用户名: 密码: 验证码:
长春花叶片三种生物碱含量及合成基因表达的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
文多灵(Vindoline)、长春质碱(Catharanthine)、长春碱(Vinblastine)三种生物碱产于药用植物长春花,具有抗肿瘤作用,但这些TIAs在天然长春花植株中含量较低并且分布具有组织和生长阶段的特异性,不能满足市场需求,使其价格较为昂贵。利用代谢工程在长春花中过量表达TIAs生物合成途径中的关键酶基因,为提高植物生物碱含量和改变生物碱组成成份开辟了新的途径。然而长春花(Catharanthus roseus L. G. Don)萜类吲哚生物碱(Terpenoid indole alkaloids, TIAs)的生物合成途径十分复杂,包含了多个关键酶和转录因子。目前已有30多个催化酶和转录因子基因被克隆。因此探明长春花叶片中生物碱的动态变化规律和生物碱合成途径中的关键酶和转录因子的表达量是十分必要的。
     本研究以长春花叶片为研究材料,利用高效液相色谱技术研究了长春花叶片中生物碱的变化,利用荧光定量PCR技术检测了长春花叶片中生物碱合成途径中11个相关基因的相对表达量。得出了以下结果:1.探明了长春花叶片中三种生物碱的动态变化规律
     长春花吲哚生物碱文多灵、长春碱、长春质碱的分布具有组织器官和生长发育的特异性。其中,不同时期长春花三种叶片形态中文多灵含量的差异较大,最高含量为1.18 mg/g,最低含量为0.02 mg/g,相差大约60倍左右。长春碱的最高含量为最低含量的四倍,为0.01 mg/g-0.04 mg/g。长春碱在长春花叶片中的含量比较低,最高含量只有万分之四。长春质碱的含量为0.4 mg/g-1.16 mg/g,大约相差2.5倍。
     长春花吲哚生物碱文多灵、长春碱、长春质碱的组织特异性具有一定的规律性。三种叶片形态中的吲哚生物碱文多灵,长春质碱含量呈现规律性变化,在幼嫩叶片(L1)中最高,在成熟的叶片(L3)中的含量最低。两种生物碱,在前五个生长时期,L1和L2叶片状态的含量相差不到一倍,而L3状态叶片的两种生物碱含量和前两种状态叶片的生物碱含量相比差异比较大,最大到2.5倍。长春碱的含量大部分呈现L3>L2>L1的规律,叶片的L1和L2状态的叶片的长春碱含量相差不大,长春碱在长春花叶片中的含量比较低,最高含量只有万分之四。
     长春花用于生物碱检测的叶片的最佳采集期在花蕾期到开花期。三种生长状态的长春花叶片的吲哚生物碱文多灵的含量为0.75 mg/g,长春质碱的含量为0.83 mg/g,成熟期2的三种生长状态的长春花叶片的吲哚生物碱长春碱的含量为0.027 mg/g,花蕾期,五对真叶生长期,开花期生物碱总含量较大,以长春花叶片的生物量最大为依据,从花蕾期到开花期为最佳的采收期。2.比较了长春花叶片中生物碱合成途径的11个合成酶基因的相对表达量
     依照长春花悬浮细胞和毛状根中与生物碱含量相关性大的关键酶基因数据,选取长春花生物碱合成途径中的11个关键酶基因(ASA、CPR、D4H、TDC、GGPP、STR、ORCA3、G10H、PRX、SLS、DAT)。利用定量PCR检测了这些基因的相对表达量,发现环烯醚萜苷途径中的GGPP基因、G10H基因、SLS基因三个基因的表达可促进裂环马钱子苷的合成,STR基因的表达量增加可使生物碱长春质碱的含量提高,D4H基因,DAT基因的表达可促进文多灵的生成。文多灵和长春质碱在PRX基因编码的蛋白的催化下可促进长春碱的合成。而莽草酸途径中的ASA基因、TDC基因对叶片中生物碱的增加没有明显的促进作用。ORCA3基因的表达具有时空性,在嫩叶片中的表达量较高,在长春花成熟期的表达量较高。对D4H、DAT、SLS、TDC基因的表达具有正调控作用。
The medicinal plant Madagascar Periwinkle(Catharanthus roseus) possesses vindoline, catharanthine, vinblastine, and vincristine which play an important role in cancer. However, the contents of the three TIAs in C. roseus leaves are low and the diSTRibution has the specificity of tissue and growth stage. The use of metabolic engineering for improving the centents of the three TIAs in C. roseus leaves has opened up a new way by overexpression of TIAs biosynthesis of key genes. However, Biosynthetic pathway of the three TIAs is very complex, Currently more than 30 catalytic enzymes and transcription factor genes have been cloned. Therefore, Tt is essential to ensure the changes of alkaloids and the key enzymes and transcription factors of TIAs pathway in C. roseus leaves.
