用户名: 密码: 验证码:
复合金属氧化物催化剂上的二甲醚催化燃烧研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
我国是一个富煤、缺油的国家,随着经济的发展,环境污染问题也日益突出。因此,寻找低污染的替代能源成为当务之急。随着二甲醚生产技术的成熟,产量的大幅提升,二甲醚凭借低污染,以及良好的燃烧性能,成为替代能源的良好选择,必将在民用燃料和车用燃料领域得到广泛的应用。
     本文选用二甲醚和空气为原料气,考察了二甲醚在Cu-Ce/γ-Al2O3、3%Cu-Ce-La/γ-Al2O3、3% Zr1-xCuxO2-x/γ-Al2O3、Zr1-xCuxO2催化剂以及以介孔γ-Al2O3为载体的5%Cu-Ce/γ-Al2O3催化剂上的催化燃烧活性。结果如下:
     1. Cu-Ce/γ-Al2O3催化剂在二甲醚催化燃烧反应中起主要作用的是Ce和Cu固溶体,固溶体的形成提高了催化剂的催化性能。在该催化剂上二甲醚的氧化产物中没有一氧化碳,氧化完全。
     2.不同负载量的Ce0.1Cu0.9O1.1/γ-Al2O3催化剂上二甲醚催化燃烧结果表明:负载量小于6%时,活性组分和固溶体能很好的分散在载体γ-Al2O3上,催化效果较好。当负载量过大时,影响了活性组分在载体γ-Al2O3上的分散,使得催化性能不再变化,甚至降低。在该类催化剂上,二甲醚氧化产物中都没有一氧化碳。
     3.适量的La掺杂可以提高Ce0.1Cu0.9O1.1/γ-Al2O3催化剂的二甲醚催化燃烧活性。在La0.4-Ce0.1Cu0.9O1.1 /γ-Al2O3催化剂催上,二甲醚催化燃烧化性能最好,其起燃温度(即二甲醚转化率达到10%的温度,记作T10)为235℃,完全转化温度(即二甲醚转化率达到90%的温度,记作T90)为244.8℃。但当温度达到起燃温度后,有一氧化碳生成,二甲醚催化氧化不完全。
     4.以有机小分子为模板剂,硝酸铝为铝源制备的γ-Al2O3为介孔材料。其中以葡萄糖为模板剂制备的γ-Al2O3比表面积和孔体积较大,孔径分布和晶体形态较好。以其作为载体制备的γ-Al2O3-glu催化剂在二甲醚的催化燃烧反应中展现出较好的性能。
     5. 5% La0.4-Ce0.1Cu0.9O1.1/γ-Al2O3-glu催化剂上,二甲醚催化燃烧性能要好于其它催化剂,其起燃温度为220℃,完全转化温度为224℃,产物中有少量一氧化碳生成。经过100h寿命实验,催化剂上DME的转化率未见降低,催化剂稳定性良好。
     6.共沉淀法制备的Zr1-xCuxO2催化剂上,二甲醚催化燃烧起燃温度最低的是Zr0.4Cu0.6O2催化剂,其T10=261.5℃,完全转化温度最低的是Zr0.1Cu0.9O2和Zr0.2Cu0.8O2催化剂上,其T90=279℃。溶胶-凝胶法制备的Zr1-xCuxO2催化剂上,二甲醚的催化燃烧性能最好的是Zr0.3Cu0.7O2催化剂,其起燃温度为255℃,完全转化温度为259.7℃。等体积浸渍法制备的3%Zr1-xCuxO2-x /γ-Al2O3(x=0~0.9)催化剂上,3%Zr0.1Cu0.9O1.1 /γ-Al2O3催化剂上二甲醚的催化燃烧活性最好,其起燃温度为217.8℃,完全转化温度为244.7℃。Zr掺杂使得二甲醚催化燃烧不完全,有较多副产物,尤其一氧化碳生成量较高。
     7.钙钛矿型LaMnO3、CaMnO3和BaMnO3催化剂上二甲醚催化燃烧都较好,其中性能最好的是LaMnO3催化剂,其起燃温度为215.3℃,完全转化温度为219.9℃,但催化剂稳定性较差。
The states of energy sources is“a coal-rich, short of petroleum”in the China. Along with economic development, environmental pollution will be more and more serious. Therefore, the searching for less polluting alternative energy sources becomes a priority. DME production technology has been maturity, and then yield increases significant. Now dimethyl ether with low pollution and good combustion properties, is a good selection of alternative energy sources. DME will be widely used in the civilian areas of fuel and vehicle fuel.
