用户名: 密码: 验证码:
零价铁强化厌氧废水处理的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧生物处理技术由于其在降解污染物的同时能够产生可利用的能源,被广泛地应用于废水的处理过程。其中,颗粒污泥的形成是上流式厌氧污泥床反应器的主要特征,因为其具有较高的生物处理能力。但是污泥颗粒化需要较长的时间,因而关于强化这一过程的方法被广泛研究。同时,厌氧断裂偶氮键在处理印染废水时展现出了经济和环境友好性,但是在处理较高浓度的染料废水时,其性能会大幅下降。另外,水解酸化作为一种厌氧预处理手段,在实际应用时也面临着处理效果较差的难题。而零价铁作为一种较好的还原剂,通过强化厌氧氛围来提高厌氧消化的处理效果在本课题中被相应研究。根据本课题的实验研究和理论分析,可以得出如下结论:
     1、电场强化的内置零价铁厌氧反应器能够加快厌氧颗粒化进程。实验在三个平行的反应器中进行:电场强化的内置零价铁厌氧反应器(R1)、零价铁厌氧反应器(R2)以及普通的厌氧反应器(R3)。当1.4 V的电压作用于R1时,在接下来的4天里其COD去除率由60.3%上升到90.7%,同时38天内颗粒粒径由151.4μm增长到695.1μm。R2和R3中的COD去除率以及粒径的增加都要比R1小。电场使得零价铁的缓冲作用得到增强,并促使反应器内保持较低的氧化还原电位。除此之外,电场增加了二价铁离子的溶出和胞外聚合物的产量。这些都是有利于甲烷化以及颗粒化作用的。扫描电子显微镜照片表明R1中的颗粒污泥内外微生物分布不同。荧光原位杂交实验显示出R1中的产甲烷菌的相对丰度明显高于R2和R3反应器。以上的结果说明电场和零价铁的耦合作用能够有效地促进污泥颗粒化。
     2、电场强化的内置零价铁厌氧反应器可以提高印染废水处理效果。实验在三个平行的反应器中进行:电场强化的内置零价铁厌氧反应器(R1)、零价铁厌氧反应器(R2)以及普通的厌氧反应器(R3)。电场强化的内置零价铁厌氧反应器R1具有最高的COD和色度去除率。提高施加电压可以增强R1的处理效果。扫描电子显微镜照片表明处理高浓度的染料废水后R1中的颗粒污泥仍然保持完整结实的结构,但是R3中的颗粒污泥则已经破碎。荧光原位杂交实验证明R1中的产甲烷菌丰度明显高于R2和R3。变形凝胶电泳显示电场和零价铁的耦合作用增加了微生物种群的结构,特别是对厌氧脱色起关键作用的菌群。
     3、铁粉投加到水解酸化反应器从而强化该段作用被研究。结果表明,铁粉投加能明显提高水解酸化的效率。当水力停留时间从6 h降低到2 h时,在投加铁粉的水解酸化反应器(A1),COD去除率和酸化度分别较好地稳定在45%至56%和84%至91%之间,而参比反应器(A2)表现则分别明显地从45%下降到25%和从65%下降到30%。铁粉可以优化产酸类型,减少乙酸化较困难的丙酸的形成。铁粉的加入使水解酸化反应器A1中的丙酸占总挥发性脂肪酸的比例降低14%-20%,而乙酸和丁酸的含量则分别增加8%-11%和6%-9%。以上这些作用促进了反应器A1后续的甲烷化处理过程,而反应器A2后续的甲烷化过程中却发现了较高浓度的丙酸积累。铁粉使铁氧还蛋白的活性增加了17倍,这有助于加快产酸过程;荧光原位杂交实验证实,铁粉的加入使水解酸化反应器的产乙酸菌丰度明显提高,这与反应器中较高的乙酸含量的结果相一致。铁粉对水解酸化的强化效应,可对于降低后续处理负荷、形成更有利的有机酸形式起明显作用,有望在废水的预处理、两相厌氧发酵乃至污泥发酵中得到更有效的应用。
Anaerobic digestion (AD) of organic matters is a widely used technology in the efficient treatment of organic waste and the simultaneous generation of renewable energy source. With respect to Upflow anaerobic sludge blanket (UASB), the presence of granular sludge is a major characteristic of anaerobic reactor, which leads to high biodegradation efficiency. However, sludge granulation is a long-term process that generally takes three to eight months. Efforts need to enhance this process. Also, anaerobic reduction of azo linkages (-N=N-) present economical and environmentally friendly ways to remove dyes from wastewaters, but the performance gets worse under high azo dye concentrations. In addition, anaerobic pretreatment, i.e., acidification often presents low performance in practical process and needs to be enhanced. Therefore, zero valent iron (ZVI), a reducing agent, is used to enhancing these processes at the aim of helping create an enhanced anaerobic environment that may improve the performance of anaerobic digsetion due to its reductive property. According to the experimental study and theoretical analysis, we can draw the following conclusions:
     1. A zero valent iron (ZVI) bed with a pair of electrodes was installed in an upflow anaerobic sludge blanket (UASB) reactor to create an enhanced condition to increase the rate of anaerobic granulation. The effects of an electric field and ZVI on granulation were investigated in three UASB reactors operated in parallel:an electric field enhanced ZVI-UASB reactor (reactor R1), a ZVI-UASB reactor (reactor R2) and a common UASB reactor (reactor R3). When a voltage of 1.4 V was supplied to reactor R1, COD removal dramatically increased from 60.3% to 90.7% over the following four days, while the mean granule size rapidly grew from 151.4μm to 695.1μm over the following 38 days. Comparatively, COD removal was lower and the increase in granule size was slower in the other two reactors (in