     In this study, we analyzed the contents of the three TIAs by HPLC and the relative expression of the eleven catalytic enzymes and transcription factor genes in C. roseus leaves.The major results are as follows: 1.We discussed the rule of dynamic changes of three alkaloids in C. roseus leaves. The distribution of the three TIAs including vindoline, catharanthine and vinblastine in C. roseus leaves has the specificity of tissue and growth stage. The highest content of vindoline is 1.18 mg/g and the lowest is 0.02 mg/g, a differents of 60 times. The highest content of catharanthine is 2.5 times of the lowest one.
     2.The expressions of eleven catalytic enzymes and transcription factor genes by the real-time PCR show that the genes containing GGPP、G10H、SLS、D4H、DAT、PRX are the key enzymes genes in TIAs biosynthetic pathway. ORCA3 gene upregulates the expressions of the genes(D4H、DAT、SLS、TDC).
引文
[1]焦会玲.长春花栽培管理技术及在园林造景中的应用.黑龙江农业科学.2009(2):89-90
    [2]余启高.长春花栽培技术.现代农业科技.2008(15):83
    [3]蔡连捷,闫有旺.长春花的栽培及其利用.特种经济动植物.2003(5):19
    [4]冯晓容,俞晓艳.长春花栽培技术研究.宁夏农林科技.2006(09):26-27
    [5]De Carolis E, De Luca V. Purification,characterization,and kinetic analysis of a 2-oxoglutarate dependent deoxygenate involved in vindoline biosynthesis from Catharanthus roseus. J.Biol.Chem.1993,268:5504-5551
    [6]崔红,宋志红.类萜代谢工程研究进展及在烟草品种改良中的应用前景.中国烟草学报.2003,2:35-38
    [7]Liu Y, Wang H, Ye HC, et al. Advances in the plant isoprenoid biosynthesis pathway and its metabolic engineering. J. Integr Plant Biol.2005,47:769-782
    [8]Lichtenthaler HK, Schwender J, Disch A, Rohmer M. Biosynthesis of isoprenoids in higher plant chloroplasts proceeds via mevalonate independent pathway. FEBS Lett.1997,400:271-274
    [9]Eisenreich W, Rohdich F, Backer A. Deoxylulose phosphate pathway to terpenoids. Trends Plant Sci.2001,6:78-84
    [10]Estevez J.M., Cantero A., Reindl A., Reichler S., Leon P.1-Deoxy-D-xylulose-5-phosphate Synthase, a Limiting Enzyme for Plastidic Isoprenoid Biosynthesis in Plants. J. Biol. Chem.2001,276(25):22901-22909
    [11]Madyastha KAN, Ridgway JE, Dwyer JG, et al. Subcellular localization of a cytochrome P-450 monooxygenase in vesicles of the higher plant Catharanthus roseus. J Cell Biol..1977,72:302-313
    [12]Verpoorte R, van der Heijden R, Moreno PRH. Biosynthesis of terpenoid indole alkaloids in Catharanthus roseuscells. In Cordell GA, ed. The alkaloids, Academic Press, San Diego, USA.1997,49:221
    [13]Poulsen C, Verpoorte R. Roles of chorismate mutase, isochorismate synthase and anthranilate synthase in plants. PhytochemiSTRy.1991,30:377-386
    [14]Bongaerts RJM. The chorismate branching point in Catharanthus roseus:aspects of anthranilate synthase regulation in relation to indole alkaloid biosynthesis. PhD thesis, Leiden University, The Netherlands.1998
    [15]Whitmer S. Aspects of terpenoid indole alkaloid formation by transgenic cell lines of Catharanthus roseus over-expressing tryptophan decarboxylase and STR-ictosidine synthase. PhD thesis, Leiden University.1999
    [16]Luijendijk TJC, Nowak A, Verpoorte R. STRictosidine glucosidase from suspension cultures cells of Tabernaemontana divaricata. Phytochemitry.1996, 41:1451-1456
    [17]Facchini PJ. Alkaloid Biosynthesis in plants:biochemiSTRy, cell biology, molecular regulation, and metabolic engineering applications. Annu Rev Plant Physiol Plant Mol Biol.2001,52:29-66
    [18]Hemscheidt T, Zenk MH. Glucosidases involved in indole alkaloid biosynthesis of Catharanthus roseus cell cultures. FEBS Lett.1980,110:187-191