     In this thesis, the catalytic performances of Cu-Ce/γ-Al2O3、3%Cu-Ce-La/γ-Al2O3、3% Zr1-xCuxO2-x/γ-Al2O3、Zr1-xCuxO2、5%Cu-Ce carried mesoporousγ-Al2O3 catalysts for the combustion of DME with air were studied. The results are summarized as follows:
     1. The main catalyst of Cu-Ce/γ-Al2O3 catalyst for catalytic combustion of dimethyl ether was the Ce and Cu solid solution, and solid solution improved catalytic performance. The oxidation productions of dimethyl ether were without carbon monoxide.
     2. Ce0.1Cu0.9O1.1/γ-Al2O3 catalysts with different loadings were performed to investigate the catalytic combustion of dimethyl ether shows: loading less than 6%, the active component and solid solution dispersed well on theγ-Al2O3, and the catalytic effect is good. When the excessive loading, the catalytic activity made no changes, or even lower, because the effect of active components on theγ-Al2O3 dispersed. And varies loadings of catalyst, dimethyl ether oxidation products were not carbon monoxide.
     3. La doping can improve the performance of the Ce0.1Cu0.9O1.1/γ-Al2O3 catalyst, but when excessive doped catalysts, the catalytic activity reduced. Among them, La0.4-Ce0.1Cu0.9O1.1 /γ-Al2O3 catalyst of the catalytic combustion of dimethyl ether was the best performance, and the combustion temperature (DME conversion reached 10% of the temperature, denoted by T10) was 235℃, complete conversion temperature (the conversion of dimethyl ether 90% of the temperature, denoted T90) for the 244.8℃. But when the temperature reached the ignition temperature, there were carbon monoxide, so dimethyl ether oxidation was incomplete.
     4. Mesoporous materialsγ-Al2O3 preparated by organic small molecule as a template and aluminum nitrate as the aluminum source. Among them, glucose as the template preparedγ-Al2O3 has larger surface area and pore volume, pore size distribution and crystal shape better. And as the carrier prepared by catalyst, the catalyst studied on the catalytic combustion of dimethyl ether. Results showed that: thisγ-Al2O3-glu could promote the catalyst performance.
     5. Catalytic activity of 5% La0.4-Ce0.1Cu0.9O1.1/γ-Al2O3-glu catalyst was better than the other catalysts. Its T10 was 220℃, and T90 was 224℃, the production had a small amount of carbon monoxide. The life time of catalyst was investigated, and the result indicated that the catalyst activity had not any reduce after 100h reaction.
     6. Among the co-precipitation of Zr1-xCuxO2 catalysts, ignition temperature of Zr0.4Cu0.6O2 catalyst was the lowest, that is, T10 =261.5℃. And Zr0.1u0.9O2 and Zr0.2Cu0.8O2 catalysts exhibited the lowest complete conversion temperature , that is, T90= 279℃. Among the sol-gel of method Zr1-xCuxO2 catalysts, Zr0.3Cu0.7O2 catalyst was the best catalyst for the catalytic combustion of dimethyl ether. Its T10 was 255℃and T90 was 259.7℃. Among the 3% Zr0.1Cu0.9O1.1 /γ-Al2O3 catalyst by impregnation method, 3%Zr1-xCuxO2-x /γ-Al2O3(x=0~0.9) catalyst exhibited the best catalytic performance for DME combustion, and T10 was 217.8℃, T90 was 244.7℃Zr doping made the DME catalytic combustion incompletely, and there were more by-products, especially carbon monoxide was higher.
     7. Perovskite catalyst of LaMnO3, CaMnO3 and BaMnO3 catalysts had better performance for catalytic combustion of dimethyl ether, in which LaMn03 was the best one, and T10 was 215.3℃, and T90 was 219.9℃, but the catalyst was less stable.
