用户名: 密码: 验证码:
农牧交错带天然草地开垦后不同开垦年限对土壤特性、CH_4吸收和N_2O排放的影响研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文选择位于内蒙古东部农牧交错带锡盟太仆寺旗的天然草地和邻近的6个不同开垦年限的农田样地(垦殖年限为5年,10年,15年,20年,35年和50年)作为研究对象。研究了农牧交错带天然草地转变为农田后,开垦年限对土壤理化特性的影响。此外,还选取了天然草地和开垦5年、10年、50年的农田这4个研究样地,利用静态暗箱法,对其土壤CH4吸收和N2O排放的季节动态变化进行野外观测试验,旨在探索天然草地转化为农田后开垦年限对土壤CH4吸收和N2O排放的影响。并在野外观测试验的基础上,通过室内培养实验,探讨了内蒙古锡盟太仆寺旗典型草原转变为农田后,在相同的水分温度条件下,不同开垦年限下(5年、10年、15年、20年、35年、50年)农田土壤的理化特性对土壤CH4吸收和N2O排放的影响。本研究旨在为农牧交错带土地的合理利用、综合评价草地土壤的质量和肥力状况、制定土壤中温室气体排放减缓措施等提供科学依据。主要研究结果如下:
     1.天然草地转变为农田后,在0-30cm土层中,土壤的有机碳含量、全氮含量、速效钾含量、水溶性碳含量、pH值和粘粒含量均随农田开垦年限的延长而降低;而土壤砂粒含量和土壤的容重随农田开垦年限的增加而显著增加。这表明开垦年限越长越易导致土壤养分的缺乏和土壤的酸化和沙化。
     2.天然草地转变为农田后,增强了土壤吸收CH4的能力,土壤对CH4的吸收量随开垦年限的增加而降低;而天然草地转变为农田后,开垦5年降低了土壤N2O的排放能力,开垦10年、50年增加了土壤N2O的排放能力。
     3.野外观测实验表明,土壤的温度和水分含量是影响CH4吸收的主要因子,土壤的硝态氮含量和水分含量是影响N2O排放的主要因素;土壤细菌数量对天然草地N2O的排放有明显影响,土壤微生物生物量氮含量对开垦10年、50年农田N2O的排放通量影响显著。
     4.培养试验表明,在温度水分相同的条件下,天然草地转变为农田后低了土壤吸收CH4和排放N2O的能力,CH4的吸收量和N2O的排放量随开垦年限的增加呈现降低趋势。单因子相关分析表明:土壤有机碳含量、全氮含量、速效钾含量、水溶性碳含量、砂粒含量以及pH值是土壤吸收CH4的主要影响因素;土壤有机碳含量、全氮含量是影响土壤N2O排放的主要因子。
Natural grassland and the adjacent six farmlands of different reclamation years (5, 10, 15, 20, 35 and 50 years) in Taipusi County of the Inner Mongolia Autonomous Region were studied. The study investigated the long time effect of a conversation from grasslands to croplands on soil physical-chemical properties, using direct field samplings. The natural grassland, five years cropland, ten years cropland and fifty years cropland was selected to study the effects of reclamation years(5,10, 50 years)on soil CH4 absorption and N2O emission. The seasonal dynamics changes of soil CH4 uptake and N2O emissions in four land plots were observed in field, using the static black-box method. On the basis of field observation experiment, under the same conditions of water and temperature, the effects of soil physical-chemical properties of the Different-reclamation-years cropland (5, 10, 15, 20, 35 and 50 years) converted from typical steppe in Taipusi County on CH4 absorption and N2O emission were studied using a laboratory incubation method. This study was designed to provide a scientific basis to use the land rationally, to assess comprehensivly the grassland conditions such as soil quality and fertility, to develop the mitigation measures of soil greenhouse gas emissions, and so on. The major results are as follows:
     1. Soil physical-chemical properties were influenced significantly after natural grassland was changed into cropland. Reclamation induced a reduction of soil organic carbon (SOC) content, total nitrogen (TN) content, soil available kalium content, dissolved organic carbon content (DOC), pH levels and clay content, and increased soil bulk density and sand content in the 0-30cm soil layer, with the use length of the farmland.The results showed that soil desertification, soil acidification and loss of soil nutrient were more serious, with the increase of reclamation years.
