用户名: 密码: 验证码:
若干生物聚合物/无机盐复合物的形貌调控及生长机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文围绕有机/无机复合物的制备及生长机理研究展开。大自然在制备有机/无机复合物方面为我们作出了很好的榜样:广泛存在于生物体中的生物矿物,就是在有机模板引导下矿物相自组装形成的高度有序的复合材料。因此,我们的研究从体外模拟生物矿化出发,制备了多种生物聚合物/无机盐复合物,并对有机物调控晶体生长的机理进行了探讨。将矿化与工业制备相结合,我们发展了高压/超临界二氧化碳碳酸化法,制备了亚微米级复合物并可通过调节实验条件控制复合物的粒径、形貌,对此我们提出了相应的机理,对体外模拟矿化研究形成了一定的参照。为了深入分析复合物中的有机/无机相互作用,我们采用红外光谱结合二维相关分析,对有机基质的结构进行了深入的研究,并初步探讨了有机质和无机矿物之间的相互作用。
     论文全文共分为七章。
     第一章绪论从有机/无机复合材料和自组装过程入题,着重介绍了生物体内矿化以及有机物调控碳酸盐矿化的研究进展,概述了一种较新的工业制备碳酸钙方法-高压/超临界二氧化碳碳酸化法。此外,绪论部分也对我们在研究有机/无机相互作用时采用的主要手段-红外光谱以及二维相关分析做了简单的介绍。
     在第二章中,我们采用仿生的二氧化碳扩散法,以羧甲基纤维素(以下简称CMC)为基质调控了碳酸钙的结晶过程,制备了CMC/CaCO3复合物。在特定的条件下,我们得到了“玫瑰花”状的CMC/CaCO3复合粒子,由小的方块状晶体单元堆积而成,且粒径分布均匀。通过时间分辨实验对形貌发育过程的跟踪,我们推测了“玫瑰花”状粒子的形成过程,提出了“高分子引导下的无机晶体单元聚集”机理。具体而言,结晶过程中,无定型CaCO3核首先形成,晶体单元在其上堆积、生长。在堆积时,吸附于晶体单元上的高分子链间存在较强的相互排斥作用,使得方块状晶体单元不能完全重合堆积形成斜方六面体状粒子,而只能错开一定面积聚集,最终形成“玫瑰花”状粒子。改变有机质的浓度我们调控得到了不同形貌、结构的复合物,发现调低有机质浓度,球状粒子逐渐过渡成为斜方六面体状,这也进一步证实了上述堆积机理。由于其良好的生物相容性,CMC不仅在实验室被广泛使用,而且是常见的工业原料,因此,这里的研究不仅对生物矿化机理的明晰有一定的贡献,而且也提供了一种在工业上制备具有特定结构、形貌碳酸钙复合粒子的有效方法。
     第三章中我们继续以CMC为有机基质,调控碳酸钡晶体的生长。首先采用分子动力学模拟的方法对CMC链段和BaCO3晶体单元之间的相互作用进行了分析,结果表明,由于链段和晶格离子之间的静电作用,CMC链段倾向于吸附在针状晶体单元的两端,这为我们探讨晶体聚集机理提供了参考。在低浓度下,我们得到了哑铃状BaCO3复合粒子,通过时间分辨实验,结合分子动力学模拟结果,我们认为:高分子链吸附在BaCO3针状单元的两端,链与链之间的静电排斥作用以及体积占据作用导致针与针聚集时不能平行、紧密地堆积,而必须张开一定角度堆积,这样就形成了针状单元聚集而成的哑铃状碳酸钡复合物。这和第二章对碳酸钙研究所提出的机理是高度一致的。我们进一步改变有机基质浓度,调控得到了花菜状、双球状及球状BaCO3聚集体,实现了聚集体结构和形貌的可调控性。和第二章对比,这一章工作通过对另一种碳酸盐的调控,进一步证实了“高分子引导下的无机晶体单元聚集”机理,而且也提供了一个工业上可行的制备BaCO3晶体的方法。
     和第二、三章不同,第四章中我们发展了一种新的偏重于工业制备的矿化方法,即采用高压/超临界二氧化碳碳酸化法制备碳酸盐复合物。以CMC为模板在水溶液中能够得到几百纳米的椭球状方解石粒子,而这种复合粒子通过传统的矿化方法是难以得到的。通过调节实验条件,包括有机物浓度、分子量、二氧化碳的温度和压力等,我们可以有效地调控所得复合物的粒径和形貌。而且,通过和聚丙烯酸的调控结果对比,我们得出,所得粒子形貌和所采用高分子的链的柔顺性密切相关,简单来说就是:偏柔性高分子链引导形成球状粒子,偏刚性链引导形成椭球状粒子。综合以上实验结果,我们提出了在高分子链引导下高压/超临界二氧化碳碳酸化法制备碳酸钙复合物过程中的“直接模板”机理。我们认为,在该方法中,矿化速度很快,体系相对均匀,离子吸附在高分子链上并直接以之为模板成核、生长,并将高分子模板包裹其中形成复合物。由此,我们可以通过改变有机质浓度和分子量来实现对复合物粒径、形貌的有效调控。与体外模拟矿化的方法相比,第四章提供的高压/超临界二氧化碳碳酸化法矿化速度较快,偏向于工业制备,但是也可以对生物矿化机理形成一定的启发。更重要的是,这种方法将工业固定二氧化碳和复合粒子制备结合在一起,提供了很大的想象空间。我们用这种方法进行了碳酸钡复合粒子制备的尝试,得到了直径几百纳米的纤维状碳酸钡,值得关注。
     为了研究复合物中有机/无机相互作用,我们首先对所采用的有机基质的结构进行了细致、深入的分析。第五章主要采用红外光谱方法结合二维相关分析对CMC在40-220℃温度区间的结构特别是氢键结构的变化进行了分析,并明确了常温下CMC中的氢键结构。在CMC升温过程中,有两个重要的温度点:100℃和170℃,前者是CMC中结合水全部逃逸出体系时对应的温度,后者是CMC中未被取代的C6H6开始被氧化的温度。以这两个温度点为界,我们将整个温度区间划分为三段分别进行二维处理。结果表明,在100℃以下,随着温度升高,水分子逃离体系,水合的C=O基团逐渐变为非水合;温度升到100℃以上,链内氢键逐步转变为弱氢键;当温度上升到170℃以上时,未被取代的C6H6基团逐渐被氧化,其与羧甲基之间形成的链间氢键逐渐解离。这一部分的研究对CMC的结构及其工业应用提供了参考,同时也为我们研究CMC-CaCO3复合物中的有机无机相互作用打下了基础。在第五章后面部分,我们对复合物进行了升温红外光谱实验,并简单地讨论了这种相互作用。
     第六章中采用和研究CMC相似的方法对再生丝蛋白(RSF)膜的结构进行了分析。丝蛋白作为一种常见蛋白,在实验室中被用于组织工程、药物缓释等领域的研究,另一方面,我们课题组之前进行了高压/超临界环境下丝蛋白引导碳酸钙矿化的实验,所以第六章的工作也是在为研究RSF-CaCO3相互作用打基础。我们应用二维相关红外光谱研究了RSF和水之间的相互作用以及升温过程中丝蛋白结构的变化。另外,我们还在超临界二氧化碳环境中,用红外光谱原位监测了RSF膜中结构的变化过程,初步研究了CO2-RSF的相互作用。相信这里的研究将对丝蛋白的应用起到一定的指导作用。
     第七章对全文的研究工作进行了总结。在多糖及其衍生物引导矿化制备复合物方面,我们推测,阴离子型多糖及其衍生物的链构象偏刚性、且负电荷密度较高导致链与链之间的相互排斥作用较强,因此有机质除了在晶体成核、初期生长过程中起到调控作用之外,在后期对晶体单元聚集过程的影响也很明显。文末提出了论文的未竟之处及有待解决的问题。
Inspired by the mineralization in biological organisms, the fabrication of higher ordered inorganic crystals induced by polymer chains has received much attention. In this thesis, we used several biopolymers to induce the fabrication of different inorganic salts with different methods, and suggested the corresponding reaction mechanism, further explored the organic-inorganic interaction in the composites. We adopted biomimetic CO2 diffusion method to synthesize carbonates and obtained rosette-like CaCO3 particles and various morphologies of BaCO3 aggregates. Furthermore, we developed a new method using polymers as templates via carbonation route with compressed/supercritical CO2 and obtained submicronic CaCO3 particles with ellipsoidal morphology in aqueous solution, which were rarely fabricated with traditional mineralization methods. To deeply investigate the organic-inorganic interaction in the composites, we introduced infrared spectroscopic method in combination with two dimensional correlation analysis to examine the products, before which the structure of the organic templates was carefully studied.
     Carboxymethyl cellulose (CMC), widely used in many industrial aspects and also in laboratory due to its good biocompatibility, was systematically investigated in regulating the CaCO3 crystallization using CO2 diffusion method in ChapterⅡ. Rosette-like calcite spherules in uniform size with their surfaces composed of rhombohedral subunits were synthesized in a certain experimental condition. The evolution of the composite morphologies was traced by time-resolved experiments and the possible route in which rosette-like spherules formed was proposed. We suggested that amorphous calcium carbonate precursor formed initially and acted as secondary nuclei, followed by the stacking of rhombohedral subunits in partial rather than complete superposition between each other due to the electrostatic repulsive interactions between the polyanion chains adsorbed on the blocks, which resulted in rosette-like morphology. Mineralization experiments in CMC solutions with different concentrations were also carried out and the results obtained at no higher than 1g/L further proved the above "polymer-induced crystalline units self-assembly" mechanism from the fact that the extent of the polymer influence decreased proportionally with the concentration, i.e. degree of superposition of the building blocks became larger by decreasing the CMC concentration. This work not only provided for the formation mechanisms of the rosette-like calcite spherules but also leaded to a new route to fabricate new composites which can be used in many industrial aspects.
     In ChapterⅢ, we continued to utilize CMC as template to mediate the nucleation and growth of BaCO3. First we calculated the interaction between CMC chains and crystalline needle-like units of BaCO3 by molecular dynamic simulation, concluding that the (111) face of crystalline units is the most favorable face for CMC chains to attach onto. Based on the simulation results and the time-resolved experiments, we suggested the possible route in which dumbbell-like BaCO3 aggregates formed, that is, through the process of polymer induced stacking of needle-like units. Moreover, we realized the control over the morphology of aggregates from dumbbell-like to spherical particles by simply adjusting the polymer concentration. The results here further proved that the "polymer induced crystalline units self-assembly" mechanism was reasonable. By clarifying the aggregation mechanism mediated by polymer chains, we demonstrated a simple method to fabricate BaCO3 particles with controllable morphologies.
     In ChapterⅣ, instead of traditional mineralization method, we developed a new carbonation route, with compressed/supercritical CO2, to fabricate composites. Submicronic CaCO3 particles with ellipsoidal morphology were synthesized taking CMC as template. By regulating some experimental parameters, like the concentration and molecular weight of CMC, as well as the CO2 pressure and temperature, the morphology and size of the CaCO3 particles could be effectively controlled. Besides, in contrast to the effective results of another additive, Polyacrylic Acid (PAA), we suggested that the morphology of the synthesized particles was strongly related to the flexibility of the polymer chains, namely, the relatively rigid chains induced the formation of ellipsoidal particles while the more flexible chains would result in the spherical ones. We further discussed the mineralization mechanism by this carbonation route:the polymer chains served as the "direct skeletons" and the ions attached along the chains to realize the nucleation and growth. The morphology of CaCO3 aggregates was tailored by the flexibility of the polymer chain, while the size of the particles was related with the chain length of the polymer. In comparison with the traditional mineralization methods, we provided a highly efficient and versatile approach to integrate the fixation of CO2 and the regulating effect of different polymer chains, to produce submicroscopic CaCO3 particles and further control their morphologies and sizes.