the order:R1>R2>R3). The electric field caused the ZVI to more effectively buffer acidity and maintain a relatively low oxidation-reduction potential in the reactor. In addition, the electric field resulted in a significant increase in ferrous ion leaching and extracellular polymeric substances (EPS) production. These changes benefited methanogenesis and granulation. Scanning electron microscopy (SEM) images showed that different microorganisms were dominant in the external and internal layers of the reactor R1 granules. Additionally, fluorescence in situ hybridization (FISH) analysis indicated that the relative abundance of methanogens in reactor R1 was significantly greater than in the other two reactors. Taken together, these results suggested that the use of ZVI combined with an electric field in an UASB reactor could effectively enhance the sludge granulation.
     2. A zero valent iron (ZVI) bed with a pair of electrodes was packed in an anaerobic reactor aiming at enhancing treatment of azo dye wastewater. The experiments were carried out in three reactors operated in parallel:an electric field enhanced ZVI-anaerobic reactor (R1), a ZVI-anaerobic reactor (R2) and a common anaerobic reactor (R3). R1 presented the highest performance in removal of COD and color. Raising voltage in R1 further improved its performance. Scanning electron microscopy images displayed that the structure of granular sludge from R1 was intact after being fed with the high dye concentration, while that of R3 was broken. Fluorescence in situ hybridization analysis indicated that the abundance of methanogens in R1 was significantly greater than that in the other two reactors. Denaturing gradient gel electrophoresis showed that the coupling of electric field and ZVI increased the diversity of microbial community and especially enhanced bacterial strains responsible for decolorization.
     3. A novel strategy for enhancing anaerobic wastewater treatment via dosing Fe0 powder in acidification reactor was reported in this study. Experimental results showed that Fe0 powder dosed efficiently improved the acidification performance. Acidification reactor with Fe0 dosed (Al) presented higher and more stable performances in COD removal (ranging from 45% to 56%) and the degree of acidification (ranging from 84% to 91%) when lowering the HRT from 6 h to 2 h; however, those of the reference reactor without Fe0 (A2) significantly declined from 45% to 25% and 65% to 30%, respectively. Fe0 dosed could help optimize fermentation type, especially decreasing propionate which was lower in acetification as compared with butyrate. Reactor A1 presented 14%-20% less of propionate composition, but 8%-11% and 6%-9% more of acetate and butyrate composition respectively than reactor A2. Fe0 dosed improved 17-fold of the activity of pyruvate-ferredoxin oxidoreductase which is a crucial enzyme in the hydrolysis/fermentation, leading to an enhanced acidogenesis. Fuorescence in situ hybridization analysis indicated that Fe0 dosed increased the abundance of acidogens, and especially acetogens, coincident with higher acetate production. These effects facilitated the following methanogenic performance. Therefore, the Fe0 enhanced acidification is helpful to form the favorable fermentation type and low the subsequent treatment loading, which is expected to broadly apply in wastewater pretreatment, two-stage anaerobic digestion and even waste sludge fermentation.