     2. The capacity of CH4 uptake was enhanced significantly after grassland was changed into cropland, soil CH4 absorption decreased with cultivation years. With natural grassland as control, N2O emission was reduced in five years cropland, but N2O emission was increased in ten years cropland and fifty years cropland.
     3. Field observation experiment showed that: moisture and temperature in soil surface were the main factors of CH4 absorption, and soil surface moisture content and NO3--N content were the main factors of soil N2O emissions. The number of soil bacteria influenced significantly N2O emission of grassland. Soil microbial biomass nitrogen (BN) affected significantly N2O emission of ten years cropland and fifty years cropland.
     4. Incubation experiment showed that: under the same conditions of water and temperature, the CH4 uptake and N2O emission were reduced significantly after grassland was changed into cropland, soil CH4 absorption and N2O emission decreased with cultivation years. The Correlation analysis indicated that: soil organic carbons (SOC), total nitrogen (TN), soil available kalium content, pH levels, sand content and dissolved organic carbon content (DOC) were the main influencing factors of CH4 absorption ; It also founded that there was clear dependency of soil properties (soil organic carbons content; total nitrogen content) on soil N2O emission.
引文
[1]毛文永,文剑平.全球环境问题与对策[M].北京:中国科学技术出版社,1993.
    [2]李学梅,李忠峰.土地利用/覆盖变化研究进展及其意义[J].安徽农业科学, 2008,36(6):2462-2464.
    [3]Crutzen, P J. The changing photochemistry of the atmosphere [J].Tellus, 1991, 43:136-151.
    [4]Keller M, Jacob D J, Wofsy S C, et al. Effects of tropical de-forestation on global and regional atmospheric chemistry [J].Climatic Change,1991,19: 145-158.
    [5]Dickenson R E. Global change and terrestrial hydrology—a review [J].Tellus, 1991, 43: 176-181.
    [6]Skukla J. Amazonian deforestation and climate change [J].Science, 1990, 247: 1 322-1 324.
    [7]Lean J. Simulation of the regional climatic impact of Amazon deforestation [J].Nature, 1989, 342: 411-413.
    [8]LalR. Soil carbon sequestration impacts on global climate change and food security [R]. Science, 2004:304.
    [9] Stevenson F J, ColeM A. Cycles of soil carbon, nitrogen, phosphorus, sulfur, micronutrients [R]. USA: JohnW iley& Sons Inc, 1999.
    [10] SchipperLA, PercivalH J, SparlingG P. An approach for estimating when soils will reach maxi- mum nitrogen storage [J]. Soil Use and Management, 2004, 20: 281-286.
    [11] Priess J A, A Veldkamp.Assessment of interactions between land use change and carbon and nutrient fluxes in Ecuador[J].Agriculture Ecosystem and Environment,2001,85:269-279.
    [12] Nasholm,Torgny,Alf Ekblad,Annika Nordin,Reiner Giesler,Mona Hogberg,Peter Hogberg.Boreal forest plants take up organic nitrogen [J].Nature, 1998, 392: 914-916.
    [13] Friedel JK, Munch JC, Fischer WR. Soil microbial properties and the assessment of available soil organic matter in a haplic luvisol after several years of different cultivation and crop rotation [J]. Soil BiolBiochem, 1996, 28: 479-488.
    [14] JawsonND, ElliottLF, PapendickRI, et al. The decomposition of 14C-labelled wheat straw and 15N-labelled microbial material[J]. Soil BiolBiochem, 1989, 21: 417-422.
    [15] Gregorich etal. Towards a minimum data set to assess soil organic matter quality in agricultural soils [J].Can.J.Soil Sci., 1994, 74:367-385. [16 ]吴贵蜀.农牧交错带的研究现状及进展[J].四川师范大学学报,2003,26(1):108-121.
    [17]吉林省统计局.吉林社会经济统计年鉴(1986—1990).北京:中国统计出版社.
    [18] Parton WJ, Scurlock JMO.Observations and modeling of biomass and soil organic matterdynamics for the grassland biome worldwide [J].Global Biochem.Cycles, 1993, 7: 785-809.