     To deeply investigate the organic-inorganic interaction, we carefully examined the structure of CMC in ChapterⅤ. We demonstrated a full view of infrared spectroscopic results in the temperature range of 40-220℃, mainly aiming at the hydrogen bonds in CMC. The two important transition points were defined, i.e., 100℃corresponding to the complete loss of water molecules and 170℃to the starting temperature point the O6H6 groups being oxidized. The series of IR spectra during heating from 40-220℃was analyzed by the two-dimensional correlation method. With the evaporating of water molecules, the hydrated C=O groups gradually transited into non-hydrated C=O groups. As the temperature continued to increase, the intrachain hydrogen bonds were weakened and transited into weak hydrogen bonds. When the temperature was higher than 170℃, the O6H6 groups were gradually oxidized and thus the interchain hydrogen bonds formed between CH2COONa groups and O6H6 were weakened. In summary, we defined the main sorts of hydrogen bonds in CMC and pictured the changes of the hydrogen bonds structure during heating process, which may provide for the application in both industry aspects and laboratory use and also set a foundation for the researches on the CMC-CaCO3 interaction in composites. The interaction was primarily discussed in ChapterⅤ.
     In Chapter VI, the structure of regenerated silk fibroin (RSF) was studied using the similar method with that in CMC. RSF was used to mediate the crystallization of CaCO3 with compressed/supercritical CO2 carbonation route by our research group, and our research here also tended to set a foundation for the analysis of the organic-inorganic interaction. We defined several interactions between RSF and water molecules, as well as the variation of the structures with temperature. Besides, we investigated the CO2-RSF interaction with in situ temperature-dependent infrared in supercritical CO2 environment, which may also serve to the application of silk fibers in different industrial areas.
     Chapter VII is the summary of the thesis. We compared the different mineralization methods, summarized the "polymer induced crystalline units self-assembly" mechanism with traditional CO2 diffusion method and "direct templates" mechanism in compressed/supercritical CO2 carbonation route. Questions waiting to be addressed were also proposed.
引文
[1]吴璧耀,有机无机杂化材料及其应用.2005,北京:化学工业出版社.
    [2]Whitesides G.M. and Grzybowski B., Self-assembly at all scales, Science, 2002,295,2418-2421.
    [3]Hartgerink J.D., Beniash E., and Stupp S.I., Self-assembly and mineralization of peptide-amphiphile nanofibers, Science,2001,294,1684-1688.
    [4]Clark T.D., Tien J., Duffy D.C., Paul K.E., and Whitesides G.M., Self-assembly of 10-μm-sized objects into ordered three-dimensional arrays, Journal of the American Chemical Society,2001,123,7677-7682.
    [5]崔福斋,仿生材料.2004,北京:化学工业出版社.
    [6]Mann S., Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry.2001, New York:Oxford University Press.
    [7]Mann S., The chemistry of form, Angewandte Chemie-International Edition, 2000,39,3393-3406.
    [8]Kossel W., The energetics of surface procedures, Annalen Der Physik,1934, 21,457-480.
    [9]Meldrum F.C. and Colfen H., Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems, Chemical Reviews,2008,108, 4332-4432.
    [10]Arias J.L. and Fernandez M.S., Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization, Chemical Reviews,2008,108, 4475-4482.
    [11]Sommerdijk N.A.J.M. and de With G., Biomimetic CaCO3 Mineralization using Designer Molecules and Interfaces, Chemical Reviews,2008,108, 4499-4550.
    [12]Yu S.H. and Colfen H., Bio-inspired crystal morphogenesis by hydrophilic polymers, Journal of Materials Chemistry,2004,14,2124-2147.
    [13]Colfen H. and Antonietti M., Mesocrystals:Inorganic superstructures made by highly parallel crystallization and controlled alignment, Angewandte Chemie-International Edition,2005,44,5576-5591.
    [14]Wang T.X., Colfen H., and Antonietti M., Nonclassical crystallization: Mesocrystals and morphology change of CaCO3 crystals in the presence of a polyelectrolyte additive, Journal of the American Chemical Society,2005,127, 3246-3247.
    [15]Xu A.W., Ma Y.R., and Colfen H., Biomimetic mineralization, Journal of Materials Chemistry,2007,17,415-449.
    [16]Mann S., Molecular Recognition in Biomineralization, Nature,1988,332, 119-124.
    [17]Colfen H., Bio-inspired mineralization using hydrophilic polymers, Biomineralization Ⅱ:Mineralization Using Synthetic Polymers and Templates, 2007,271,1-77.
    [18]Meldrum F.C. and Ludwigs S., Template-directed control of crystal morphologies, Macromolecular Bioscience,2007,7,152-162.
    [19]Belcher A.M., Wu X.H., Christensen R.J., Hansma P.K., Stucky G.D., and Morse D.E., Control of crystal phase switching and orientation by soluble mollusc-shell proteins, Nature,1996,381,56-58.
    [20]Falini G., Albeck S., Weiner S., and Addadi L., Control of aragonite or calcite polymorphism by mollusk shell macromolecules, Science,1996,271,67-69.
    [21]Feng Q.L., Pu G., Pei Y., Cui F.Z., Li H.D., and Kim T.N., Polymorph and morphology of calcium carbonate crystals induced by proteins extracted from mollusk shell, Journal of Crystal Growth,2000,216,459-465.
    [22]Pokroy B., Zolotoyabko E., and Adir N., Purification and functional analysis of a 40 kD protein extracted from the Strombus decorus persicus mollusk shells, Biomacromolecules,2006,7,550-556.
    [23]Sollner C., Burghammer M., Busch-Nentwich E., Berger J., Schwarz H., Riekel C., and Nicolson T., Control of crystal size and lattice formation by starmaker in otolith biomineralization, Science,2003,302,282-286.
    [24]Cheng C., Shao Z.Z., and Vollrath F., Silk fibroin-regulated crystallization of calcium carbonate, Advanced Functional Materials,2008,18,2172-2179.
    [25]Chen Y.J., Xiao J.W., Wang Z.N., and Yang S.H., Observation of an Amorphous Calcium Carbonate Precursor on a Stearic Acid Monolayer Formed during the Biomimetic Mineralization of CaCO3, Langmuir,2009,25, 1054-1059.
    [26]Wang X.Q., Kong R., Pan X.X., Xu H., Xia D.H., Shan H.H., and Lu J.R., Role of Ovalbumin in the Stabilization of Metastable Vaterite in Calcium Carbonate Biomineralization, Journal of Physical Chemistry B,2009,113, 8975-8982.
    [27]Voinescu A.E., Touraud D., Lecker A., Pfitzner A., Kunz W., and Ninham B.W., Mineralization of CaCO3 in the presence of egg white lysozyme, Langmuir,2007,23,12269-12274.
    [28]Sugawara A., Nishimura T., Yamamoto Y., Inoue H., Nagasawa H., and Kato T., Self-organization of oriented calcium carbonate/polymer composites: Effects of a matrix peptide isolated from the exoskeleton of a crayfish, Angewandte Chemie-International Edition,2006,45,2876-2879.
    [29]Yamamoto Y., Nishimura T., Sugawara A., Inoue H., Nagasawa H., and Kato T., Effects of Peptides on CaCO3 Crystallization:Mineralization Properties of an Acidic Peptide Isolated from Exoskeleton of Crayfish and Its Derivatives, Crystal Growth& Design,2008,8,4062-4065.
    [30]Levi-Kalisman Y., Raz S., Weiner S., Addadi L., and Sagi I., Structural differences between biogenic amorphous calcium carbonate phases using X-ray absorption spectroscopy, Advanced Functional Materials,2002,12, 43-48.
    [31]Politi Y., Levi-Kalisman Y., Raz S., Wilt F., Addadi L., Weiner S., and Sagi I., Structural characterization of the transient amorphous calcium carbonate precursor phase in sea urchin embryos, Advanced Functional Materials,2006, 16,1289-1298.
    [32]Addadi L., Raz S., and Weiner S., Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization, Advanced Materials, 2003,15,959-970.
    [33]Shen F.H., Feng Q.L., and Wang C.M., The modulation of collagen on crystal morphology of calcium carbonate, Journal of Crystal Growth,2002,242, 239-244.
    [34]Butler M.F., Glaser N., Weaver A.C., Kirkland M., and Heppenstall-Butler M., Calcium carbonate crystallization in the presence of biopolymers, Crystal Growth& Design,2006,6,781-794.
    [35]Leng B.X., Jiang F.G., Lu K.B., Ming W.H., and Shao Z.Z., Growth of calcium carbonate mediated by slowly released alginate, Crystengcomm,2010, 12,730-736.
    [36]Xu A.W., Yu Q., Dong W.F., Antonietti M., and Colfen H., Stable amorphous CaCO3 microparticles with hollow spherical superstructures stabilized by phytic acid, Advanced Materials,2005,17,2217-2221.
    [37]Yang M.J., Stipp S.L.S., and Harding J., Biological Control on Calcite Crystallization by Polysaccharides, Crystal Growth& Design,2008,8, 4066-4074.
    [38]Zhong C. and Chu C.C., Acid Polysaccharide-Induced Amorphous Calcium Carbonate (ACC) Films:Colloidal Nanoparticle Self-Organization Process, Langmuir,2009,25,3045-3049.
    [39]Addadi L. and Weiner S., Interactions between Acidic Proteins and Crystals- Stereochemical Requirements in Biomineralization, Proceedings of the National Academy of Sciences of the United States of America,1985,82, 4110-4114.
    [40]Antonietti M., Nanostructured materials-Self-organization of functional polymers, Nature Materials,2003,2,9-10.
    [41]Chen S.F., Yu S.H., Wang T.X., Jiang J., Colfen H., Hu B., and Yu B., Polymer-directed formation of unusual CaCO3 pancakes with controlled surface structures, Advanced Materials,2005,17,1461-1465.
    [42]Colfen H., Double-hydrophilic block copolymers:Synthesis and application as novel surfactants and crystal growth modifiers, Macromolecular Rapid Communications,2001,22,219-252.
    [43]Colfen H. and Antonietti M., Crystal design of calcium carbonate microparticles using double-hydrophilic block copolymers, Langmuir,1998, 14,582-589.
    [44]Gao Y.X., Yu S.H., Cong H.P., Jiang J., Xu A.W., Dong W.F., and Colfen H., Block-copolymer-controlled growth of CaCO3 microrings, Journal of Physical Chemistry B,2006,110,6432-6436.
    [45]Yu S.H., Colfen H., and Antonietti M., Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures, Journal of Physical Chemistry B,2003,107,7396-7405.
    [46]Song R.Q., Xu A.W., Antonietti M., and Colfen H., Calcite Crystals with Platonic Shapes and Minimal Surfaces, Angewandte Chemie-International Edition,2009,48,395-399.
    [47]Guo X.H., Yu S.H., and Cai G.B., Crystallization in a mixture of solvents by using a crystal modifier:Morphology control in the synthesis of highly monodisperse CaCO3 microspheres, Angewandte Chemie-International Edition,2006,45,3977-3981.
    [48]Wegner G., Baum P., Mullert M., Norwig J., and Landfester K., Polymers designed to control nucleation and growth of inorganic crystals from aqueous media, Macromolecular Symposia,2001,175,349-355.
    [49]Basko M. and Kubisa P., Synthesis of double hydrophilic graft copolymers with a polyacetal backbone, Macromolecules,2002,35,8948-8953.