引文
[1]Masse D I, Droste R L. Comprehensive model of anaerobic digestion of swine manure slurry in a sequencing batch reactor. Water Research [J],2000,34(12):3087-3106.
    [2]Marchaim U, Krause C. Propionic to Acetic-Acid Ratios in Overloaded Anaerobic-Digestion. Bioresource Technology [J],1993,43(3):195-203.
    [3]Tiwari M K, Guha S, Harendranath C S, et al. Influence of extrinsic factors on granulation in UASB reactor. Applied Microbiology and Biotechnology [J],2006,71(2):145-154.
    [4]Ghangrekar M M, Asolekar S R, Joshi S G. Characteristics of sludge developed under different loading conditions during UASB reactor start-up and granulation. Water Research [J],2005,39(6):1123-1133.
    [5]Hickey R F, Wu W M, Veiga M C, et al. Start-up, Operation, Monitoring and Control of High-Rate Anaerobic Treatment Systems. Water Science and Technology [J],1991,24(8):207-255.
    [6]Pol L W H, Dezeeuw W J, Velzeboer C T M, et al. Granulation in Uasb-Reactors. Water Science and Technology [J],1983,15(8-9):291-304.
    [7]Arcand Y, Guiot S R, Desrochers M, et al. Impact of the Reactor Hydrodynamics and Organic Loading on the Size and Activity of Anaerobic Granules. Chemical Engineering Journal and the Biochemical Engineering Journal [J],1994,56(1):B23-B35.
    [8]ElMamouni R, Leduc R, Guiot S R. Influence of the starting microbial nucleus type on the anaerobic granulation dynamics. Applied Microbiology and Biotechnology [J],1997,47(2):189-194.
    [9]Lettinga G, Deman A, Vanderlast A R M, et al. Anaerobic Treatment of Domestic Sewage and Waste-Water. Water Science and Technology [J],1993,27(9):67-73.
    [10]Mahoney E M, Varangu L K, Cairns W L, et al. The Effect of Calcium on Microbial Aggregation during Uasb Reactor Start-Up. Water Science and Technology [J],1987,19(1-2):249-260.
    [11]Pol L W H, Lopes S I D, Lettinga G, et al. Anaerobic sludge granulation. Water Research [J],2004,38(6):1376-1389.
    [12]Liu Y, Xu H L, Yang S F, et al. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor. Water Research [J],2003,37(3):661-673.
    [13]Schmidt J E, Ahring B K. Effects of Magnesium on Thermophilic Acetate-Degrading Granules in Upflow Anaerobic Sludge Blanket (Uasb) Reactors. Enzyme and Microbial Technology [J],1993,15(4):304-310.
    [14]Yu H Q, Tay J H, Fang H H P. The roles of calcium in sludge granulation during UASB reactor start-up. Water Research [J],2001,35 (4):1052-1060.
    [15]Teo K C, Xu H L, Tay J H. Molecular mechanism of granulation. II:Proton translocating activity. Journal of Environmental Engineering-Asce [J],2000,126(5):411-418.
    [16]Yu H Q, Fang H H P, Tay J H. Enhanced sludge granulation in upflow anaerobic sludge blanket (UASB) reactors by aluminum chloride. Chemosphere [J],2001,44(1):31-36.
    [17]Zita A, Hermansson M. Effects of Ionic-Strength on Bacterial Adhesion and Stability of Flocs in a Waste-Water Activated-Sludge System. Applied and Environmental Microbiology [J],1994,60(9):3041-3048.
    [18]Rudd T, Sterritt R M, Lester J N. Complexation of Heavy-Metals by Extracellular Polymers in the Activated-Sludge Process. Journal Water Pollution Control Federation [J],1984,56 (12):1260-1268.
    [19]Vlyssides A, Barampouti E M, Mai S. Influence of ferrous iron on the granularity of a UASB reactor. Chemical Engineering Journal [J],2009,146(1):49-56.
    [20]Schmidt J E, Ahring B K. Extracellular Polymers in Granular Sludge from Different Upflow Anaerobic Sludge Blanket (Uasb) Reactors. Applied Microbiology and Biotechnology [J],1994,42(2-3):457-462.
    [21]Cammarota M C, Sant'Anna G L. Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation. Biotechnology Letters [J],1998,20(1):1-4.