    [19]Verpoorte R, van der Heijden R, Moreno PRH. Biosynthesis of terpenoid indole alkaloids in Catharanthus roseuscells. In Cordell GA, ed. The alkaloids, Academic Press, San Diego, USA.1997,49:221
    [20]Lopez-Meyer M, Nessler CL. Tryptophan decarboxylase is encoded by two autonomously regulated genes in Camptotheca acuminata which are differentially expressed during development and STRess. Plant J.1997,11(6):1167-1175
    [21]Meijer AH, Lopes Cardoso MI, Voskuilen JTH, et al. Isolation and charac-terization of a cDNA clone from Catharanthus roseus encoding NADPH: cytochrome P-450 reductase, an essential for reactions catalysed by cytochrome P-450 monoxygenase. Plant Mol Biol.1993,22:379-383
    [22]Sprenger GA, Schorken U, Wiegert T, et al. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA.1997,94:12857-12862
    [23]Sprenger GA, Schorken U, Wiegert T, et al. Identification of a thiamin-dependent synthase in Escherichia coli required for the formation of the 1-deoxy-D-xylulose 5-phosphate precursor to isoprenoids, thiamin, and pyridoxol. Proc Natl Acad Sci USA.1997,94:12857-12862
    [24]Estevez JM, Cantero A, Reindl A, et al. 1-deoxy-D-xylulose-5-phosphate synthase, a limiting enzyme for plastidic isoprenoid biosynthesis in plants. J Biol Chem. 2001,276:22901-22909
    [25]Chahed K, Oudin A, Guivarc'h N, et al.1-Deoxy-D-xylulose 5-phosphate synthase from periwinkle:cDNA identification and induced gene expression in terpenoid indole alkaloid-producing cells. Plant Physiol Biochem.2000,38:559-566
    [26]Proteau PJ.1-deoxy-D-xylulose 5-phosphate reductoisomerase:an overview Bioorg. Chem.2004,32:483-493
    [27]Veau B, Courtois M, Oudin A, et al. Cloning and expression of cDNAs encoding two enzymes of the MEP pathway in Catharanthus roseus. Biochim Biophys Acta. 2000,1517:159-163
    [28]Mahmoud SS, Croteau RB. Metabolic engineering of essential oil yield and composition in mint by altering expression of deoxyxylulose phosphate reductoisomerase and menthofuran synthase [J]. Proc. Natl. Acad. Sci. USA.2001, 98(15):8915-8920
    [29]Zhu XF, Suzuki K, Saito T, et al. Geranylgeranyl pyrophosphate synthase encoded by the newly isolated gene GGPS6 from Arabidopsis thaliana is localized in mitochondria. Plant Mol Biol.1997,35:331-341
    [30]Bantignies B, Liboz T, Ambid C. Nucleotide sequence of a Catharanthus roseus geranylgeranyl pyrophosphate synthase gene. Plant Physiol.1995,110:336-336
    [31]Liao ZH, Chen M, Gong YF, et al. A new geranylgeranyl diphosphate synthase gene from Ginkgo biloba, which intermediates the biosynthesis of the key precursor for ginkgolides. DNA Sequence.2004,15(2):153-158
    [32]Hefner J, Ketchum REB, Croteau R. Cloning and functional expression of a cDNA encoding geranylgeranyl diphosphate synthase from Taxus canadensis and assessment of the role of this prenyltransferase in cells induced for taxol production. Arch Biochem Biophys.1998,360:62-74
    [33]Liao ZH, Gong YF, Kai GY, et al. An intron-free methyl jasmonate inducible geranylgeranyl diphosphate-synthase gene from Taxus media and its functional identification in yeast. Mol Biol.2005,39(1):11-17
    [34]Van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science.2000,289:295-297
    [35]Iijima Y, Davidovich-Rikanati R, Fridman E, et al. The biochemical and molecular basis for the divergent patterns in the biosynthesis of terpenes and phenylpropenes in the peltate glands of three cultivars of basil. Plant Physiol.2004,136:3724-3736
    [36]Yang T, Li J, Wang HX, et al. A geraniolsynthase gene from Cinnamomum tenuipilum. PhytochemiSTRy.2005,66:285-293