    [50]Basko M. and Kubisa P., Properties of double-hydrophilic graft copolymers with a polyacetal backbone, Journal of Polymer Science Part A-Polymer Chemistry,2004,42,1189-1197.
    [51]Zhao M.Q. and Crooks R.M., Dendrimer-encapsulated Pt nanoparticles: Synthesis, characterization, and applications to catalysis, Advanced Materials, 1999,11,217-220.
    [52]Taubert A., Wiesler U.M., and Mullen K., Dendrimer-controlled one-pot synthesis of gold nanoparticles with a bimodal size distribution and their self-assembly in the solid state, Journal of Materials Chemistry,2003,13, 1090-1093.
    [53]Balogh L. and Tomalia D.A., Poly(amidoamine) dendrimer-templated nanocomposites.1. Synthesis of zerovalent copper nanoclusters, Journal of the American Chemical Society,1998,120,7355-7356.
    [54]Naka K., Effect of dendrimers on the crystallization of calcium carbonate in aqueous solution, Dendrimers V:Functional and Hyperbranched Building Blocks, Photophysical Properties, Applications in Materials and Life Sciences, 2003,228,141-158.
    [55]Donners J.J.J.M., Heywood B.R., Meijer E.W., Nolte R.J.M., Roman C., Schenning A.P.H.J., and Sommerdijk N.A.J.M., Amorphous calcium carbonate stabilised by poly(propylene imine) dendrimers, Chemical Communications, 2000,1937-1938.
    [56]Donners J.J.J.M., Heywood B.R., Meijer E.W., Nolte R.J.M., and Sommerdijk N.A.J.M., Control over calcium carbonate phase formation by dendrimer/surfactant templates, Chemistry-a European Journal,2002,8, 2561-2567.
    [57]Wang L.L., Meng Z.L., Yu Y.L., Meng Q.W., and Chen D.Z., Synthesis of hybrid linear-dendritic block copolymers with carboxylic functional groups for the biomimetic mineralization of calcium carbonate, Polymer,2008,49, 1199-1210.
    [58]Wang T.P., Antonietti M., and Colfen H., Calcite mesocrystals:"Morphing" crystals by a polyelectrolyte, Chemistry-a European Journal,2006,12, 5722-5730.
    [59]Chen X., Zhu Y.C., Guo Y.P., Zhou B., Zhao X., Du Y.Y., Lei H., Li M.G., and Wang Z.C., Carbonization synthesis of hydrophobic CaCO3 at room temperature, Colloids and Surfaces A-Physicochemical and Engineering Aspects,2010,353,97-103.
    [60]Yao Y., Dong W.Y., Zhu S.M., Yu X.H., and Yan D.Y., Novel Morphology of Calcium Carbonate Controlled by Poly(L-lysine), Langmuir,2009,25, 13238-13243.
    [61]McKenna B.J., Waite J.H., and Stucky G.D., Biomimetic Control of Calcite Morphology with Homopolyanions, Crystal Growth& Design,2009,9, 4335-4343.
    [62]De Leeuw N.H., Molecular dynamics simulations of the growth inhibiting effect of Fe2+, Mg2+, Cd2+, and Sr2+ on calcite crystal growth, Journal of Physical Chemistry B,2002,106,5241-5249.
    [63]Raz S., Hamilton P.C., Wilt F.H., Weiner S., and Addadi L., The transient phase of amorphous calcium carbonate in sea urchin larval spicules:The involvement of proteins and magnesium ions in its formation and stabilization, Advanced Functional Materials,2003,13,480-486.
    [64]Raz S., Weiner S., and Addadi L., Formation of high-magnesian calcites via an amorphous precursor phase:Possible biological implications, Advanced Materials,2000,12,38-42.
    [65]Politi Y., Batchelor D.R., Zaslansky P., Chmelka B.F., Weaver J.C., Sagi I., Weiner S., and Addadi L., Role of Magnesium Ion in the Stabilization of Biogenic Amorphous Calcium Carbonate:A Structure-Function Investigation, Chemistry of Materials,2010,22,161-166.
    [66]Liu R., Xu X.R., Cai Y.R., Cai A.H., Pan H.H., Tang R.K., and Cho K., Preparation of Calcite and Aragonite Complex Layer Materials Inspired from Biomineralization, Crystal Growth& Design,2009,9,3095-3099.
    [67]Gehrke N., Colfen H., Pinna N., Antonietti M., and Nassif N., Superstructures of calcium carbonate crystals by oriented attachment, Crystal Growth& Design,2005,5,1317-1319.
    [68]Henderson G.E., Murray B.J., and McGrath K.M., Controlled variation of calcite morphology using simple carboxylic acids, Journal of Crystal Growth, 2008,310,4190-4198.
    [69]Chen S.F., Yu S.H., Jiang J., Li F.Q., and Liu Y.K., Polymorph discrimination of CaCO3 mineral in an ethanol/water solution:Formation of complex vaterite superstructures and aragonite rods, Chemistry of Materials,2006,18,115-122.
    [70]Mukkamala S.B. and Powell A.K., Biomimetic assembly of calcite microtrumpets:crystal tectonics in action, Chemical Communications,2004, 918-919.
    [71]Cai G.B., Chen S.F., Liu L., Jiang J., Yao H.B., Xu A.W., and Yu S.H., 1,3-Diamino-2-hydroxypropane-N,N,N',N'-tetraacetic acid stabilized amorphous calcium carbonate:nucleation, transformation and crystal growth, Crystengcomm,2010,12,234-241.
    [72]Gotliv B.A., Addadi L., and Weiner S., Mollusk shell acidic proteins:In search of individual functions, Chembiochem,2003,4,522-529.
    [73]Levi Y., Albeck S., Brack A., Weiner S., and Addadi L., Control over aragonite crystal nucleation and growth:An in vitro study of biomineralization, Chemistry-a European Journal,1998,4,389-396.
    [74]Gehrke N., Nassif N., Pinna N., Antonietti M., Gupta H.S., and Colfen H., Retrosynthesis of nacre via amorphous precursor particles, Chemistry of Materials,2005,17,6514-6516.
    [75]Qiao L., Feng Q.L., and Lu S.S., In vitro growth of nacre-like tablet forming: From amorphous calcium carbonate, nanostacks to hexagonal tablets, Crystal Growth& Design,2008,8,1509-1514.
    [76]Wei H., Ma N., Shi F., Wang Z.Q., and Zhang X., Artificial nacre by alternating preparation of layer-by-layer polymer films and CaCO3 strata, Chemistry of Materials,2007,19,1974-1978.
    [77]Duffy D.M. and Harding J.H., Modelling the interfaces between calcite crystals and Langmuir monolayers, Journal of Materials Chemistry,2002,12, 3419-3425.
    [78]Fricke M., Volkmer D., Krill C.E., Kellermann M., and Hirsch A., Vaterite polymorph switching controlled by surface charge density of an amphiphilic dendron-calix[4]arene, Crystal Growth& Design,2006,6,1120-1123.
    [79]Heywood B.R. and Mann S., Template-Directed Nucleation and Growth of Inorganic Materials, Advanced Materials,1994,6,9-20.
    [80]Litvin A.L., Valiyaveettil S., Kaplan D.L., and Mann S., Template-directed synthesis of aragonite under supramolecular hydrogen-bonded Langmuir monolayers, Advanced Materials,1997,9,124-127.
    [81]Loste E., Diaz-Marti E., Zarbakhsh A., and Meldrum F.C., Study of calcium carbonate precipitation under a series of fatty acid Langmuir monolayers using brewster angle microscopy, Langmuir,2003,19,2830-2837.
    [82]Maas M., Rehage H., Nebel H., and Epple M., On the formation of calcium carbonate thin films under Langmuir monolayers of stearic acid, Colloid and Polymer Science,2007,285,1301-1311.
    [83]Mann S., Heywood B.R., Rajam S., and Walker J.B.A., Structural and Stereochemical Relationships between Langmuir Monolayers and Calcium-Carbonate Nucleation, Journal of Physics D-Applied Physics,1991, 24,154-164.
    [84]Volkmer D., Fricke M., Agena C., and Mattay J., Oriented crystallization of calcite single crystals grown underneath monolayers of tetracarboxyresorc[4]arenes, Crystengcomm,2002,288-295.
    [85]Walker J.B.A., Heywood B.R., and Mann S., Oriented Nucleation of CaCO3 from Metastable Solutions under Langmuir Monolayers, Journal of Materials Chemistry,1991,1,889-890.
    [86]Champ S., Dickinson J.A., Fallon P.S., Heywood B.R., and Mascal M., modified mineral phases, Angewandte Chemie-International Edition,2000,39, Hydrogen-bonded molecular ribbons as templates for the synthesis of 2716-2719.
    [87]Aizenberg J., Black A.J., and Whitesides G.H., Oriented growth of calcite controlled by self-assembled monolayers of functionalized alkanethiols supported on gold and silver, Journal of the American Chemical Society,1999, 121,4500-4509.
    [88]Aizenberg J., Black A.J., and Whitesides G.M., Control of crystal nucleation by patterned self-assembled monolayers, Nature,1999,398,495-498.
    [89]Aizenberg J., Muller D.A., Grazul J.L., and Hamann D.R., Direct fabrication of large micropatterned single crystals, Science,2003,299,1205-1208.
    [90]Amos F.F., Sharbaugh D.M., Talham D.R., Gower L.B., Fricke M., and Volkmer D., Formation of single-crystalline aragonite tablets/films via an amorphous precursor, Langmuir,2007,23,1988-1994.
    [91]Black A.J., Paul K.E., Aizenberg J., and Whitesides G.M., Patterning disorder in monolayer resists for the fabrication of sub-100-nm structures in silver, gold, silicon, and aluminum, Journal of the American Chemical Society,1999,121, 8356-8365.
    [92]Han Y.J. and Aizenberg J., Face-selective nucleation of calcite on self-assembled monolayers of alkanethiols:Effect of the parity of the alkyl chain, Angewandte Chemie-International Edition,2003,42,3668-3670.
    [93]Han Y.J. and Aizenberg J., Effect of magnesium ions on oriented growth of calcite on carboxylic acid functionalized self-assembled monolayer, Journal of the American Chemical Society,2003,125,4032-4033.
    [94]Tong G.S., Liu T., Hu G.H., Zhao L., and Yuan W.K., Supercritical carbon dioxide-assisted solid-state free radical grafting of methyl methacrylate onto polypropylene, Journal of Supercritical Fluids,2007,43,64-73.
    [95]Travaille A.M., Donners J.J.J.M., Gerritsen J.W., Sommerdijk N.A.J.M., Nolte R.J.M., and van Kempen H., Aligned growth of calcite crystals on a self-assembled monolayer, Advanced Materials,2002,14,492-495.
    [96]Colfen H. and Mann S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angewandte Chemie-International Edition,2003,42,2350-2365.
    [97]Tugulu S., Harms M., Fricke M., Volkmer D., and Klok H.A., Polymer brushes as ionotropic matrices for the directed fabrication of microstructured calcite thin films, Angewandte Chemie-International Edition,2006,45, 7458-7461.
    [98]Hosoda N. and Kato T., Thin-film formation of calcium carbonate crystals: Effects of functional groups of matrix polymers, Chemistry of Materials,2001, 13,688-693.
    [99]Hosoda N., Sugawara A., and Kato T., Template effect of crystalline poly(vinyl alcohol) for selective formation of aragonite and vaterite CaCO3 thin films, Macromolecules,2003,36,6449-6452.
    [100]Cheng C., Yang Y.H., Chen X., and Shao Z.Z., Templating effect of silk fibers in the oriented deposition of aragonite, Chemical Communications,2008, 5511-5513.