    [22]Schmidt J E, Ahring B K. Granular sludge formation in upflow anaerobic sledge blanket (UASB) reactors. Biotechnology and Bioengineering [J],1996,49(3):229-246.
    [23]Shen C F, Kosaric N, Blaszczyk R. The Effect of Selected Heavy-Metals (Ni, Co and Fe) on Anaerobic Granules and Their Extracellular Polymeric Substance (Eps). Water Research [J],1993,27(1):25-33.
    [24]Chen J, Lun S Y. Study on Mechanism of Anaerobic Sludge Granulation in Uasb Reactors. Water Science and Technology [J],1993,28(7):171-178.
    [25]Macleod F A, Guiot S R, Costerton J W. Layered Structure of Bacterial Aggregates Produced in an Upflow Anaerobic Sludge Bed and Filter Reactor. Applied and Environmental Microbiology [J],1990,56(6):1598-1607.
    [26]Guiot S R, Pauss A, Costerton J W. A Structured Model of the Anaerobic Granule Consortium. Water Science and Technology [J],1992,25(7):1-10.
    [27]Correia V M, Stephenson T, Judd S J. Characterization of Textile Wastewaters-a Review. Environmental Technology [J],1994,15(10):917-929.
    [28]Somasiri W, Li X F, Ruan W Q, et al. Evaluation of the efficacy of upflow anaerobic sludge blanket reactor in removal of colour and reduction of COD in real textile wastewater. Bioresource Technology [J],2008,99(9):3692-3699.
    [29]Banat I M, Nigam P, Singh D, et al. Microbial decolorization of textile-dye-containing effluents:A review. Bioresource Technology [J],1996,58(3):217-227.
    [30]Delee W, O' Neill C, Hawkes F R, et al. Anaerobic treatment of textile effluents:A review. Journal of Chemical Technology and Biotechnology [J],1998,73(4):323-335.
    [31]Zhou T, Lu X H, Wang J, et al. Rapid decolorization and mineralization of simulated textile wastewater in a heterogeneous Fenton like system with/without external energy. Journal of Hazardous Materials [J],2009,165 (1-3):193-199.
    [32]Pazdzior K, Klepacz-Smolka A, Ledakowicz S, et al. Integration of nanofiltration and biological degradation of textile wastewater containing azo dye. Chemosphere [J],2009,75 (2):250-255.
    [33]Korbahti. B K, Tanyolac A. Electrochemical treatment of simulated textile wastewater with industrial components and Levafix Blue CA reactive dye:Optimization through response surface methodology. Journal of Hazardous Materials [J],2008,151(2-3):422-431.
    [34]dos Santos A B, Cervantes F J, van Lier J B. Review paper on current technologies for decolourisation of textile wastewaters:Perspectives for anaerobic biotechnology. Bioresource Technology [J],2007,98(12):2369-2385.
    [35]Lu X J, Yang B, Chen J H, et al. Treatment of wastewater containing azo dye reactive brilliant red X-3B using sequential ozonation and upflow biological aerated filter process. Journal of Hazardous Materials [J],2009,161 (1):241-245.
    [36]Scott J P, Ollis D F. Integration of chemical and biological oxidation processes for water treatment:Review and recommendations. Environmental Progress [J],1995,14(2):88-103.
    [37]Kapdan I K, Alparslan S. Application of anaerobic-aerobic sequential treatment system to real textile wastewater for color and COD removal. Enzyme and Microbial Technology [J],2005,36(2-3):273-279.
    [38]Yang Q X, Li C M, Li H J, et al. Degradation of synthetic reactive azo dyes and treatment of textile wastewater by a fungi consortium reactor. Biochemical Engineering Journal [J],2009,43(3):225-230.
    [39]Georgiou D, Metallinou C, Aivasidis A, et al. Decolorization of azo-reactive dyes and cotton-textile wastewater using anaerobic digestion and acetate-consuming bacteria. Biochemical Engineering Journal [J],2004,19(1):75-79.
    [40]Razo-Flores E, Luijten M, Donlon B, et al. Biodegradation of selected azo dyes under methanogenic conditions. Water Science and Technology [J],1997,36(6-7):65-72.
    [41]Talarposhti A M, Donnelly T, Anderson G K. Colour removal from a simulated dye wastewater using a two-phase anaerobic packed bed reactor. Water Research [J],2001,35(2):425-432.