引文
[1]孙岩.甲醇气相脱水制二甲醚工业实践[J].化工设计通讯. 2008, 34(4): 35~38.
    [2]谢书胜,孙岩.甲醇气相脱水制二甲醚工业实践[J].化学工程师. 2008, 158(11): 24~26.
    [3]吴茨坪.二甲醚的制备及其应用[J].化工纵横. 2003, 17(4): 9~12.
    [4] Wang Yanji, Zhao Xinqiang, Yuan Baoguo, Zhang Bingchang, Cong Jinsheng. Synthesis of dimethyl carbonate by gas-phase oxidative carbonylation of methanol on the supported solid catalystⅠCatalyst preparation and catalytic properties[J]. Applied Catalysis A: general. 1998, 171: 255~260.
    [5]高恒.甲醇及二甲醚的生产现状和发展前景[J].化学工业与工程技. 2005, 26(2): 47~49.
    [6]伶玲,张启俭,张谦温.二甲醚的制备与应用前景[J].天津化工. 2007, 21(4): 37~39.
    [7]王承志,张海燕.固定床一步法合成二甲醚的催化剂研究[J].科技创新导报. 2008, 37(3): 304~307.
    [8]崔晓莉,凌凤香.合成气一步法制取二甲醚技术研究进展[J].当代化工. 2008, 37(3): 304~307.
    [9]沙雪清,宫丽红,王艳华,高扬,史克英.合成气一步法合成二甲醚催化剂的研究[J].哈尔滨师范大学自然科学学报. 2003, 19(2): 68~70.
    [10]张理平,王继武.二甲醚及其应用前景[J].延安大学学报. 2005, 24(1): 74~77.
    [11]谢光全,谢闵.天然气制二甲醚的经济评价[J].石油与天然气化工. 2002, 30(5): 221~224.
    [12]毛东森,张斌,杨为民.磷改性HZSM-5分子筛的制备及其在合成气一步法制二甲醚反应中的应用[J].催化学报. 2006, 27(11): 1005~1011.
    [13] Qing Li Xu, Ting Chen Li, Yong Jie Yan. Effects of CaO-modifiedzeolite on one-step synthesis of dimethyl ether[J]. Journal of Fuel Chemistry and Technology. 2008, 36(2): 176~180.
    [14] Dong-sheng Wang, Yi-sheng Tan, Yi-zhuo Han. Study on deactivation of hybridcatalystfor dimethylether synthesis in slurry reactor[J]. Joumal of Fuel Chemistry and Technology. 2008, 36(2): 171~175.
    [15]郭金回,谢世祎张轶,吴静,姜玲.二氧化碳加氢合成二甲醚CuO-ZnO-SiO2/ HZSM-5型催化剂的研究[J].当代化工. 2008, 37(4): 427~429.
    [16]胡生隆,李治霖,查飞,陈浩斌.二氧化碳加氢一步法合成二甲醚的研究进展[J].兰州石化职业技术学院学报. 2008, 8(4): 9~13.
    [17] Nalawade S. P, Janssen L. P. Supercritical carbon dioxide as a green solvent for p rocessing polymermelts: Processing aspects and app lications[J]. Progress in Polymer Science. 2006, 31(1): 19~43.
    [18]师新广,雷廷宙,王志伟,何晓峰.生物质气合成二甲醚在能源工业中的发展前景[J].河南化工. 2008, 25(8): 1~3.
    [19]贺元启,鲁皓.生物质气化合成燃料的绿色化学效应分析[J].可再生资源. 2005, 6: 47~50.
    [20] Troy A. S, Rodney L. B, Howard L. G. Dimethyl ether(DME)as an alternative fuel[J]. Journal of Power Sources. 2006, 156: 497~511.
    [21]赵彦巧,陈吉祥,张继炎.二氧化碳加氢直接合成二甲醚反应体系的热力学[J].天津大学学报. 2006, 39(4): 408~413.
    [22]王继元,曾崇余,吴昌子. SiO2改性的Cu-ZnO/HZSM-5催化剂及合成二甲醚性能[J].燃烧化学学报. 2006, 34(2): 195~199.
    [23] G. x. qi, J. h. fei, X. m. zheng. DME synthesis from carbon dioxide and hydrogen overCu-Mo/HZSM-5[J]. Catalysis Letters. 2001, 72(1-2): 121~124.