    [101]Watanabe J. and Akashi M., Effect of an alternating current for crystallization of CaCO3 on a porous membrane, Acta Biomaterialia,2009,5,1306-1310.
    [102]Watanabe J. and Akashi M., Formation of various polymorphs of calcium carbonate on porous membrane by electrochemical approach, Journal of Crystal Growth,2009,311,3697-3701.
    [103]Park R.J. and Meldrum F.C., Synthesis of single crystals of calcite with complex morphologies, Advanced Materials,2002,14,1167-1169.
    [104]Park R.J. and Meldrum F.C., Shape-constraint as a route to calcite single crystals with complex morphologies, Journal of Materials Chemistry,2004,14, 2291-2296.
    [105]Li C. and Qi L.M., Bioinspired fabrication of 3D ordered macroporous single crystals of calcite from a transient amorphous phase, Angewandte Chemie-International Edition,2008,47,2388-2393.
    [106]Loste E. and Meldrum F.C., Control of calcium carbonate morphology by transformation of an amorphous precursor in a constrained volume, Chemical Communications,2001,901-902.
    [107]Loste E., Park R.J., Warren J., and Meldrum F.C., Precipitation of calcium carbonate in confinement, Advanced Functional Materials,2004,14, 1211-1220.
    [108]Li W.W. and Gao C., Efficiently stabilized spherical vaterite CaCO3 crystals by carbon nanotubes in biomimetic mineralization, Langmuir,2007,23, 4575-4582.
    [109]Menahem T. and Mastai Y., Controlled crystallization of calcium carbonate superstructures in macroemulsions, Journal of Crystal Growth,2008,310, 3552-3556.
    [110]Pouget E.M., Bomans P.H.H., Goos J.A.C.M., Frederik P.M., de With G., and Sommerdijk N.A.J.M., The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM, Science,2009,323,1555-1458.
    [111]Pichon B.P., Bomans P.H.H., Frederik P.M., and Sommerdijk N.A.J.M., A quasi-time-resolved CryoTEM study of the nucleation of CaCO3 under langmuir monolayers, Journal of the American Chemical Society,2008,130, 4034-4040.
    [112]Alivisatos A.P., Biomineralization-Naturally aligned nanocrystals, Science, 2000,289,736-737.
    [113]Banfield J.F., Welch S.A., Zhang H.Z., Ebert T.T., and Penn R.L., Aggregation-based crystal growth and microstructure development in natural iron oxyhydroxide biomineralization products, Science,2000,289,751-754.
    [114]Ma Y.R., Borner H.G., Hartmann J., and Golfen H., Synthesis of DL-alanine hollow tubes and core-shell mesostructures, Chemistry-a European Journal, 2006,12,7882-7888.
    [115]Ma Y.R., Colfen H., and Antonietti M., Morphosynthesis of alanine mesocrystals by pH control, Journal of Physical Chemistry B,2006,110, 10822-10828.
    [116]Schaffer T.E., IonescuZanetti C., Proksch R., Fritz M., Walters D.A., Almqvist N., Zaremba C.M., Belcher A.M., Smith B.L., Stucky G.D., Morse D.E., and Hansma P.K., Does abalone nacre form by heteroepitaxial nucleation or by growth through mineral bridges?, Chemistry of Materials,1997,9,1731-1740.
    [117]Oaki Y., Kotachi A., Miura T., and Imai H., Bridged nanocrystals in biominerals and their biomimetics:Classical yet modern crystal growth on the nanoscale, Advanced Functional Materials,2006,16,1633-1639.
    [118]Cai A.H., Xu X.R., Pan H.H., Tao J.H., Liu R., Tang R.K., and Cho K., Direct synthesis of hollow vaterite nanospheres from amorphous calcium carbonate nanoparticles via phase transformation, Journal of Physical Chemistry C,2008, 112,11324-11330.
    [119]Dai L.J., Cheng X.G., and Gower L.B., Transition Bars during Transformation of an Amorphous Calcium Carbonate Precursor, Chemistry of Materials,2008, 20,6917-6928.
    [120]Faatz M., Grohn F., and Wegner G., Amorphous calcium carbonate:Synthesis and potential intermediate in biomineralization, Advanced Materials,2004,16, 996-1000.
    [121]Han J.T., Xu X.R., Kim D.H., and Cho K.W., Biomimetic fabrication of vaterite film from amorphous calcium carbonate on polymer melt:Effect of polymer chain mobility and functionality, Chemistry of Materials,2005,17, 136-141.
    [122]Lakshminarayanan R., Loh X.J., Gayathri S.,Sindhu S., Banerjee Y., Kini R.M., and Valiyaveettil S., Formation of transient amorphous calcium carbonate precursor in quail eggshell mineralization:An in vitro study, Biomacromolecules,2006,7,3202-3209.
    [123]Yu S.H., Colfen H., Tauer K., and Antonietti M., Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer, Nature Materials,2005,4,51-55.
    [124]Yu S.H., Colfen H., Xu A.W., and Dong W.F., Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes, Crystal Growth& Design,2004,4,33-37.
    [125]Zhu J.H., Yu S.H., Xu A.W., and Colfen H., The biomimetic mineralization of double-stranded and cylindrical helical BaCO3 nanofibres, Chemical Communications,2009,1106-1108.
    [126]Wang T.X., Xu A.W., and Colfen H., Formation of self-organized dynamic structure patterns of barium carbonate crystals in polymer-controlled crystallization, Angewandte Chemie-International Edition,2006,45, 4451-4455.
    [127]Cai G.B., Guo X.H., and Yu S.H., Polymer controlled biomimetic mineralization, Progress in Chemistry,2008,20,1001-1014.
    [128]Garcia-Gonzalez C.A., el Grouh N., Hidalgo A., Fraile J., Lopez-Periago A.M., Andrade C., and Domingo C., New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes, Journal of Supercritical Fluids,2008,43,500-509.
    [129]Domingo C., Garcia-Carmona J., Loste E., Fanovich A., Fraile J., and Gomez-Morales J., Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media, Journal of Crystal Growth,2004,271,268-273.
    [130]Montes-Hernandez G., Renard F., Geoffroy N., Charlet L., and Pironon J., Calcite precipitation from CO2-H2O-Ca(OH)2 slurry under high pressure of CO2, Journal of Crystal Growth,2007,308,228-236.
    [131]Domingo C., Loste E., Gomez-Morales J., Garcia-Carmona J., and Fraile J., Calcite precipitation by a high-pressure CO2 carbonation route, Journal of Supercritical Fluids,2006,36,202-215.
    [132]韩布兴,超临界流体科学与技术.2005,北京:中国石化出版社.
    [133]Reverchon E. and De Marco I., Supercritical fluid extraction and fractionation of natural matter, Journal of Supercritical Fluids,2006,38,146-166.
    [134]van der Kraan M., Cid M.V.F., Woerlee G.F., Veugelers W.J.T., and Witkamp G.J., Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes, Journal of Supercritical Fluids,2007,40,470-476.
    [135]Cooper A.I., Porous materials and supercritical fluids, Advanced Materials, 2003,15,1049-1059.
    [136]Watkins J.J. and Mccarthy T.J., Polymerization of Styrene in Supercritical CO2-Swollen Poly(Chlorotrifluoroethylene), Macromolecules,1995,28, 4067-4074.
    [137]Kajimoto O., Solvation in supercritical fluids:Its effects on energy transfer and chemical reactions, Chemical Reviews,1999,99,355-389.
    [138]Cansell F. and Aymonier C., Design of functional nanostructured materials using supercritical fluids, Journal of Supercritical Fluids,2009,47,508-516.
    [139]Yu Q.S., Wu P.Y., Xu P., Li L., Liu T., and Zhao L., Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide, Green Chemistry,2008,10,1061-1067.
    [140]Ye X.R., Lin Y.H., Wang C.M., and Wai C.M., Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes, Advanced Materials,2003,15,316-319.
    [141]Montes-Hernandez G., Fernandez-Martinez A., and Renard F., Novel Method to Estimate the Linear Growth Rate of Submicrometric Calcite Produced in a Triphasic Gas-Liquid-Solid System, Crystal Growth& Design,2009,9, 4567-4573.
    [142]Seifritz W., CO2 Disposal by Means of Silicates, Nature,1990,345,486-486.
    [143]Wakayama H., Hall S.R., Fukushima Y., and Mann S., CaCO3/biopolymer composite films prepared using supercritical CO2, Industrial& Engineering Chemistry Research,2006,45,3332-3334.
    [144]Wakayama H., Hall S.R., and Mann S., Fabrication of CaCO3-biopolymer thin films using supercritical carbon dioxide, Journal of Materials Chemistry,2005, 15,1134-1136.
    [145]Zhang C.X., Zhang J.L., Feng X.Y., Li W., Zhao Y.J., and Han B.X., Influence of surfactants on the morphologies of CaCO3 by carbonation route with compressed CO2, Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,324,167-170.
    [146]Gu W., Bousfield D.W., and Tripp C.P., Formation of calcium carbonate particles by direct contact of Ca(OH)2 powders with supercritical CO2, Journal of Materials Chemistry,2006,16,3312-3317.
    [147]Harding J.H., Duffy D.M., Sushko M.L., Rodger P.M., Quigley D., and Elliott J.A., Computational Techniques at the Organic-Inorganic Interface in Biomineralization, Chemical Reviews,2008,108,4823-4854.
    [148]Lim S.I. and Zhong C.J., Molecularly Mediated Processing and Assembly of Nanoparticles:Exploring the Interparticle Interactions and Structures, Accounts of Chemical Research,2009,42,798-808.
    [149]Noda I., Two-Dimensional Infrared-Spectroscopy, Journal of the American Chemical Society,1989,111,8116-8118.
    [150]Noda I., Two-Dimensional Infrared (2D-IR) Spectroscopy-Theory and Applications, Applied Spectroscopy,1990,44,550-561.
    [151]Noda I., Generalized Two-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy, Applied Spectroscopy, 1993,47,1329-1336.
    [152]Noda I. and Ozaki Y., Two-Dimensional correlation spectroscopy:applications in vibrational and optical spectroscopy.2004, West Sussex:John Wiley&Sons.
    [153]Shen Y. and Wu P.Y., Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film:Water bending vibration, Journal of Physical Chemistry B,2003,107,4224-4226.
    [154]Tang B.B., Wu P.Y., and Siesler H.W., In situ study of diffusion and interaction of water and mono-or divalent anions in a positively charged membrane using two-dimensional correlation FT-IR/Attenuated total reflection Spectroscopy, Journal of Physical Chemistry B,2008,112,2880-2887.
    [155]Guo Y.L. and Wu P.Y., Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy, Carbohydrate Polymers,2008,74,509-513.
    [156]Sun S.T., Tang H., and Wu P.Y., Interpretation of Carbonyl Band Splitting Phenomenon of a Novel Thermotropic Liquid Crystalline Polymer without Conventional Mesogens:Combination Method of Spectral Analysis and Molecular Simulation, Journal of Physical Chemistry B,2010,114, 3439-3448.
    [157]Sun S.T., Tang H., Wu P.Y., and Wan X.H., Supramolecular self-assembly nature of a novel thermotropic liquid crystalline polymer containing no conventional mesogens, Physical Chemistry Chemical Physics,2009,11, 9861-9870.
    [158]Shen Y., Chen E.Q., Ye C., Zhang H.L., Wu P.Y., Noda I., and Zhou Q.F., Liquid-crystalline phase development of a mesogen-jacketed polymer Application of two-dimensional infrared correlation analysis, Journal of Physical Chemistry B,2005,109,6089-6095.