    [42]Manu B, Chaudhari S. Anaerobic decolorisation of simulated textile wastewater containing azo dyes. Bioresource Technology [J],2002,82(3):225-231.
    [43]O' Neill C, Hawkes F R, Hawkes D L, et al. Anaerobic-aerobic biotreatment of simulated textile effluent containing varied ratios of starch and azo dye. Water Research [J],2000,34 (8):2355-2361.
    [44]Manu B, Chaudhari S. Decolorization of indigo and azo dyes in semicontinuous reactors with long hydraulic retention time. Process Biochemistry [J],2003,38(8):1213-1221.
    [45]Isik M, Sponza D T. Effects of alkalinity and co-substrate on the performance of an upflow anaerobic sludge blanket (UASB) reactor through decolorization of Congo Red azo dye. Bioresource Technology [J],2005,96(5):633-643.
    [46]Wijetunga S, Li X F, Jian C. Effect of organic load on decolourization of textile wastewater containing acid dyes in upflow anaerobic sludge blanket reactor. Journal of Hazardous Materials [J],2010,177(1-3):792-798.
    [47]安虎仁,钱易.厌氧条件下染料的生物降解性能与染料废水处理的研究.化工环保[J],1994,14(4):200-204.
    [48]刘建荣,吴国庆.磁态厌氧流化床处理印染废水.中国环境科学[J],1996,16(1):64-67.
    [49]Liu Y C, Whitman W B. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Incredible Anaerobes:From Physiology to Genomics to Fuels [J],2008,1125:171-189.
    [50]Ahring B K, Westermann P. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture. Applied and Environmental Microbiology [J],1987,53(2):434-439.
    [51]Kaspar H F, Wuhrmann K. Product Inhibition in Sludge Digestion. Microbial Ecology [J],1978,4 (3):241-248.
    [52]McCarty P L, Smith D P. Anaerobic wastewater treatment. Environmental science & technology [J],1986,20(12):1200-1206.
    [53]Hanaki K, Hirunmasuwan S, Matsuo T. Protection of Methanogenic Bacteria from Low Ph and Toxic Materials by Immobilization Using Polyvinyl-Alcohol. Water Research [J],1994,28(4):877-885.
    [54]Hanaki K, Hirunmasuwan S, Matsuo T. Selective Use of Microorganisms in Anaerobic Treatment Processes by Application of Immobilization. Water Research [J],1994,28(4):993-996.
    [55]Yu H Q, Fang H H P. Acidogenesis of gelatin-rich wastewater in an upflow anaerobic reactor:influence of pH and temperature. Water Research [J],2003,37(1):55-66.
    [56]Fang H H P, Yu H Q. Effect of HRT on mesophilic acidogenesis of dairy wastewater. Journal of Environmental Engineering-Asce [J],2000,126(12):1145-1148.
    [57]De La Rubia M A, Raposo F, Rincon B, et al. Evaluation of the hydrolytic-acidogenic step of a two-stage mesophilic anaerobic digestion process of sunflower oil cake. Bioresource Technology [J],2009,100(18):4133-4138.
    [58]Flury B, Frommer J, Eggenberger U, et al. Assessment of Long-Term Performance and Chromate Reduction Mechanisms in a Field Scale Permeable Reactive Barrier. Environmental Science & Technology [J],2009,43(17):6786-6792.
    [59]Ma L M, Zhang W X. Enhanced biological treatment of industrial wastewater with bimetallic zero-valent iron. Environmental Science & Technology [J],2008,42(15):5384-5389.
    [60]肖羽堂.铁屑强化传统工艺处理难讲解印染废水实践.给水排水[J],1998,24(4):37-39.
    [61]蔡天明.微电解-水解酸化/接触氧化工艺处理染料废水的研究.环境工程[J],1999,17(4):27-30.
    [62]赵永才,孙又山,王玉树.微电解法脱除水溶性染料废水色度的研究.环境污染与防治[J],1994,16(1):18-21.
    [63]杨凤林,全燮,高桂英.铁屑过滤法处理染料废水的研究.化工环保[J],1988,8(6):330-332.
    [64]Zhang Y B, Jing Y W, Quan X, et al. A built-in zero valent iron anaerobic reactor to enhance treatment of azo dye wastewater. Water Science and Technology [J],2011,63(4):741-746.