    [37]Collu G, Unver N, Peltenburg-Looman AMG, et al. Geraniol 10-hydroxylase1, a cytochrome P450 enzyme involved in terpenoid indole alkaloid biosynthesis. FEBS Lett.2001,508:215-220
    [38]Meijer AH, Lopes Cardoso MI, Voskuilen JTH, et al. Isolation and characterization of a cDNA clone from Catharanthus roseus encoding NADPH:cytochrome P-450 reductase, an essential for reactions catalysed by cytochrome P-450 monoxygenase. Plant Mol Biol.1993,22:379-383
    [39]Gong YF, Liao ZH, Pi Y, et al. Engineering terpenoid indole alkaloids bio-synthetic pathway in Catharanthus roseus hairy root cultures by overexpressing the geraniol 10-hydroxylase gene. J Shanghai Jiao Tong Univ.2005,008-013
    [40]Irmler S, Schroder G, St-Pierre B, et al. Indole alkaloid biosynthesis in Catharanthus roseus:new enzyme activities and identification of cytochrome P450 CYP72A1 as secologanin synthase. Plant J.2000,24:797-804
    [41]Vetter H-P, Mangold U, Schroeder G, et al. Molecular analysis and heterologous expression of an inducible cytochrome P-450 protein from periwinkle (Catharanthus roseus L.). Plant Physiol.1992,100:998-1007
    [42]Li J.Y., Last R.L. The Arabidopsis trp5 mutant has a feedback-resistant anthranilate synthase and elevated soluble tryptophan. Plant Physiol.1996,110: 51-59
    [43]Cho H.J., Brotherton J.E., Song H.S., et al. Increasing tryptophan synthesis in a forage legume ASTRagalus sinicus by expressing the tobacco feedback-insensitive anthranilate synthase (ASA2) gene. Plant Physiol.2000,123:1069-1076
    [44]Poulsen C., Bongaerts R.J., Verpoorte R. Purification and characterization of anthranilate synthase from Catharanthus roseus. Eur J Biochem.1993,212: 431-440
    [45]Meijer A.H., Verpoorte R., Hoge J.H.C. Regulation of enzymes and genes involved in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J Plant Res.1993, 3:145-164
    [46]Hughes E, Hong SB, Gibson SI, et al. Metabolic engineering of the indole pathway in Catharanthus roseus hairy roots and increased accumulation of tryptamserpentine. Metab Eng.2004,6:268-276
    [47]Pennings EJ, Groen B, Duine JA, et al. Tryptophan decarboxylase from Catharanthus roseus is a pyridoxo-quinoprotein. FEBS Lett..1989,255:97-100
    [48]De Luca V, Cutler AJ. Subcellular localization of enzymes involved in indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol..1987,85:1099-1102
    [49]Vasquez-Flota FA, St-Pierre B, De Luca V. Light activation of vindoline biosynthesis does not require cytomorphogenesis in Catharanthus roseusseedlings. PhytochemiSTRy.2000,55:531-536
    [50]De Luca V, Marineau C, Brisson N. Molecular cloning and analysis of a cDNA encoding a plant tryptophan decarboxylase:comparison with animal dopa decarboxylases. Proc Natl Acad Sci USA.1989,86:2582-2586
    [51]Lohmann F.P.M., Lohman F.P., de Kam R.J., et al. Nucleotide sequence of the tryptophan decarboxylase gene of ssion of TDC-gusA gene fusions in Nicotiana tabacum. Mol. Gen. Genet.1994,245:217-225
    [52]Goddijn OJM. Regulation of terpenoid indole alkaloid biosynthesis in Catharanthus roseus. PhD thesis, Leiden University, The Netherlands.1992
    [53]Nef C, Rio B, Chrestin H, et al. Induction of catharanthine synthesis and stimulation of major indole alkaloids production in Catharanthus roseus cells under non-growth altering treatment with Pythium vexans extracts. Plant Cell Rep. 1991,10:26-29
    [54]Pasquali G, Goddijn OJM, De vaal A, et al. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol.1992,18:1121-1131
    [55]Van der Fits L, Memelink J. ORCA3, a jasmonate-responsive transcriptional regulator of plant primary and secondary metabolism. Science.2000,289:295-297