    [1]Mann S., Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry.2001, New York:Oxford University Press.
    [2]Xu A.W., Ma Y.R., and Colfen H., Biomimetic mineralization, Journal of Materials Chemistry,2007,17,415-449.
    [3]Yu S.H. and Colfen H., Bio-inspired crystal morphogenesis by hydrophilic polymers. Journal of Materials Chemistry,2004,14,2124-2147.
    [4]Colfen H. and Mann S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angewandte Chemie-International Edition,2003,42,2350-2365.
    [5]Addadi L., Joester D., Nudelman F., and Weiner S., Mollusk shell formation:A source of new concepts for understanding biomineralization processes, Chemistry-a European Journal,2006,12,981-987.
    [6]Cartwright J.H.E. and Checa A.G., The dynamics of nacre self-assembly, Journal of the Royal Society Interface,2007,4,491-504.
    [7]Politi Y., Metzler R.A., Abrecht M., Gilbert B., Wilt F.H., Sagi I., Addadi L., Weiner S., and Gilbert P., Transformation mechanism of amorphous calcium carbonate into calcite in the sea urchin larval spicule, Proceedings of the National Academy of Sciences of the United States of America,2008,105, 17362-17366.
    [8]Dai L.J., Cheng X.G., and Gower L.B., Transition Bars during Transformation of an Amorphous Calcium Carbonate Precursor, Chemistry of Materials,2008, 20,6917-6928.
    [9]Politi Y., Arad T., Klein E., Weiner S., and Addadi L., Sea urchin spine calcite forms via a transient amorphous calcium carbonate phase, Science,2004,306, 1161-1164.
    [10]Faatz M., Grohn F., and Wegner G., Amorphous calcium carbonate:Synthesis and potential intermediate in biomineralization, Advanced Materials,2004,16, 996-1000.
    [11]Raz S., Hamilton P.C., Wilt F.H., Weiner S., and Addadi L., The transient phase of amorphous calcium carbonate in sea urchin larval spicules:The involvement of proteins and magnesium ions in its formation and stabilization, Advanced Functional Materials,2003,13,480-486.
    [12]Braga D., From amorphous to crystalline by design:Bio-inspired fabrication of large micropatterned single crystals, Angewandte Chemie-International Edition,2003,42,5544-5546.
    [13]Addadi L., Raz S., and Weiner S., Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization, Advanced Materials, 2003,15,959-970.
    [14]Qiao L., Feng Q.L., and Lu S.S., In vitro growth of nacre-like tablet forming: From amorphous calcium carbonate, nanostacks to hexagonal tablets, Crystal Growth& Design,2008,8,1509-1514.
    [15]Arias J.L. and Fernandez M.S., Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization, Chemical Reviews,2008,108, 4475-4482.
    [16]Butler M.F., Glaser N., Weaver A.C., Kirkland M., and Heppenstall-Butler M., Calcium carbonate crystallization in the presence of biopolymers, Crystal Growth& Design,2006,6,781-794.
    [17]Leng B.X., Jiang F.G., Lu K.B., Ming W.H., and Shao Z.Z., Growth of calcium carbonate mediated by slowly released alginate, Crystengcomm,2010, 12,730-736.
    [18]Arias J.L., Neira-Carrillo A., Arias J.I., Escobar C., Bodero M., David M., and Fernandez M.S., Sulfated polymers in biological mineralization:a plausible source for bio-inspired engineering, Journal of Materials Chemistry,2004,14, 2154-2160.
    [19]许东生编,纤维素衍生物.2001,北京:化学工业出版社.
    [20]Shang J., Shao Z.Z., and Chen X., Electrical behavior of a natural polyelectrolyte hydrogel:Chitosan/carboxymethylcellulose hydrogel, Biomacromolecules,2008,9,1208-1213.
    [21]Chen H.Q. and Fan M.W., Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels, Journal of Bioactive and Compatible Polymers,2008,23,38-48.
    [22]Klesing J., Wiehe A., Gitter B., Grafe S., and Epple M., Positively charged calcium phosphate/polymer nanoparticles for photodynamic therapy, Journal of Materials Science-Materials in Medicine,2010,21,887-892.
    [23]Chen R.N., Ho H.O., Yu C.Y., and Sheu M.T., Development of swelling/floating gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with CYP2C9 polymorphism, European Journal of Pharmaceutical Sciences,2010,39,82-89.
    [24]Kulkarni R.V. and Sa B., Evaluation of pH-Sensitivity and Drug Release Characteristics of (Polyacrylamide-Grafted-Xanthan)-Carboxymethyl Cellulose-Based pH-Sensitive Interpenetrating Network Hydrogel Beads, Drug Development and Industrial Pharmacy,2008,34,1406-1414.
    [25]Bajpai A.K. and Mishra A., Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacine:an in-vitro dynamic study, Journal of Materials Science-Materials in Medicine,2008,19,2121-2130.
    [26]Yuan N.Y., Lin Y.A., Ho M.H., Wang D.M., Lai J.Y., and Hsieh H.J., Effects of the cooling mode on the structure and strength of porous scaffolds made of chitosan, alginate, and carboxymethyl cellulose by the freeze-gelation method, Carbohydrate Polymers,2009,78,349-356.
    [27]Kobayashi H., Fujishiro T., Belkoff S.M., Kobayashi N., Turner A.S., Seim H.B., Zitelli J., Hawkins M., and Bauer T.W., Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model, Journal of Biomedical Materials Research Part A,2009,88A, 880-888.
    [28]Jiang L.Y., Li Y.B., and Xiong C.D., Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering-art. no.65, Journal of Biomedical Science,2009,16,65-65.
    [29]Barbucci R., Magnani A., and Consumi M., Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density, Macromolecules,2000,33,7475-7480.
    [30]Colfen H., Double-hydrophilic block copolymers:Synthesis and application as novel surfactants and crystal growth modifiers, Macromolecular Rapid Communications,2001,22,219-252.
    [31]Meldrum F.C. and Colfen H., Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems, Chemical Reviews,2008,108, 4332-4432.
    [32]Kulak A.N., Iddon P., Li Y.T., Armes S.P., Colfen H., Paris O., Wilson R.M., and Meldrum F.C., Continuous structural evolution of calcium carbonate particles:A unifying model of copolymer-mediated crystallization, Journal of the American Chemical Society,2007,129,3729-3736.
    [33]Wang T.P., Antonietti M., and Colfen H., Calcite mesocrystals:"Morphing" crystals by a polyelectrolyte, Chemistry-a European Journal,2006,12, 5722-5730.
    [34]Albeck S., Weiner S., and Addadi L., Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro, Chemistry--a European Journal,1996,2,278-284.
    [35]Yu S.H., Colfen H., Hartmann J., and Antonietti M., Biomimetic crystallization of calcium carbonate spherules with controlled surface structures and sizes by double-hydrophilic block copolymers, Advanced Functional Materials,2002,12,541-545.
    [36]Guo X.H., Yu S.H., and Cai G.B., Crystallization in a mixture of solvents by using a crystal modifier:Morphology control in the synthesis of highly monodisperse CaCO3 microspheres, Angewandte Chemie-International Edition,2006,45,3977-3981.
    [37]Pichon B.P., Bomans P.H.H., Frederik P.M., and Sommerdijk N.A.J.M., A quasi-time-resolved CryoTEM study of the nucleation of CaCO3 under langmuir monolayers, Journal of the American Chemical Society,2008,130, 4034-4040.
    [38]Pouget E.M., Bomans P.H.H., Goos J.A.C.M., Frederik P.M., de With G., and Sommerdijk N.A.J.M., The Initial Stages of Template-Controlled CaCO3 Formation Revealed by Cryo-TEM, Science,2009,323,1555-1458.
    [39]章晓中,电子显微分析.2006,北京:清华大学出版社.
    [40]Legodi M.A., de Waal D., Potgieter J.H., and Potgieter S.S., Rapid determination of CaCO3 in mixtures utilising FT-IR spectroscopy, Minerals Engineering,2001,14,1107-1111.
    [41]Kamburova K. and Radeva T., Electro-optics of colloid-polyelectrolyte complexes:Counterion condensation on free and adsorbed sodium carboxymethyl cellulose, Journal of Colloid and Interface Science,2007,313, 398-404.
    [42]Huang S.C., Naka K., and Chujo Y., A carbonate controlled-addition method for amorphous calcium carbonate spheres stabilized by poly(acrylic acid)s, Langmuir,2007,23,12086-12095.
    [43]Fantinel F., Rieger J., Molnar F., and Hubler P., Complexation of polyacrylates by Ca2+ ions. Time-resolved studies using attenuated total reflectance Fourier transform infrared dialysis spectroscopy, Langmuir,2004,20,2539-2542.
    [44]Pai R.K. and Pillai S., Divalent Cation-Induced Variations in Polyelectrolyte Conformation and Controlling Calcite Morphologies:Direct Observation of the Phase Transition by Atomic Force Microscopy, Journal of the American Chemical Society,2008,130,13074-13078.
    [45]Gebauer D., Volkel A., and Colfen H., Stable Prenucleation Calcium Carbonate Clusters, Science,2008,322,1819-1822.
    [46]Xu X.R., Cai A.H., Liu R., Pan H.H., Tang R.K., and Cho K.W., The roles of water and polyelectrolytes in the phase transformation of amorphous calcium carbonate, Journal of Crystal Growth,2008,310,3779-3787.
    [47]Yu S.H., Colfen H., and Antonietti M., Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures, Journal of Physical Chemistry B,2003,107,7396-7405.
    [48]Kuther J., Seshadri R., Nelles G., Assenmacher W., Butt H.J., Mader W., and Tremel W., Mercaptophenol-protected gold colloids as nuclei for the crystallization of inorganic minerals:Templated crystallization on curved surfaces, Chemistry of Materials,1999,11,1317-1325.
    [49]Kuther J., Seshadri R., and Tremel W., Crystallization of calcite spherules around designer nuclei, Angewandte Chemie-International Edition,1998,37, 3044-3047.
    [50]Kuther J., Seshadri R., Knoll W., and Tremel W., Templated growth of calcite, vaterite and aragonite crystals on self-assembled monolayers of substituted alkylthiols on gold, Journal of Materials Chemistry,1998,8,641-650.
    [51]Guo X.H., Xu A.W., and Yu S.H., Crystallization of calcium carbonate mineral with hierarchical structures in DMF solution under control of poly(ethylene glycol)-b-poly(L-glutamic acid):Effects of crystallization temperature and polymer concentration, Crystal Growth& Design,2008,8,1233-1242.
    [52]Jada A., Akbour R.A., Jacquemet C., Suau J.M., and Guerret O., Effect of sodium polyacrylate molecular weight on the crystallogenesis of calcium carbonate, Journal of Crystal Growth,2007,306,373-382.
    [53]Dickinson S.R., Henderson G.E., and McGrath K.M., Controlling the kinetic versus thermodynamic crystallisation of calcium carbonate, Journal of Crystal Growth,2002,244,369-378.
    [1]Whitesides G.M. and Grzybowski B., Self-assembly at all scales, Science, 2002,295,2418-2421.
    [2]Colfen H. and Mann S., Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures, Angewandte Chemie-International Edition,2003,42,2350-2365.
    [3]Wang T.X., Xu A.W., and Colfen H., Formation of self-organized dynamic structure patterns of barium carbonate crystals in polymer-controlled crystallization, Angewandte Chemie-International Edition,2006,45, 4451-4455.
    [4]Yu S.H., Colfen H., Xu A.W., and Dong W.F., Complex spherical BaCO3 superstructures self-assembled by a facile mineralization process under control of simple polyelectrolytes, Crystal Growth& Design,2004,4,33-37.