    [65]Zhang Y B, Jing Y W, Zhang J X, et al. Performance of a ZVI-UASB reactor for azo dye wastewater treatment. Journal of Chemical Technology and Biotechnology [J],2011,86(2):199-204.
    [66]李勇,朱又春,林美强.电解絮凝-生物炭滤池法处理印染废水.环境污染治理技术与设备[J],2003,4(2):29-32.
    [67]Yetilmezsoy K, Ilhan F, Sapci-Zengin Z, et al. Decolorization and COD reduction of UASB pretreated poultry manure wastewater by electrocoagulation process:A post-treatment study. Journal of Hazardous Materials [J],2009,162 (1):120-132.
    [68]Cheng H F, Xu W P, Liu J L, et al. Pretreatment of wastewater from triazine manufacturing by coagulation, electrolysis, and internal microelectrolysis. Journal of Hazardous Materials [J],2007,146(1-2):385-392.
    [69]杨卫身,周集体,杨凤林.微电解法处理印染废水的研究.上海环境科学[J],1996,15(7):30-32.
    [70]Wu J H, Liu W T, Tseng I C, et al. Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology-Uk[J],2001,147:373-382.
    [71]Zhang P, Chen Y G, Zhou Q, et al. Understanding Short-Chain Fatty Acids Accumulation Enhanced in Waste Activated Sludge Alkaline Fermentation:Kinetics and Microbiology. Environmental Science & Technology [J],2010,44(24):9343-9348.
    [72]Hansen K H, Ahring B K, Raskin L. Quantification of syntrophic fatty acid-beta-oxidizing bacteria in a mesophilic biogas reactor by oligonucleotide probe hybridization. Applied and Environmental Microbiology [J],1999,65(11):4767-4774.
    [73]Harmsen H J M, Kengen H M P, Akkermans A D L, et al. Detection and localization of syntrophic propionate-oxidizing bacteria in granular sludge by in situ hybridization using 16S rRNA-based oligonucleotide probes. Applied and Environmental Microbiology[J],1996,62(5):1656-1663.
    [74]Harmsen H J M, Akkermans A D L, Stams A J M, et al. Population dynamics of propionate-oxidizing bacteria under methanogenic and sulfidogenic conditions in anaerobic granular sludge. Applied and Environmental Microbiology [J],1996,62(6):2163-2168.
    [75]Lakay F M, Botha A, Prior B A. Comparative analysis of environmental DNA extraction and purification methods from different humic acid-rich soils. Journal of Applied Microbiology [J],2007,102(1):265-273.
    [76]Zhao Y X, Chen Y G, Zhang D, et al. Waste Activated Sludge Fermentation for Hydrogen Production Enhanced by Anaerobic Process Improvement and Acetobacteria Inhibition: The Role of Fermentation pH. Environmental Science & Technology [J],2010,44(9):3317-3323.
    [77]Seghezzo L, Zeeman G, van Lier J B, et al. A review:The anaerobic treatment of sewage in UASB and EGSB reactors. Bioresource Technology.[J],1998,65(3):175-190.
    [78]Yu H Q, Fang H H P, Tay J H. Effects of Fe2+ on sludge granulation in upflow anaerobic sludge blanket reactors. Water Science and Technology [J],2000,41 (12):199-205.
    [79]Thrash J C, Coates J D. Review:Direct and indirect electrical stimulation of microbial metabolism. Environmental Science & Technology [J],2008,42(11):3921-3931.
    [80]Schlegel H G, Lafferty R. Growth of Knallgas Bacteria (Hydrogenomonas) Using Direct Electrolysis of Culture Medium. Nature [J],1965,205(4968):308-&.
    [81]Islam S, Suidan M T. Electrolytic denitrification:Long term performance and effect of current intensity. Water Research [J],1998,32(2):528-536.
    [82]Chaudhuri S K, Lovley D R. Electricity generation by direct oxidation of glucose in mediatorless microbial fuel cells. Nature Biotechnology [J],2003,21(10):1229-1232.
    [83]Logan B E, Hamelers B, Rozendal R A, et al. Microbial fuel cells:Methodology and technology. Environmental Science & Technology [J],2006,40(17):5181-5192.
    [84]Aulenta F, Canosa A, Majone M, et al. Trichloroethene dechlorination and H-2 evolution are alternative biological pathways of electric charge utilization by a dechlorinating culture in a bioelectrochemical system. Environmental Science & Technology [J],2008,42(16):6185-6190.