    [24]王建梅,蔡飞鹏,林乐腾.生物质气一步法合成二甲醚双功能催化剂失活研究[J].工业催化. 2007, 15(8): 12~14.
    [25]鲁皓,付严,常杰.生物质合成气一步法合成二甲醚的在线分析系统[J].分析测试学报. 2005, 24(3): 41~44.
    [26]王铁军,常杰,吕鹏梅.生物质热化学转化合成二甲醚明[J].过程工程学报. 2005, 5(2): 277~280.
    [27]吕学珍.二甲醚—替代能源中的新军[J].上海煤气. 2007, 1: 38~41.
    [28]韩景城.二甲醚一作为石油替代品的竞争力分析[J].中外能源. 2007, 12(2): 15~22.
    [29]李怀玉.新型清洁能源二甲醚的开发和运用[J].精细与专用化学品. 2006, 14(10):23~25.
    [30]陈卫国,胡娟.二甲醚(DME)的开发与应用[J].城市燃气. 2006, 375(5): 3~14.
    [31] S. abhay. Synihesis of methyl acetate from dimethyl ether usinggroup Vlll metal salts of phosphotungstic acid[J]. Energy Source. 2002, 24(4): 301~317.
    [32] Stian Svelle, Stein Kolboe, Ole Swang. Methylation of Alkenes and methylbenzenes by Dimethyl Ether or Methanol on Acidic Zeolites[J]. J. Phys. Chem. B. 2005, 109(6).
    [33] H. liu, P. cheung, E. iglesia. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. Journal of Catalysis. 2003, 217: 222~232.
    [34] H. liu, P. cheung, E. iglesia. Zirconia-supported MoOx catalysts for the selective oxidation of dimethyl ether to formaldehyde:structure,redox properties and reaction pathways[J]. Journal of Physical Chemistry B. 2003, 107: 4118~4127.
    [35] H. liu, E. iglesia. Elective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 Keggin structures[J]. Journal of Physical Chemistry B. 2003, 107: 10840~10844.
    [36] Enrique Iglesia, Haichao Liu, Patricia Cheung. Structrue and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. Journal of Catalysis. 2003, 217(1): 222~232.
    [37] Patricia Cheung, Aditya Bhan, Glenn J. Sunley, Et Al. Selective Carbonylation of Dimethyl Ether to Methyl acetate Catalyzed by Acidic Zeolites[J]. Angew.chem. int. Ed. 2006, 45.
    [38] V. V. Galvita, G. L. Semin, V. D. Belyaev, Et Al. Production of hydrogen from dimethyl ether[J]. Applied Catalysis A: General. 2001, 216(1-2): 85~90.
    [39] V. Mehta, J. Smith Cooper. Review and analysis of PEM fuel cell design and manufacturing[J]. Power Sources. 2003, 114(1): 32~53.
    [40] C. Rrice, A. Wieckowski, T. bamard. Direct formic acid fuel cells[J]. Power Sources. 2002, 111(1): 83~89.
    [41] E. p. murray, S. j. Harris, H. Jen. Solid oxide fuel cells utilizing dimethyl ether fuel[J]. Journal of the Electrochemical Society. 2002, 149(9): A1127~A1131.
    [42] Toshiyuki Mii, Kunio Hirotani. Economic Evaluation of A Jumbo DME Plant: WPC AsiaRegional Meeting[Z]. Shanghai: 200117~20.
    [43]中言之.二甲醚未来生产及发展展望[J].中国石油和化工经济分析. 2007, 1: 42~50.
    [44] Gary Jacobs A, John A. Chaney B, Patricia M. Patterson A, Tapan K. Dasa, Burtron H. Davis. Fischer–Tropsch synthesis:study of the promotion of Re on the reduction property of Co/Al2O3 catalysts by in situ EXAFS/XANES of Co K and Re LIII edges and XPS[J]. Applied Catalysis A: General. 2004, 264: 203~212.
    [45]张长斌,贺泓,王莲,姜风,邢焕,赵倩,暴伟.负载型贵金属催化剂用于室温催化氧化甲醛和室内空气净化[J].科学通报. 2009, 54(3): 278~286.