    [5]Mann S., Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry.2001, New York:Oxford University Press.
    [6]Addadi L., Joester D., Nudelman F., and Weiner S., Mollusk shell formation:A source of new concepts for understanding biomineralization processes, Chemistry-a European Journal,2006,12,981-987.
    [7]Kulak A.N., Iddon P., Li Y.T., Armes S.P., Colfen H., Paris O., Wilson R.M., and Meldrum F.C., Continuous structural evolution of calcium carbonate particles:A unifying model of copolymer-mediated crystallization, Journal of the American Chemical Society,2007,129,3729-3736.
    [8]Wang T.P., Antonietti M., and Colfen H., Calcite mesocrystals:"Morphing" crystals by a polyelectrolyte, Chemistry-a European Journal,2006,12, 5722-5730.
    [9]Sommerdijk N.A.J.M. and de With G., Biomimetic CaCO3 Mineralization using Designer Molecules and Interfaces, Chemical Reviews,2008,108, 4499-4550.
    [10]Meldrum F.C. and Colfen H., Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems, Chemical Reviews,2008,108, 4332-4432.
    [11]Arias J.L. and Fernandez M.S., Polysaccharides and Proteoglycans in Calcium Carbonate-based Biomineralization, Chemical Reviews,2008,108, 4475-4482.
    [12]Xu A.W., Ma Y.R., and Colfen H., Biomimetic mineralization, Journal of Materials Chemistry,2007,17,415-449.
    [13]Ni Y.H., Li X.L., Hong J.M., and Ma X., Egg albumin-assisted preparation, characterization and influencing factors of Dumbbell-shaped BaCO3 superstructures, Materials Chemistry and Physics,2010,120,10-13.
    [14]Homeijer S.J., Barrett R.A., and Gower L.B., Polymer-Induced Liquid-Precursor (PILP) Process in the Non-Calcium Based Systems of Barium and Strontium Carbonate, Crystal Growth& Design,2010,10, 1040-1052.
    [15]Zhu J.H., Yu S.H., Xu A.W., and Colfen H., The biomimetic mineralization of double-stranded and cylindrical helical BaCO3 nanofibres, Chemical Communications,2009,1106-1108.
    [16]Huang F.Z., Shen Y.H., Xie A.J., Zhang L., Xu W.H., Li S.K., and Lu W.S., Polymorph control of a complex BaCO3 superstructure through the cooperation of an insoluble polylactide self-assembled film and soluble poly allylamine modifier, Reactive& Functional Polymers,2009,69,843-850.
    [17]Ni Y.H., Zhang H.Y., Hong J.M., Zhang L., and Wei X.W., PAM-directed fabrication, shape evolution and formation mechanism of BaCO3 crystals with higher-order superstructures, Journal of Crystal Growth,2008,310, 4460-4467.
    [18]Homeijer S.J., Olszta M.J., Barrett R.A., and Gower L.B., Growth of nanofibrous barium carbonate on calcium carbonate seeds, Journal of Crystal Growth,2008,310,2938-2945.
    [19]Guo X.H. and Yu S.H., Controlled mineralization of barium carbonate mesocrystals in a mixed solvent and at the air/solution interface using a double hydrophilic block copolymer as a crystal modifier, Crystal Growth& Design, 2007,7,354-359.
    [20]Yu S.H., Colfen H., Tauer K., and Antonietti M., Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer, Nature Materials,2005,4,51-55.
    [21]Yu S.H., Colfen H., and Antonietti M., Polymer-controlled morphosynthesis and mineralization of metal carbonate superstructures, Journal of Physical Chemistry B,2003,107,7396-7405.
    [22]Sondi I. and Matijevic E., Homogeneous precipitation by enzyme-catalyzed reactions.2. Strontium and barium carbonates, Chemistry of Materials,2003, 15,1322-1326.
    [23]Harding J.H., Duffy D.M., Sushko M.L., Rodger P.M., Quigley D., and Elliott J.A., Computational Techniques at the Organic-Inorganic Interface in Biomineralization, Chemical Reviews,2008,108,4823-4854.
    [24]Rahaman A., Grassian V.H., and Margulis C.J., Dynamics of water adsorption onto a calcite surface as a function of relative humidity, Journal of Physical Chemistry C,2008,112,2109-2115.
    [25]Wang X.W., Han Y.S., Lin L.W., Fuji M., Endo T., Watanabe H., and Takahashi M., A molecular dynamics study on aqueous solutions for preparation of hollow CaCO3 particles, Modelling and Simulation in Materials Science and Engineering,2008,16,035006.
    [26]Hadicke E., Rieger J., Rau I.U., and Boeckh D., Molecular dynamics simulations of the incrustation inhibition by polymeric additives, Physical Chemistry Chemical Physics,1999,1,3891-3898.
    [27]Tribello G.A., Bruneval F., Liew C., and Parrinello M., A Molecular Dynamics Study of the Early Stages of Calcium Carbonate Growth, Journal of Physical Chemistry B,2009,113,11680-11687.
    [28]Barbucci R., Magnani A., and Consumi M., Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density, Macromolecules,2000,33,7475-7480.
    [29]Kamburova K. and Radeva T., Electro-optics of colloid-polyelectrolyte complexes:Counterion condensation on free and adsorbed sodium carboxymethyl cellulose, Journal of Colloid and Interface Science,2007,313, 398-404.
    [30]Addadi L., Raz S., and Weiner S., Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization, Advanced Materials, 2003,15,959-970.
    [31]Faatz M., Grohn F., and Wegner G., Amorphous calcium carbonate:Synthesis and potential intermediate in biomineralization, Advanced Materials,2004,16, 996-1000.
    [32]Weiner S., Sagi I., and Addadi L., Choosing the crystallization path less traveled, Science,2005,309,1027-1028.
    [33]Shen Q., Wang L.C., Huang Y.P., Sun J.L., Wang H.H., Zhou Y., and Wang D.J., Oriented aggregation and novel phase transformation of vaterite controlled by the synergistic effect of calcium dodecyl sulfate and n-pentanol, Journal of Physical Chemistry B,2006,110,23148-23153.
    [34]Rousseau M., Lopez E., Coute A., Mascarel G., Smith D.C., Naslain R., and Bourrat X., Sheet nacre growth mechanism:a Voronoi model, Journal of Structural Biology,2005,149,149-157.
    [35]Song F., Soh A.K., and Bai Y.L., Structural and mechanical properties of the organic matrix layers of nacre, Biomaterials,2003,24,3623-3631.
    [36]Kuther J., Seshadri R., Nelles G., Assenmacher W., Butt H.J., Mader W., and Tremel W., Mercaptophenol-protected gold colloids as nuclei for the crystallization of inorganic minerals:Templated crystallization on curved surfaces, Chemistry of Materials,1999,11,1317-1325.
    [37]Kuther J., Seshadri R., and Tremel W., Crystallization of calcite spherules around designer nuclei, Angewandte Chemie-International Edition,1998,37, 3044-3047.
    [38]Busch S., Schwarz U., and Kniep R., Morphogenesis and structure of human teeth in relation to biomimetically grown fluorapatite-gelatine composites, Chemistry of Materials,2001,13,3260-3271.
    [39]Busch S., Dolhaine H., DuChesne A., Heinz S., Hochrein O., Laeri F., Podebrad O., Vietze U., Weiland T., and Kniep R., Biomimetic morphogenesis of fluorapatite-gelatin composites:Fractal growth, the question of intrinsic electric fields, core/shell assemblies, hollow spheres and reorganization of denatured collagen, European Journal of Inorganic Chemistry,1999, 1643-1653.
    [40]Pai R.K. and Pillai S., Divalent Cation-Induced Variations in Polyelectrolyte Conformation and Controlling Calcite Morphologies:Direct Observation of the Phase Transition by Atomic Force Microscopy, Journal of the American Chemical Society,2008,130,13074-13078.
    [1]韩布兴,超临界流体科学与技术.2005,北京:中国石化出版社.
    [2]Reverchon E. and De Marco I., Supercritical fluid extraction and fractionation of natural matter. Journal of Supercritical Fluids,2006,38,146-166.
    [3]van der Kraan M., Cid M.V.F., Woerlee G.F., Veugelers W.J.T., and Witkamp G.J., Dyeing of natural and synthetic textiles in supercritical carbon dioxide with disperse reactive dyes. Journal of Supercritical Fluids,2007,40,470-476.
    [4]Kajimoto O., Solvation in supercritical fluids:Its effects on energy transfer and chemical reactions. Chemical Reviews,1999,99,355-389.
    [5]Watkins J.J. and Mccarthy T.J., Polymerization of Styrene in Supercritical CO2-Swollen Poly(Chlorotrifluoroethylene). Macromolecules,1995,28, 4067-4074.
    [6]Cooper A.I., Porous materials and supercritical fluids. Advanced Materials, 2003,15,1049-1059.
    [7]Li W., Zhang J.L., Zhao Y.J., Hou M.Q., Han B.X., Yu C.L., and Ye J.P., Reversible Switching of a Micelle-to-Vesicle Transition by Compressed CO2. Chemistry-a European Journal,2010,16,1296-1305.
    [8]Zhang J.L. and Han B.X., Supercritical CO2-continuous microemulsions and compressed CO2-expanded reverse microemulsions. Journal of Supercritical Fluids,2009,47,531-536.
    [9]Wu T.B., Jiang T., Hu B.J., Han B.X., He J.L., and Zhou X.S., Cross-linked polymer coated Pd nanocatalysts on SiO2 support:very selective and stable catalysts for hydrogenation in supercritical CO2. Green Chemistry,2009,11, 798-803.
    [10]Zhang J.L., Han B.X., Li W., Zhao Y.J., and Hou M.Q., Reversible Switching of Lamellar Liquid Crystals into Micellar Solutions using CO2. Angewandte Chemie-International Edition,2008,47,10119-10123.
    [11]Zhang C.X., Zhang J.L., Feng X.Y., Li W., Zhao Y.J., and Han B.X., Influence of surfactants on the morphologies of CaCO3 by carbonation route with compressed CO2. Colloids and Surfaces a-Physicochemical and Engineering Aspects,2008,324,167-170.
    [12]Xie Y., Zhang Z.F., Hu S.Q., Song J.L., Li W.J., and Han B.X., Aerobic oxidation of benzyl alcohol in supercritical CO2 catalyzed by perruthenate immobilized on polymer supported ionic liquid. Green Chemistry,2008,10, 278-282.
    [13]Li L., Liu T., Zhao L., and Yuan W.K., CO2-Induced Crystal Phase Transition from Form II to I in Isotactic Poly-1-butene. Macromolecules,2009,42, 2286-2290.
    [14]Li B., Li L., Zhao L., and Yuan W.K., In situ FT-IR spectroscopic study on the conformational changes of isotactic polypropylene in the presence of supercritical CO2. European Polymer Journal,2008,44,2619-2624.
    [15]Jiang X.L., Liu T., Xu Z.M., Zhao L., Hu G.H., and Yuan W.K., Effects of crystal structure on the foaming of isotactic polypropylene using supercritical carbon dioxide as a foaming agent. Journal of Supercritical Fluids,2009,48, 167-175.
    [16]Tong G.S., Liu T., Hu G.H., Zhao L., and Yuan W.K., Supercritical carbon dioxide-assisted solid-state free radical grafting of methyl methacrylate onto polypropylene. Journal of Supercritical Fluids,2007,43,64-73.