    [85]Guiot S R, Cimpoia R, Kuhn R, et al. Electrolytic methanogenic-Methanotrophic coupling for tetrachloroethylene bioremediation:Proof of concept. Environmental Science & Technology [J],2008,42(8):3011-3017.
    [86]Hayes A M, Flora J R V, Khan J. Electrolytic stimulation of denitrification in sand columns. Water Research [J],1998,32(9):2830-2834.
    [87]Son A, Lee J, Chiu P C, et al. Microbial reduction of perchlorate with zero-valent iron. Water Research [J],2006,40(10):2027-2032.
    [88]Oleszkiewicz J A, Sharma V K. Stimulation and Inhibition of Anaerobic Processes by Heavy-Metals-a Review. Biological Wastes [J],1990,31(1):45-67.
    [89]Yu T, Lei Z, Sun D Z. Functions and behaviors of activated sludge extracellular polymeric substances (EPS):a promising environmental interest. Journal of Environmental Sciences-China [J],2006,18(3):420-427.
    [90]Zhou W L, Imai T, Ukita M, et al. Triggering forces for anaerobic granulation in UASB reactors. Process Biochemistry [J],2006,41 (1):36-43.
    [91]Daniels L, Belay N, Rajagopal B S, et al. Bacterial Methanogenesis and Growth from Co2 with Elemental Iron as the Sole Source of Electrons. Science[J],1987,237(4814):509-511.
    [92]Firmino P I M, da Silva M E R, Cervantes F J, et al. Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresource Technology [J],2010,101 (20):7773-7779.
    [93]Costa M C, Mota S, Nascimento R F, et al. Anthraquinone-2,6-disulfonate (AQDS) as a catalyst to enhance the reductive decolourisation of the azo dyes Reactive Red 2 and Congo Red under anaerobic conditions. Bioresource Technology [J],2010,101(1):105-110.
    [94]Panswad T, Iamsamer K, Anotai J. Decolorization of azo-reactive dye by polyphosphate-and glycogen-accumulating organisms in an anaerobic-aerobic sequencing batch reactor. Bioresource Technology [J],2001,76(2):151-159.
    [95]dos Santos A B, de Madrid M P, Stams A J M, et al. Azo dye reduction by mesophilic and thermophilic anaerobic consortia. Biotechnology Progress [J],2005,21(4):1140-1145.
    [96]Tan N C G, Lettinga G, Field J A. Reduction of the azo dye Mordant Orange 1 by methanogenic granular sludge exposed to oxygen. Bioresource Technology [J],1999,67(1):35-42.
    [97]Zhang Y B, An X L, Quan X. Enhancement of sludge granulation in a zero valence iron packed anaerobic reactor with a hydraulic circulation. Process Biochemistry [J],2011,46(2):471-476.
    [98]van der Zee F P, Villaverde S. Combined anaerobic-aerobic treatment of azo dyes-A short review of bioreactor studies. Water Research [J],2005,39(8):1425-1440.
    [99]Bras R, Gomes A, Ferra M I A, et al. Monoazo and diazo dye decolourisation studies in a methanogenic UASB reactor. Journal of Biotechnology [J],2005,115(1):57-66.
    [100]Feijoo G, Soto M, Mendez R, et al. Sodium Inhibition in the Anaerobic-Digestion Process-Antagonism and Adaptation Phenomena. Enzyme and Microbial Technology [J],1995,17(2):180-188.
    [101]Ozkan-Yucel U G, Gokcay C F. Effect of Initial Azo Dye Concentration and Biomass Acclimation on Sludge Digestion and Dye Co-treatment. Clean-Soil Air Water [J],2010,38(4):387-393.
    [102]Karri S, Sierra-Alvarez R, Field J A. Zero valent iron as an electron-donor for methanogenesis and sulfate reduction in anaerobic sludge. Biotechnology and Bioengineering [J],2005,92(7):810-819.
    [103]Bafana A, Chakrabarti T, Krishnamurthi K, et al. Biodiversity and dye decolourization ability of an acclimatized textile sludge. Bioresource Technology [J],2008,99(11):5094-5098.
    [104]Kalyani D C, Patil P S, Jadhav J P, et al. Biodegradation of reactive textile dye Red BLI by an isolated bacterium Pseudomonas sp SUK1. Bioresource Technology [J],2008,99(11):4635-4641.