    [56]祖元刚,罗猛,牟瑶松等.长春花生物碱成分及其药理作用研究进展.天然产物研究与开发.2006,18:325-329,294
    [57]Yamazaki Y, Sudo H, Yamazaki M, et al. Camptothecin biosynthetic genes in hairy roots of Ophiorrhiza pumila. cloning, characterization and differential expression in tissues and by STRess compounds. Plant Cell Physiol.2003,44: 395-403
    [58]Pasquali G, Goddijn OJ, de Waal A, et al. Coordinated regulation of two indole alkaloid biosynthetic genes from Catharanthus roseus by auxin and elicitors. Plant Mol Biol.1992,18:1121-1131
    [59]Menke FLH, Champion A, Kijne JW, et al. A novel jasmonate-and elicitor-responsive element in the periwinkle secondary metabolite biosynthetic gene STR interacts with a jasmonate-and elicitor-inducible AP2-domain transcription factor, ORCA2. EMBO J.1999,18:4455-4463
    [60]Luijendijk TJC, Stevens LH, Verpoorte R. Purification and characterization of STRictosidine β-D-glucosidase from Catharanthus roseus cell suspension cultures. Plant Physiol. Biochem.1998,36:419-425
    [61]Geerlings A, Ibanez MML, Memelink J, et al. Molecular cloning and analysis of STRictosidine b-D-glucosidase, an enzyme in terpenoid indole alkaloid biosynthesis in Catharanthus roseus. J. Biol. Chem.2000,275:3051-3056
    [62]Schroder G, Unterbusch E, Kaltenbach M, et al. Light-induced cytochrome P450-dependent enzyme in indole alkaloid biosynthesis:tabersonine 16-hydroxylasel. FEBS Lett.1999,458:97-102
    [63]De Carolis E, Chan F, Balsevich J, De Luca V. Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis. Plant Physiol.1990,94:1323-1329
    [64]De Carolis E, De Luca V. Purification, characterization and kinetic analysis of a 2-oxoglutaratedependent dioxygenase involved in vindoline biosynthesis from Catharanthus roseus. J Biol Chem.1993,268:5504-5511
    [65]Vasquez-Flota FA, De Luca V. Jasmonate modulates development-and light-regulated alkaloid biosynthesis in Catharanthus roseus. Phytochemi STRy.1998, 49:395-402
    [66]Vazquez-Flota F, Carolis ED, Alarco AM, et al. Molecular cloning and characterrization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate depen dent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol Biol.1997,34:935-948
    [67]Vasquez-Flota FA, De Carolis ED, Alarco AM, et al. Molecular cloning and characterization of desacetoxyvindoline-4-hydroxylase, a 2-oxoglutarate depenent-dioxygenase involved in the biosynthesis of vindoline in Catharanthus roseus (L.) G. Don. Plant Mol. Biol..1997,34:935-948
    [68]Power R, Kurz WGW, De Luca V. Purification and characterization of acetylcoenzyme A:Deacetylvindoline 4-O-acetyltransferase from Catharanthus roseus. ArchBiochem Biophys.1990,279:370-376
    [69]St-Pierre B, Laflamme P, Alarco AM, et al. The terminal O-acetyltransferase involved in vindoline biosynthesis defines a new class of proteins responsible for coenzyme A-dependent acyl transfer. Plant J.1998,14:703-713
    [70]De Luca V, Fernandez JA, Campbell D, et al. Developmental regulation of enzymes of indole alkaloid biosynthesis in Catharanthus roseus. Plant Physiol. 1988,86:447-450
    [71]De Carolis E, Chan F, Balsevich J, et al. Isolation and characterization of a 2-oxoglutarate dependent dioxygenase involved in the second-to-last step in vindoline biosynthesis. Plant Physiol.1990,94:1323-1329
    [72]De Luca V, Balsevich J, Tyler RT, et al. Characterization of a novel N-methyltransferase (NMT) from Catharanthus roseus. Plant Cell Rep.1987,6: 458-461