    [17]Shi J.Y., Wu P.Y., Li L., Liu T., and Zhao L., Crystalline transformation of isotactic polybutene-1 in supercritical CO2 studied by in-situ fourier transform infrared spectroscopy. Polymer,2009,50,5598-5604.
    [18]Cansell F. and Aymonier C., Design of functional nanostructured materials using supercritical fluids. Journal of Supercritical Fluids,2009,47,508-516.
    [19]Ye X.R., Lin Y.H., Wang C.M., and Wai C.M., Supercritical fluid fabrication of metal nanowires and nanorods templated by multiwalled carbon nanotubes. Advanced Materials,2003,15,316-319.
    [20]Yu Q.S., Wu P.Y., Xu P., Li L., Liu T., and Zhao L., Synthesis of cellulose/titanium dioxide hybrids in supercritical carbon dioxide. Green Chemistry,2008,10,1061-1067.
    [21]Albeck S., Weiner S., and Addadi L., Polysaccharides of intracrystalline glycoproteins modulate calcite crystal growth in vitro. Chemistry--a European Journal,1996,2,278-284.
    [22]Seifritz W., CO2 Disposal by Means of Silicates. Nature,1990,345,486-486.
    [23]Garcia-Gonzalez C.A., el Grouh N., Hidalgo A., Fraile J., Lopez-Periago A.M., Andrade C., and Domingo C., New insights on the use of supercritical carbon dioxide for the accelerated carbonation of cement pastes. Journal of Supercritical Fluids,2008,43,500-509.
    [24]Domingo C., Loste E., Gomez-Morales J., Garcia-Carmona J., and Fraile J., Calcite precipitation by a high-pressure CO2 carbonation route. Journal of Supercritical Fluids,2006,36,202-215.
    [25]Montes-Hernandez G., Renard F., Geoffroy N., Charlet L., and Pironon J., Calcite precipitation from CO2-H2O-Ca(OH)2 slurry under high pressure of CO2. Journal of Crystal Growth,2007,308,228-236.
    [26]Domingo C., Garcia-Carmona J., Loste E., Fanovich A., Fraile J., and Gomez-Morales J., Control of calcium carbonate morphology by precipitation in compressed and supercritical carbon dioxide media. Journal of Crystal Growth,2004,271,268-273.
    [27]Montes-Hernandez G., Fernandez-Martinez A., and Renard F., Novel Method to Estimate the Linear Growth Rate of Submicrometric Calcite Produced in a Triphasic Gas-Liquid-Solid System. Crystal Growth& Design,2009,9, 4567-4573.
    [28]Wakayama H., Hall S.R., and Mann S., Fabrication of CaCO3-biopolymer thin films using supercritical carbon dioxide. Journal of Materials Chemistry,2005, 15,1134-1136.
    [29]Wakayama H., Hall S.R., Fukushima Y., and Mann S., CaC03/biopolymer composite films prepared using supercritical CO2. Industrial& Engineering Chemistry Research,2006,45,3332-3334.
    [30]Gu W., Bousfield D.W., and Tripp C.P., Formation of calcium carbonate particles by direct contact of Ca(OH)2 powders with supercritical CO2. Journal of Materials Chemistry,2006,16,3312-3317.
    [31]余启斯,基于超临界和高压二氧化碳技术制备多种天然高分子/无机物复合材料的研究.2009,复旦大学硕士学位论文.
    [32]Cheng C., Shao Z.Z., and Vollrath F., Silk fibroin-regulated crystallization of calcium carbonate. Advanced Functional Materials,2008,18,2172-2179.
    [33]White W., The infrared spectra of minerals.1974, London:Mineralogical society.
    [34]Addadi L., Raz S., and Weiner S., Taking advantage of disorder:Amorphous calcium carbonate and its roles in biomineralization. Advanced Materials, 2003,15,959-970.
    [35]Song R.Q., Xu A.W., Antonietti M., and Colfen H., Calcite Crystals with Platonic Shapes and Minimal Surfaces. Angewandte Chemie-International Edition,2009,48,395-399.
    [36]Dickinson S.R., Henderson G.E., and McGrath K.M., Controlling the kinetic versus thermodynamic crystallisation of calcium carbonate, Journal of Crystal Growth,2002,244,369-378.
    [37]Kamburova K. and Radeva T., Electro-optics of colloid-polyelectrolyte complexes:Counterion condensation on free and adsorbed sodium carboxymethyl cellulose. Journal of Colloid and Interface Science,2007,313, 398-404.
    [38]An X. Q. and Cao C. B., Coeffect of silk fibroin and self-assembly monolayers on the biomineralization of calcium carbonate. Journal of Physical Chemistry C,2008,112,15844-15849.
    [39]Diamond L. W. and Akinfiev N. N., Solubility of CO2 in water from-1.5 to 100 degrees C and from 0.1 to 100 MPa:evaluation of literature data and thermodynamic modelling. Fluid Phase Equilibria,2003,208,265-290.
    [40]Badssi, A., Bugarel, R., Blanc, C., Peytavy, J. L. and Laurent, A., Influence of Pressure on the Gas-Liquid Interfacial Area and the Gas-Side Mass-Transfer Coefficient of a Laboratory Column Equipped with Cross-Flow Sieve Trays. Chemical Engineering and Processing,1988,23,89-97.
    [41]Yu S.H., Colfen H., Tauer K., and Antonietti M., Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer, Nature Materials,2005,4,51-55.
    [42]Zhu J.H., Yu S.H., Xu A.W., and Colfen H., The biomimetic mineralization of double-stranded and cylindrical helical BaCO3 nanofibres, Chemical Communications,2009,1106-1108.
    [1]Heinze T.J. and Glasser W.J., Cellulose Derivatives.1998, Washington. DC, American Chemical Society.
    [2]Sugiyama J., Persson J., and Chanzy H., Combined Infrared and Electron-Diffraction Study of the Polymorphism of Native Celluloses. Macromolecules,1991,24,2461-2466.
    [3]Marechal Y. and Chanzy H., The hydrogen bond network in Ⅰ-beta cellulose as observed by infrared spectrometry. Journal of Molecular Structure,2000,523, 183-196.
    [4]Nishiyama Y., Isogai A., Okano T., Muller M., and Chanzy H., Intracrystalline deuteration of native cellulase. Macromolecules,1999,32,2078-2081.
    [5]Nishiyama Y., Langan P., and Chanzy H., Crystal structure and hydrogen-bonding system in cellulose 1 beta from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society,2002,124, 9074-9082.
    [6]Wada M., Chanzy H., Nishiyama Y., and Langan P., Cellulose Ⅲ(?) crystal structure and hydrogen bonding by synchrotron X-ray and neutron fiber diffraction. Macromolecules,2004,37,8548-8555.
    [7]Hishikawa Y., Inoue S., Magoshi J., and Kondo T., Novel tool for characterization of noncrystalline regions in cellulose:A FTIR deuteration monitoring and generalized two-dimensional correlation spectroscopy. Biomacromolecules,2005,6,2468-2473.
    [8]Watanabe A., Morita S., and Ozaki Y., Temperature-dependent changes in hydrogen bonds in cellulose I alpha studied by infrared spectroscopy in combination with perturbation-correlation moving-window two-dimensional correlation spectroscopy:Comparison with cellulose I beta. Biomacromolecules,2007,8,2969-2975.
    [9]Watanabe A., Morita S., and Ozaki Y., Study on temperature-dependent changes in hydrogen bonds in cellulose I beta by infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation spectroscopy. Biomacromolecules,2006,7,3164-3170.
    [10]Barbucci R., Magnani A., and Consumi M., Swelling behavior of carboxymethylcellulose hydrogels in relation to cross-linking, pH, and charge density. Macromolecules,2000,33,7475-7480.
    [11]Shang J., Shao Z.Z., and Chen X., Electrical behavior of a natural polyelectrolyte hydrogel:Chitosan/carboxymethylcellulose hydrogel. Biomacromolecules,2008,9,1208-1213.
    [12]Chen H.Q. and Fan M.W., Novel thermally sensitive pH-dependent chitosan/carboxymethyl cellulose hydrogels. Journal of Bioactive and Compatible Polymers,2008,23,38-48.
    [13]Chen R.N., Ho H.O., Yu C.Y, and Sheu M.T., Development of swelling/floating gastroretentive drug delivery system based on a combination of hydroxyethyl cellulose and sodium carboxymethyl cellulose for Losartan and its clinical relevance in healthy volunteers with CYP2C9 polymorphism. European Journal of Pharmaceutical Sciences,2010,39,82-89.
    [14]Bajpai A.K. and Mishra A., Carboxymethyl cellulose (CMC) based semi-IPNs as carriers for controlled release of ciprofloxacine:an in-vitro dynamic study. Journal of Materials Science-Materials in Medicine,2008,19,2121-2130.
    [15]Kobayashi H., Fujishiro T., Belkoff S.M., Kobayashi N., Turner A.S., Seim H.B., Zitelli J., Hawkins M., and Bauer T.W., Long-term evaluation of a calcium phosphate bone cement with carboxymethyl cellulose in a vertebral defect model. Journal of Biomedical Materials Research Part A,2009,88A, 880-888.
    [16]Jiang L.Y., Li Y.B., and Xiong C.D., Preparation and biological properties of a novel composite scaffold of nano-hydroxyapatite/chitosan/carboxymethyl cellulose for bone tissue engineering-art. no.65. Journal of Biomedical Science,2009,16,65-65.
    [17]Aue W.P., Bartholdi E., and Ernst R.R.,2-Dimensional Spectroscopy Application to Nuclear Magnetic-Resonance. Journal of Chemical Physics, 1976,64,2229-2246.
    [18]Noda I., Generalized 2-Dimensional Correlation Method Applicable to Infrared, Raman, and Other Types of Spectroscopy. Applied Spectroscopy, 1993,47,1329-1336.
    [19]Noda I.,2-Dimensional Infrared (2D-IR) Spectroscopy-Theory and Applications. Applied Spectroscopy,1990,44,550-561.
    [20]Noda I., Two-Dimensional Infrared-Spectroscopy. Journal of the American Chemical Society,1989,111,8116-8118.
    [21]Noda I and Y.O., Two-Dimensional correlation spectroscopy:applications in vibrational and optical spectroscopy.2004, West Sussex:John Wiley&Sons.
    [22]Noda I., Recent advancement in the field of two-dimensional correlation spectroscopy. Journal of Molecular Structure,2008,883,2-26.
    [23]Noda I., Two-dimensional correlation analysis useful for spectroscopy, chromatography, and other analytical measurements. Analytical Sciences, 2007,23,139-146.
    [24]Noda I., Progress in two-dimensional (2D) correlation spectroscopy. Journal of Molecular Structure,2006,799,2-15.
    [25]Tang B.B., Wu P.Y., and Siesler H.W., In situ study of diffusion and interaction of water and mono-or divalent anions in a positively charged membrane using two-dimensional correlation FT-IR/Attenuated total reflection Spectroscopy. Journal of Physical Chemistry B,2008,112,2880-2887.
    [26]Shen Y. and Wu P.Y., Two-dimensional ATR-FTIR spectroscopic investigation on water diffusion in polypropylene film:Water bending vibration. Journal of Physical Chemistry B,2003,107,4224-4226.
    [27]Peng Y., Wu P.Y., and Siesler H.W., Two-dimensional/ATR infrared correlation spectroscopic study on water diffusion in a poly(epsilon-caprolactone) matrix. Biomacromolecules,2003,4,1041-1044.
    [28]Guo Y.L. and Wu P.Y., Investigation of the hydrogen-bond structure of cellulose diacetate by two-dimensional infrared correlation spectroscopy. Carbohydrate Polymers,2008,74,509-513.