    [105]Kolekar Y M, Pawar S P, Gawai K R, et al. Decolorization and degradation of Disperse Blue 79 and Acid Orange 10, by Bacillus fusiformis KMK5 isolated from the textile dye contaminated soil. Bioresource Technology [J],2008,99(18):8999-9003.
    [106]Sitte J, Akob D M, Kaufmann C, et al. Microbial Links between Sulfate Reduction and Metal Retention in Uranium-and Heavy Metal-Contaminated Soil. Applied and Environmental Microbiology [J],2010,76(10):3143-3152.
    [107]dos Santos A B, de Madrid M P, de Bok F A M, et al. The contribution of fermentative bacteria and methanogenic archaea to azo dye reduction by a thermophilic anaerobic consortium. Enzyme and Microbial Technology [J],2006,39(1):38-46.
    [108]Speece R E. Anaerobic Biotechnology for Industrial Wastewater-Treatment. Environmental Science & Technology [J],1983,17(9):A416-A427.
    [109]Cohen A, Vangemert J M, Zoetemeyer R J, et al. Main Characteristics and Stoichiometric Aspects of Acidogenesis of Soluble Carbohydrate Containing Wastewaters. Process Biochemistry [J],1984,19(6):228-232.
    [110]Ren N Q, Chua H, Chan S Y, et al. Assessing optimal fermentation type for bio-hydrogen production in continuous-flow acidogenic reactors. Bioresource Technology [J],2007,98(9):1774-1780.
    [111]Wang L, Zhou Q, Li FT. Avoiding propionic acid accumulation in the anaerobic process for biohydrogen production. Biomass & Bioenergy [J],2006,30 (2):177-182.
    [112]Yang K, Yu Y, Hwang S. Selective optimization in thermophilic acidogenesis of cheese-whey wastewater to acetic and butyric acids:partial acidification and methanation. Water Research [J],2003,37(10):2467-2477.
    [113]Ponsa S, Ferrer I, Vazquez F, et al. Optimization of the hydrolytic-acidogenic anaerobic digestion stage (55 degrees C) of sewage sludge:Influence of pH and solid content. Water Research [J],2008,42(14):3972-3980.
    [114]Dinsdale R M, Hawkes F R, Hawkes D L. Mesophilic and thermophilic anaerobic digestion with thermophilic pre-acidification of instant-coffee-production wastewater. Water Research [J],1997,31(8):1931-1938.
    [115]Ucisik A S, Henze M. Biological hydrolysis and acidification of sludge under anaerobic conditions:The effect of sludge type and origin on the production and composition of volatile fatty acids. Water Research [J],2008,42(14):3729-3738.
    [116]Demirel B, Yenigun O. Anaerobic acidogenesis of dairy wastewater:the effects of variations in hydraulic retention time with no pH control. Journal of Chemical Technology and Biotechnology [J],2004,79(7):755-760.
    [117]Ward A J, Hobbs P J, Holliman P J, et al. Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technology [J],2008,99 (17):7928-7940.
    [118]Lv W, Schanbacher F L, Yu Z T. Putting microbes to work in sequence:Recent advances in temperature-phased anaerobic digestion processes. Bioresource Technology [J],2010,101(24):9409-9414.
    [119]Miron Y, Zeeman G, Van Lier J B, et al. The role of sludge retention time in the hydrolysis and acidification of lipids, carbohydrates and proteins during digestion of primary sludge in CSTR systems. Water Research [J],2000,34(5):1705-1713.
    [120]Feng L Y, Chen Y G, Zheng X. Enhancement of Waste Activated Sludge Protein Conversion and Volatile Fatty Acids Accumulation during Waste Activated Sludge Anaerobic Fermentation by Carbohydrate Substrate Addition:The Effect of pH. Environmental Science & Technology [J],2009,43(12):4373-4380.
    [121]Yakunin A F, Hallenbeck P C. Purification and characterization of pyruvate oxidoreductase from the photosynthetic bacterium Rhodobacter capsulatus. Biochimica Et Biophysica Acta-Bioenergetics [J],1998,1409(1):39-49.
    [122]Ueno Y, Fukui H, Goto M. Operation of a two-stage fermentation process producing hydrogen and methane from organic waste. Environmental Science & Technology[J],2007,41(4):1413-1419.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700