agricultural Sciences in China, 2005, 4(8): 609-613
    Wang Z Z, Li Y R, Zhang S Z, et al. Cloning and sequencing of ACC Oxidase gene from sugarcane. Acta Genetica Sinica, 2003, 30(1): 62-69
    Yang S F, Hoffman N E. Ethylene biosynthesis and its regulation in higher plants. Annu Rev. Plant Physiol, 1984,35:155-189
    Yu B Y, Adamas D O, YANG S F. 1-aminocyclobutane-1-carboxylate synthase, a key enzyme in ethylene biosynthesis. Arch. Biochem Biophys. 1979, 198(1): 280-286
    Zanetti M E, Terrile M C, Arce D, et al. Isolation and characterization of a potato cDNA corresponding to a 1-aminocyclopropane-1-carboxylate (ACC) Oxidase gene differentially activated by stress. Journal of Experimental Botany, 2002, 53: 2455-2457
    Zhang Jisen,Li Wei,Ruan Miaohong,et al.Cloning and Expression of aco from Erianthus arundinaceus Exposed to Water-Stress.Chinese Journal of Tropical Crops.2007,28(2):60-68
    Zhang L H,XU J L,Birch R G.Engineered detoxification confers resistance against a pathogenic bacterium.Nature Biotechnology,1999,17(10):1021-1024
    Zhang L,Xu J,Birch RG.Engineered detoxification confers resistance against a pathogenic bacterium(see comments).Nature biotechnology,1999,17(10):1021-1024
    Zhongyi Zhou,Wim Vriezen,Wim Van Caeneghem,et al.Rapid induction of a novel ACC synthase gene in deepwater rice seedlings upon complete submergence.Euphytica.2001,121:137-143

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700