    [46] A. Baylet, S. Royer, P. Marecot, J. m. Tatibouet, D. Duprez. High catalytic activity and stability of Pd doped hexaaluminate catalysts for the CH4 catalytic combustion[J]. Applied Catalysis B: Environmental. 2008, 77: 237~247.
    [47]官芳,卢晗锋,黄海凤,刘华彦,张泽凯,陈银飞.六铝酸盐作涂层的蜂窝陶瓷型La0.8Sr0.2MnO3催化剂热稳定性[J].高校化学工程学报. 2008, 22(6): 954~960.
    [48] Shunqing Li, Haitao Liu, Liang Yan A, Xiaolai Wang. Mn-substituted Ca–La–hexaaluminate nanoparticles for catalytic combustion of methane[J]. Catalysis Communications. 2007, 8: 237~240.
    [49]田鸣,王晓东,朱燕燕,王军虎,张涛.铁和锰的化学状态对LaFexMnyAl12-x-yO19催化剂上N2O分解的影响[J].催化学报. 2010, 30(1): 100~105.
    [50]董留涛,宋永吉,李翠清,王虹,李敏,王军利. LaCuxZn1-xAl11O19-δ六铝酸盐催化剂分解N2O的催化性[J].环境化学. 2009, 28(2): 238~242.
    [51]翟彦青,李永丹,孟明.高温燃烧催化剂——六铝酸盐的结构、性质及制备[J].稀土. 2004, 25(5): 58~63.
    [52] T. v. choudhary, Sbane巧ee, V. r. choudhary. Catalysts for combustion of methane and lower alkanes[J]. Applied CatalysisA:General. 2002, 234: 1~23.
    [53]刘长春,於俊杰,蒋政,陶炎鑫,郝郑平,何绪文. Ce1-XMnXO2-a烷催化燃烧性能的研究复合氧化物催化剂甲[J].无机化学学报. 2007, 23(2): 217~224.
    [54] Cuimeisheng, Zhangshunli, Pengxinlin, Huangxiaowei. Current develepment of methane combustion catalytic material[J]. Chinese Journal of Rare Metal. 2003, 27(6): 764~768.
    [55]余倩.六铝酸盐催化剂的制瞥及其在新能源二甲醚催化燃烧中的应履[Z].广东工业大学, 20089~13.
    [56]赵晓旭,程党国,陈丰秋,詹晓力. Fe含量对FeAlPO-5催化剂上甲烷还原N2O反应的影响[J].催化学报. 2010, 31(1): 68~71.
    [57]宋焕玲,杨建,赵军,丑凌军. CO2在高分散Ni/La2O3催化剂上的甲烷化[J].催化学报. 2010, 31(1): 21~23.
    [58]方奕文,汤吉,吴武玲,沈尾彬,宋一兵,孙长勇. Ce1-xCuxO2及Ce1-xCuxO2-x/γ-Al2O3催化剂的二甲醚催化燃烧性能研究[J].天然气化工. 2009, 34(4): 42~46.
    [59]胡婕,邵光杰,黄浩,邢广忠.钙钛矿型La1-xSrxMnO3纳米薄膜的制备及其光催化性能[J].稀有金属材料与工程. 2010, 39(1): 38~42.
    [60]徐俊峰,刘坚,赵震,张桂臻,段爱军,姜桂元,徐春明.三维有序大孔钙钛矿LaFeO3催化剂的制备及其催化炭黑颗粒燃烧性能[J].催化学报. 2010, 31(2): 236~241.
    [61]孙明,余林,余倩,余坚,郝志峰. Ce掺杂的OMS-2催化剂上二甲醚催化燃烧性能的研究[J].燃料化学学报. 2010, 38(1): 108~116.
    [62]孙明,余林,方奕文,余倩,余坚.氧化锰八面体分子筛:阴阳复合模板剂合成及二甲醚催化燃烧性能[J].无机化学学报. 2008, 21(11): 1852~1858.
    [63] Yu Lin, Sun Ming, Yu Jian, Yu Qian, Hao Zhifeng, Li Chaosheng. Synthesis and Characterization of Manganese Oxide Octahedral Molecular Sieve and Its Catalytic Performance for DME Combustion[J]. Chinese Journal of Catalysis. 2008, 29(11): 1127~1132.