    [73]Sottomayor M, Lopez-Serrano M, DiCosmo F, et al. Purification and characterization of a-3',4'-anhydrovinblastine synthase (peroxidase-like) from Catharanthus roseus (L.) G. Don. FEBS Lett.1998,428:299-303
    [74]Sottomayor, M. and Ros Barcelo A. Peroxidase from Catharanthus roseus (L.) G. Don and the biosynthesis of a-3',4'-anhydrovinblastine:a specific role for a multifunctional enzyme. Protoplasma.2003,222:97-105
    [75]Manuela M., Costa R., Hilliou F., et al. Molecular Cloning and Characterization of a Vacuolar Class III Peroxidase Involved in the Metabolism of Anticancer Alkaloids in Catharanthus roseus. Plant Physiol.2008,146:403-417
    [76]Broun P. Transcription factors as tools for metabolic engineering in plants. Curr Opin Plant Biol.2004,7,202-209
    [77]Van der Fits L, Zhang H, Menke FLH, et al. A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene STR and is induced by elicitor via a jasmonate-independent signal transduction pathway. Plant Mol. Biol..2000,44:675-685
    [78]Zarate R. Tropane alkaloid production by Agrobacterium rhizogenes transformed hairy cultures of Atropa baetica Willk. (Solanaceae). Plant Cell Rep..1999,18: 418-423
    [79]Van der Fits L, Frederique Hilliou, Johan Memelink. T-DNA activation tagging as a tool to isolate regulators of a metabolic pathway from a genetically non-tractable plant species. Transgenic Res.2001(10):513-521
    [80]Van der Fits L, Memelink J. The jasmonate-inducible AP2/ERF-domain transcription factor ORCA3 activates gene expression via interaction with a jasmonate responsive promoter element. Plant J.2001(25):43-53
    [81]Menke FLH, Parchmann S, Mueller MJ, et al. Involvement of the octadecanoid pathway and protein phosphorylation in fungal elicitor-induced expression of terpenoid indole alkaloid biosynthetic genes in Catharanthus roseus. Plant Physiol. 1999,119:1289-1296
    [82]Endt DV, Kijne JW, Memelink J. Transcription factors controlling plant secondary metabolism:what regulates the regulators Phytochem.2002,61:107-114
    [83]Van der Fits L, Zhang H, Menke FLH, et al. A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene STR and is induced by elicitor via a jasmonate-independent signal transduction pathway. Plant Mol Biol.2000,44:675-685
    [84]Rushton PJ, Somssich IE. Transcriptional control of plant genes responsive to pathogens. Curr Opin Plant Biol.1998,1:311-315
    [85]Pre M, Siberil Y, Memelink J, et al. Isolation by the yeast one-hybrid system of cDNAs encoding transcription factors that bind to the G-box element of the STRictosidine synthase gene promoter from Catharanthus roseus. Int. J. Bio-Chrom.2000,5:229-244
    [86]Siberil Y, Benhamron S, Memelink J, et al. Catharanthus roseus G-box binding actors 1 and 2 act as repressors of STRictosidine synthase gene expression in cell ultures. Plant Mol Biol.2001,45:477-488
    [87]Chatel G, Montiel G, PreA M, et al. CrMYC1, a Catharanthus roseus elicitor-and jasmonate-responsive bHLH transcription factor that binds the G-box element of the STRictosidine synthase gene promoter. J. Exp. Bot..2003,54:2587-2588
    [88]Pauw B, Hilliou FAO, Martin VS, et al. Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus. J Biol Chem.. 2004,279:52940-52948
    [89]Christie AM, Peebles, Ka-Yiu San.Transcriptional response of the terpenoid indole alkaloid pathway to the overexpression of ORCA3 along with jasmonic acid elicitation of Catharanthus roseus hairy roots overtime. Metabolic Engineering. 2009(11):76-86
    [90]Joshua S Yuan, Ann Reed, Feng Chen, et al. Statistical analysis of real-time PCR Data. BMC Bioinformatics.2006,7:1471-2105

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700