    [29]Peng X.N., Shao Z.Z., Chen X., Knight D.P., Wu P.Y., and Vollrath F., Further investigation on potassium-induced conformation transition of Nephila spidroin film with two-dimensional infrared correlation spectroscopy. Biomacromolecules,2005,6,302-308.
    [30]Shen Y., Chen E.Q., Ye C., Zhang H.L., Wu P.Y., Noda I., and Zhou Q.F., Liquid-crystalline phase development of a mesogen-jacketed polymer Application of two-dimensional infrared correlation analysis. Journal of Physical Chemistry B,2005,109,6089-6095.
    [31]Sun S.T., Tang H., Wu P.Y., and Wan X.H., Supramolecular self-assembly nature of a novel thermotropic liquid crystalline polymer containing no conventional mesogens. Physical Chemistry Chemical Physics,2009,11, 9861-9870.
    [32]Sun S.T., Tang H., and Wu P.Y., Interpretation of Carbonyl Band Splitting Phenomenon of a Novel Thermotropic Liquid Crystalline Polymer without Conventional Mesogens:Combination Method of Spectral Analysis and Molecular Simulation. Journal of Physical Chemistry B,2010,114, 3439-3448.
    [33]Li W.Z. and Wu P.Y., Study on the Crystalline Structure Transition of Syndiotactic Polystyrene Film During Heat Treatment by Two-Dimensional Infrared Correlation Spectroscopy. Applied Spectroscopy,2009,63,926-931.
    [34]Yu J. and Wu P.Y., Crystallization process of poly (epsilon-caprolactone)-poly (ethylene oxide)-poly (epsilon-caprolactone) investigated by infrared and two-dimensional infrared correlation spectroscopy. Polymer,2007,48, 3477-3485.
    [35]Lojewska J., Miskowiec P., Lojewski T., and Proniewicz L.M., Cellulose oxidative and hydrolytic degradation:In situ FTIR approach. Polymer Degradation and Stability,2005,88,512-520.
    [36]吴瑾光,近代傅里叶变换红外光谱与技术.1994,北京:科学技术文献出版社.
    [37]Morita S., Shinzawa H., Noda I., and Ozaki Y., Perturbation-correlation moving-window two-dimensional correlation spectroscopy. Applied Spectroscopy,2006,60,398-406.
    [38]Watanabe A., Morita S., and Ozaki Y., Temperature-dependent structural changes in hydrogen bonds in microcrystalline cellulose studied by infrared and near-infrared spectroscopy with perturbation-correlation moving-window two-dimensional correlation analysis. Applied Spectroscopy,2006,60, 611-618.
    [39]Mann S., Molecular Recognition in Biomineralization. Nature,1988,332, 119-124.
    [40]Sommerdijk N.A.J.M. and de With G., Biomimetic CaCO3 Mineralization using Designer Molecules and Interfaces. Chemical Reviews,2008,108, 4499-4550.
    [41]Harding J.H., Duffy D.M., Sushko M.L., Rodger P.M., Quigley D., and Elliott J.A., Computational Techniques at the Organic-Inorganic Interface in Biomineralization. Chemical Reviews,2008,108,4823-4854.
    [1]余启斯,基于超临界和高压二氧化碳技术制备多种天然高分子/无机物复合材料的研究.2009,复旦大学硕士学位论文.
    [2]Addadi L., Joester D., Nudelman F., and Weiner S., Mollusk shell formation:A source of new concepts for understanding biomineralization processes. Chemistry-a European Journal,2006,12,981-987.
    [3]Levi-Kalisman Y., Falini G., Addadi L., and Weiner S., Structure of the nacreous organic matrix of a bivalve mollusk shell examined in the hydrated state using Cryo-TEM. Journal of Structural Biology,2001,135,8-17.
    [4]Cheng C., Shao Z.Z., and Vollrath F., Silk fibroin-regulated crystallization of calcium carbonate. Advanced Functional Materials,2008,18,2172-2179.
    [5]Cheng C., Yang Y.H., Chen X., and Shao Z.Z., Templating effect of silk fibers in the oriented deposition of aragonite. Chemical Communications,2008, 5511-5513.
    [6]Jin H.J. and Kaplan D.L., Mechanism of silk processing in insects and spiders. Nature,2003,424,1057-1061.
    [7]Shao Z.Z. and Vollrath F., Materials:Surprising strength of silkworm silk. Nature,2002,418,741-741.
    [8]Hardy J.G., Romer L.M., and Scheibel T.R., Polymeric materials based on silk proteins. Polymer,2008,49,4309-4327.
    [9]Chen X., Knight D.P., and Shao Z.Z., beta-turn formation during the conformation transition in silk fibroin. Soft Matter,2009,5,2777-2781.
    [10]Chen X., Shao Z.Z., Knight D.P., and Vollrath F., Conformation transition kinetics of Bombyx mori silk protein. Proteins-Structure Function and Bioinformatics,2007,68,223-231.
    [11]Zhou L., Chen X., Shao Z.Z., Huang Y.F., and Knight D.P., Effect of metallic ions on silk formation the mulberry silkworm, Bombyx mori. Journal of Physical Chemistry B,2005,109,16937-16945.
    [12]Zhou L., Chen X., Shao Z.Z., Zhou P., Knight D.P., and Vollrath F., Copper in the silk formation process of Bombyx mori silkworm. Febs Letters,2003,554, 337-341.
    [13]Chen X., Zhou L., Shao Z.Z., Zhou P., Knight D.P., and Vollrath F., Conformation transition of silk protein membranes monitored by time-resolved FT-IR spectroscopy-Conformation transition behavior of regenerated silk fibroin membranes in alcohol solution at high concentrations. Acta Chimica Sinica,2003,61,625-629.
    [14]McGrath K., Kaplan, D., Protein-Based Materials.1996, Boston:Birkhauser Press.
    [15]Zhou G.Q., Shao Z.Z., Knight D.P., Yan J.P., and Chen X., Silk Fibers Extruded Artificially from Aqueous Solutions of Regenerated Bombyx mori Silk Fibroin are Tougher than their Natural Counterparts. Advanced Materials, 2009,21,366-370.
    [16]Hu X., Kaplan D., and Cebe P., Dynamic protein-water relationships during beta-sheet formation. Macromolecules,2008,41,3939-3948.
    [17]Hu X., Kaplan D., and Cebe P., Effect of water on the thermal properties of silk fibroin. Thermochimica Acta,2007,461,137-144.
    [18]Hu X., Kaplan D., and Cebe P., Determining beta-sheet crystallinity in fibrous proteins by thermal analysis and infrared spectroscopy. Macromolecules,2006, 39,6161-6170.
    [19]Monti P., Taddei P., Freddi G., Asakura T., and Tsukada M., Raman spectroscopic characterization of Bombyx mori silk fibroin:Raman spectrum of Silk Ⅰ. Journal of Raman Spectroscopy,2001,32,103-107.
    [20]Mo C.L., Wu P.Y., Chen X., and Shao Z.Z., Near-infrared characterization on the secondary structure of regenerated Bombyx mori silk fibroin. Applied Spectroscopy,2006,60,1438-1441.
    [21]Tanaka T., Kobayashi M., Inoue S.I., Tsuda H., and Magoshi J., Biospinning: Change of water contents in drawn silk. Journal of Polymer Science Part B-Polymer Physics,2003,41,274-280.
    [22]Mo C.L., Wu P.Y., Chen X., and Shao Z.Z., The effect of water on the conformation transition of Bombyx mori silk fibroin. Vibrational Spectroscopy, 2009,51,105-109.
    [23]Peng X.N., Chen X., Wu P.Y., and Shao Z.Z., Investigation on the conformation transition of regenerated silk fibroin films under thermal treatment by two-dimensional (2D) correlation FT-IR spectroscopy. Acta Chimica Sinica,2004,62,2127-2130.
    [24]Kajimoto O., Solvation in supercritical fluids:Its effects on energy transfer and chemical reactions. Chemical Reviews,1999,99,355-389.
    [25]Guadagno T. and Kazarian S.G., High-pressure CO2-expanded solvents: Simultaneous measurement of CO2 sorption and swelling of liquid polymers with in-situ near-IR spectroscopy. Journal of Physical Chemistry B,2004,108, 13995-13999.
    [26]Striolo A., Favaro A., Elvassore N., Bertucco A., and Di Noto V., Evidence of conformational changes for protein films exposed to high-pressure CO2 by FT-IR spectroscopy. Journal of Supercritical Fluids,2003,27,283-295.
    [27]Brantley N.H., Kazarian S.G., and Eckert C.A., In situ FTIR measurement of carbon dioxide sorption into poly(ethylene terephthalate) at elevated pressures. Journal of Applied Polymer Science,2000,77,764-775.
    [28]Vitoux P., Tassaing T., Cansell F., Marre S., and Aymonier C., In Situ IR Spectroscopy and Ab Initio Calculations To Study Polymer Swelling by Supercritical CO2. Journal of Physical Chemistry B,2009,113,897-905.
    [29]Iwai Y., Tanabe D., Yamamoto M., Nakajima T., Uno M., and Arai Y., FT-IR study on interactions between solutes and entrainers in supercritical carbon dioxide. Fluid Phase Equilibria,2002,193,203-216.
    [30]Nalawade S.P., Picchioni F., Marsman J.H., and Janssen L.P.B.M., The FT-IR studies of the interactions of CO2 and polymers having different chain groups. Journal of Supercritical Fluids,2006,36,236-244.
    [31]Kazarian S.G., Vincent M.F., Bright F.V., Liotta C.L., and Eckert C.A., Specific intermolecular interaction of carbon dioxide with polymers. Journal of the American Chemical Society,1996,118,1729-1736.
    [32]Kazarian S.G. and Martirosyan G.G., Spectroscopy of polymer/drug formulations processed with supercritical fluids:in situ ATR-IR and Raman study of impregnation of ibuprofen into PVP. International Journal of Pharmaceutics,2002,232,81-90.
    [33]Peng Q., Xu Q., Xu H.Y., Pang M.Z., Li J.B., and Sun D.F., Supercritical CO2-assisted synthesis of poly(acrylic acid) Antheraea pernyi SF blend. Journal of Applied Polymer Science,2005,98,864-868.
    [34]Peng Q., Xu Q., Sun D.F., and Sha Z.Z., Grafting of methyl methacrylate onto Antheraea pernyi silk fiber with the assistance of Supercritical CO2. Journal of Applied Polymer Science,2006,100,1299-1305.
    [35]Li B., Li L., Zhao L., and Yuan W.K., In situ FT-IR spectroscopic study on the conformational changes of isotactic polypropylene in the presence of supercritical CO2. European Polymer Journal,2008,44,2619-2624.
    [36]Noda I and Y O., Two-Dimensional correlation spectroscopy:applications in vibrational and optical spectroscopy.2004, West Sussex:John Wiley&Sons.
    [37]Reinstadler D., Fabian H., Backmann J., and Naumann D., Refolding of thermally and urea-denatured ribonuclease A monitored by time-resolved FTIR spectroscopy. Biochemistry,1996,35,15822-15830.
    [38]Backmann J., Schultz C., Fabian H., Hahn U., Saenger W., and Naumann D., Thermally induced hydrogen exchange processes in small proteins as seen by FTIR spectroscopy. Proteins-Structure Function and Genetics,1996,24, 379-387.
    [39]Raveendran P. and Wallen S.L., Cooperative C-H center dot center dot center dot O hydrogen bonding in CO2-Lewis base complexes:Implications for solvation in supercritical CO2. Journal of the American Chemical Society, 2002,124,12590-12599.
    [40]韩布兴,超临界流体科学与技术.2005,北京,中国石化出版社.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700