    [64]孙明,余林,余倩,余坚,郝志峰,李朝圣.模板剂合成锰八面体分子筛及其催化燃烧二甲醚的性能研究[J].功能材料. 2008, 39(10): 1746~1750.
    [65]胡伟.化学混合法制备油脂加氢催化剂表征[J].中国新技术新产品. 2009, 8: 93.
    [66]郭宪吉,李利民,刘淑敏,鲍改玲,侯文华.并流淤浆混合法制备铜基甲醇合成催化剂及助剂Al2O3的作用研究[J].燃料化学学报. 2007, 35(3): 329~334.
    [67]郑泉兴,王琪,宋建华,李一农,陈汉宗,方维平,杨意泉.混合法制备Co-Mo/MgO-Al2O3变换催化剂的XRD和TPR表征[J].厦门大学学报(自然科学版). 2004, 43(6): 820~824.
    [68] Jensen Jr, Johannessen T, Wedel S, Livbjerg H. A study ofCu/ZnO /Al2O3 methanol catalysts prepared by flame combustion synthesis[J]. J Catal. 2003, 218(1): 67~77.
    [69] Shen W. J, Matsumua Y. Ichihashiy. Low temperaturemethanol synthesis from carbonmonoxide and hydrogen overceria supported on copper catalyst[J]. Appl Catal A. 2005, 282(1-2): 221~226.
    [70] Li Ji-tao, Zhang Wei-de, Zhou Yue-xian. Study on high dispersion catalysts formethanol synthesis[J]. Petrochemical Technology. 1998, 27(1): 1~4.
    [71] Cao Yong Hong Zhong-shan, Dend Jing-fa, Fan Kang-nian. Preparation ofmethanol synthesis catalyst Cu/ZnO /Al2O3 by gel-network coprecipitation method[J]. Chenical Journal of Chinese Universities. 2002, 23(4): 706~708.
    [72]汪俊锋,常杰,阴秀丽,吕鹏梅.尿素水解均匀共沉淀法制备Cu/ZnO /Al2O3甲醇合成催化剂[J].燃料化学学报. 2004, 32(3): 378~380.
    [73]邓景泉,吴玉程,陈勇.高强高导铜(合金)基复合材料强化与物性研究进展[J].材料导报. 2005, 19(10): 80~84.
    [74]李士红,丁保宏,臧树良.溶胶凝胶法制备SiO2-TiO2-ZrO2加氢脱芳催化剂载体[J].化工科技. 2010, 18(1): 28~31.
    [75] Sun Jian-qiu, Gong Lu, Shen Jing, Lin Zhou, Li Quan-xin. Sol-Gel Preparation of Porous C12A7-Cl-Crystals[J]. Acta Phys.-Chim.Sin. 2010, 26(3): 795~798.
    [76]李兆静,周伟,徐军科,汪吉辉,马建新. La2O3对Ni/α-Al2O3催化剂结构及沼气重整制氢性能的影响[J].天然气化工. 2009, 34(4): 1~7.
    [77] Arribas M. A, Martinez A. The influence of zeolite acidity for the coupled hydrogenation and ring opening of 1-methylnaphthalene on Pt/USY catalysts[J]. Applied CatalysisA:Genera,l. 2002, 230(1/2): 203~217.
    [78]于清跃,武文良.脱铝超稳Y沸石上萘的异丙基化[J].精细石油化工. 2009, 26(5): 51~56.
    [79]粟智,徐茂文,叶世海,王永龙.单斜层状LiMn0.97Al0.03O2-x(PO4)x材料的合成及其电化学性能[J].高等学校化学学报. 2010, 31(2): 247~252.
    [80]张守海,周娟,邢东博,蹇锡高.含甲基磺化杂萘联苯聚醚砜酮质子交换膜材料的合成与性能[J].高分子学报. 2010, 3(3): 275~281.
    [81]尧命发,许斯都,许俊峰,金萍.二甲基醚(DME)燃烧特性研究[J].内燃机学报. 2001, 19(3): 197~203.
    [82] Edger Bradley L. Autoignition of Dimethyl Ether and Dimethoxy Methane Sprays at High Pressures[Z].
    [83] Golovitchev V. I. Neat Dimethyl Ether: Is It Realty Diesel Fuel of Promise[Z].
    [84] Daly C. a, Simmie Jm, Wurmel J. Burning velocities of dimethyl ether and air[J].Combustion and Flam. 2001, 124(4): 1329~1340.
    [85] Jursic, Branko S. Complete basis set abinitio computationa study of unimolecular decomposition of dimethyl ether[J]. Chemical Physics Letters. 1998, 295(5-6): 447~454.
    [86]张辉亚,张煜盛,莫春兰,徐波.二甲醚燃烧研究的现状及其发展方向[J].车用发动机. 2005, 5: 10~13.
    [87]朗静,张煜盛.论DME燃烧与微量污染物生成机理研究[J].内燃机工程. 2005, 26(6): 30~34.
    [88] Hidakayoshiak, I. Satokazutaka, Yamanemasatsugu. High-temperature pyrolysis of dimethyl ether in shock waves[J]. Combustion and Flame. 2000, 123(1-2): 1~22.
    [89] Alam M, Fujita O, Ito K. Performance of NOx reduction catalysts with simulated dimethyl ether diesel engine exhaust gas[J]. Proceedings of the Institution of MechanicalEngineers. PartA, Journal of Power and Energy. 2004, 218(2): 89~95.
    [90]余倩,余林,黄应敏.二甲醚燃烧用掺杂钡镍六铝酸盐催化剂的研究[J].无机盐工业. 2006, 38(11): 15~17.
    [91] Yu Qian, Yu Lin, Wang Yuanna, Zhang Qini, Sun Ming, Huang Yingmin, Lu Yeyu, Ge Zaochuan. Effect of Preparation Methods on Activation of Catalysts BaNi0.2Mn0.8Al11O19-δfor Dimethyl Ether Combustion[J]. Chinese Journal of Chemical Engineering. 2008, 16(3): 389~393.
    [92] Yu Q, Yu L, Huang Y. M. Study on hexaaluminate MnLaAl11O19-δcatalyst for catalytic combustive reaction of dmi ethyl ether as a new fuel[J]. Rare Matels. 2006, 25: 333.
    [93]闫俊民,张文霞,杨艳芳.二甲醚作为LPG和柴油替代品问题探讨[J].煤化工. 2006, 1: 50~51.
    [94]滕美玲,罗来涛.介孔Ce1-xZrxO2负载的Cu基催化剂在富氧条件下催化CO选择性氧化[J].催化学报. 2008, 29(12): 1215~1220.
    [95]徐军科,汪吉辉,李兆静,周伟,马建新. La2O3改进Ni/γ-Al2O3催化剂上沼气重整制氢[J].太阳能学报. 2009, 30(5): 698~704.
    [96] Benito M, Garcfa S, Ferreira-aparicio P. Development of biogas reforming Ni-La-Al catalysts for fuel cells[J]. Journal of Power Sources. 2007, 169(1): 177~183.
    [97] Ali Nakhaei Pour, Seyed Mehdi Kamali Shahri, Hamid Reza Bozorgzadeh, Yahya Zamani, Ahmad Tavasoli, Mehdi Ahmadi Marvast. Effect of Mg, La and Ca promoters on the structureand catalytic behavior of iron-based catalysts in Fischer–Tropsch synthesis[J]. Applied Catalysis A: General. 2008, 348: 201~208.
    [98] Li Jinlin Zhao Lili, Liew Kongyong. Effect of La2O3 on a Precipitated Iron Catalyst for Fischer-Tropsch Synthesis[J]. Chinese Journal of Catalysis. 2009, 30(7): 637~642.
    [99]李兆静,周伟,徐军科,汪吉辉,马建新. La2O3对Ni/α-Al2O3催化剂结构及沼气重整制氢性能的影响[J].天然气化工. 2009, 34(4): 1~7.
    [100] Akira Taguchi, Ferdi Schuth. Ordered mesoporous materials in catalysis[M]. Microporous and Mesoporous Materials, 2005, 1~45.
    [101] V. Meynen, P. Cool, E. f. Vansant. Verified syntheses of mesoporous materials[J]. Microporous and Mesoporous Materials. 2009, 125: 170~223.
    [102]乔亏,张富民,潘多丽,张鸟飞,菅盘铭. Synthesis, Characterization and Catalytic Oxidation Performance of High Ti-containing Ti-MCM-41 Molecular Sieves[J].无机化学学报. 2008, 24(5): 748~754.
    [103] Kathy A. Northcotta, Kiyokazu Miyakawab, Syunichi Oshimac, Yu Komatsub, Jilska M. Pereraa, Geoffrey W. Stevens. The adsorption of divalent metal cations on mesoporous silicate MCM-41[J]. Chemical Engineering Journal. 2010, 157: 25~28.
    [104]刘春艳,荣志红,王小青.以混合阳离子-嵌段共聚物表面活性剂为模板合成介孔MCM-48[J].无机化学学报. 2008, 24(7): 1068~1072.
    [105] Zhen Maa Jianan Zhang A,b, Jian Jiao A, Hongfeng Yin A, Wenfu Yan B, Edward W. Hagaman, Jihong Yu B, Sheng Dai. Surface functionalization of mesoporous silica SBA-15 by liquid-phase grafting of zirconium phosphate[J]. Microporous and Mesoporous Materials. 2010, 129: 200~209.
    [106]曹希传,张卓琦, Patelketan, Andersonw Michael.纯硅介孔分子筛SBA-15表面的手性移植[J].高等学校化学学报. 2006, 27(11): 2013~2016.
    [107] Qian Liu, Aiqin Wang, Jinming Xu, Yanhua Zhang, Xiaodong Wang, Tao Zhang. Preparation of ordered mesoporous crystalline alumina replicated by mesoporous carbon[J]. Microporous and Mesoporous Materials. 2008, 116: 461~468.
    [108] Aiqin Wang A. Qian Liu A,b, Xuehai Wang, Peng Gao, Xiaodong Wang, Tao Zhang. Synthesis, characterization and catalytic applications of mesoporous[J]. Microporous and Mesoporous Materials. 2008, 111: 323~333.
    [109]毛小波,陈耀强,赵明.铈锆比对低贵金属Pt+Rh/Ce0.3+xZr0.6-xY0.1O1.95+Al2O3三效催化性能的影响[J].化学学报. 2007, 65(4): 300~302.
    [110] Madier Y, Descorme C, Le Govic A. M. Oxygen mobility in CeO2and CexZr1-xO2 compounds study by CO tuansient oxidation and 18O-16O isotopic exchange[J]. Phys Chem B. 1999, 99(2): 103~109.
    [111]杨志强,毛东森,朱慧琳,卢冠忠.微波辅助法制备铈锆固溶体在CO低温氧化反应中的应用[J].催化学报. 2009, 30(10).
    [112]王小兰,李历历,段学臣.掺杂Zr对ATO纳米粉末性能的影响[J].稀有金属与硬质合金. 2004, 32(2): 4~8.
    [113]丁坚强,许金生,袁亚莉,邓健,李乐,郭建波. Zr和N共掺杂TiO2的制备、表征及其光催化性能[J].中国有色金属学报. 2008, 18(12): 2212~2218.
    [114]董作为,郭英奎. Zr掺杂的介孔氧化硅分子筛的合成与表征[J].哈尔滨理工大学学报. 2007, 12(2): 131~134.
    [115]唐建军,邹原,邓爱华,李荣先. Zr4+掺杂TiO2光催化剂的制备与表征[J].过程工程学报. 2008, 8(5): 1026~1029.
    [116]魏彦薇,张莹,杨宗献. Zr掺杂CeO2体系的电子结构与催化特性的第一性原理研究[J].河南师范大学学报(自然科学版). 2008, 36(2): 18.
    [117]谢有畅,桂琳琳,卜乃瑜,刘万祺,唐有祺.聚乙烯高效催化剂的结构和机理研究[J].中国科学. 1979(7): 665~673.
    [118]王春明,赵璧英,谢有畅.盐类和氧化物在载体上自发单层分散研究新进展[J].催化学报. 2003, 24(6): 475~482.
    [119]林穗云,邓存.负载型催化剂研究中的自发单层分散原理[J].嘉应学院学报(自然科学). 2006, 24(6): 42~46.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700