    [19] Smith MS.Global Change Impacts on Pastures and Rangelands (Implementation plan)[M]. Canberra: GCTE Core Project Office, 1979.
    [20] Anderson D W, Coleman D C.The dynamics of organic matter in grassland soils [J].Journal of Soil and Water Conservation, 1985, 211-216.
    [21]林慧龙,王军,徐震,等.草地农业生态系统中的碳循环研究动态[J].草业科学,2005,22(4):59-63.
    [22]高峰,孙成权,曲建升.全球变化研究的新认识-IPCC第三次气候评价报告第一工作组概要[J].地球科学进展,2001,16(3):442-445.
    [23]刘慧,成升魁,张雷.人类经济活动影响碳排放的国际研究动态[J].地理科学进展,2002,21(5):420-429.
    [24]旭日干主编.李博文集.北京:科学出版社.1999.
    [25]李明峰,董云社,齐玉春等.温带草原土地利用变化对土壤碳氮含量的影响[J].中国草地,2005,27(1):1-6.
    [26]赵兴梁,杨根生.论北半球三大温带草原农垦与沙漠化的关系[J].中国沙漠, 2002,22(5) :446-452.
    [27]赵文智,何志斌,李志刚.草原农垦区土地沙质荒漠化过程的生物学机制[J].地球科学进展, 2003,18(2) :257-263.
    [28]焦燕,赵江红,徐柱.内蒙古农牧交错带土地利用对土壤性质的影响[J].草地学报, 2009,17(2) :234-239.
    [29]王艳芬,陈佐忠, LARRY T T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报,1998,22(6):545-551. [30 ]Bouwman A F.Soils and Greenhouse Effect [J]. Chichester: John Wiley &Sons 1990:61-127.
    [31] Houghton RA. Changes in the storage of terrestrial carbon since 1850[A]. Soils and Global Change[C]. Boca Raton, Florida: CRC Press, Inc. 45-65.Annu. Rev. Ecol. Syst., 1995, 8:51-81.
    [32] Schlesinger WH. An overview of global carbon cycle [A].In: Lai R, eds. Soils and Global Change [C]. Boca Raton, Florida: CRC Press, 1995, Inc. 9-25.
    [33]刘全友,童依平.北方农牧交错带土地利用类型对土壤养分分布的影响[J].应用生态学报,2005,16(10):1849-1852.
    [34]周存宇.大气主要温室气体源汇及其研究进展[J].生态环境,2006,15(6):1397-1402.
    [35]王琛瑞,黄国宏,梁战备,等.大气甲烷的源和汇与土壤氧化(吸收)甲烷研究进展[J].应用生态学报,2002,13(12) :1707-1712.
    [36]郝晓晖,苏以荣,胡荣桂.土壤利用管理对土壤甲烷氧化的影响[J].云南农业大学学报,2005,20(3):369-375.
    [37]Mosier AR, Schimel DS, et al. Methane and nitrous oxide fluxes in native, fertilized and cultivated grasslands [J]. Nature, 1991, 350:330-332.
    [38] Bronson K F,Mosier A R. Nitrous oxide emissions and methane consumption in Wheat and corn cropped systems [J]. Agricultural ecosystem Effects on trace gases and global climate change, 1993, 55:133-144.
    [39] Li Y-E(李玉娥),Lin E-D(林而达). Effect of variation in land use pattern of natural grassland on its CO2 emission and CH4 uptake [J]. Rural Eco-Environ, 2000, 16(2):14-16.
    [40] Mosier AR, Parton WJ, Valentine DW, et al. CH4 and N2O fluxes in the Colorado shortgrass steppe2.Longterm impact of land use change [J]. Global Biogeochemical Cycles, 1997, 11(1):29-42.
    [41]王跃思,继宝明.农垦与放牧对内蒙古草原N2O、CO2排放和CH4吸收的影响[J].环境科学,2001,22(6):7-14.
    [42]李明峰,董云社.农垦对温带草地生态系统CO2、CH4、N2O通量的影响[J].中国农业科学,2004,37(12):1960-1965.
    [43]王艳芬.人类活动干扰下草原温室气体地-气交换特征及碳平衡研究[D]:[学位论文].北京:中国科学院植物研究所,2001.
    [44]马秀枝.开垦和放牧对内蒙古草原土壤碳库和温室气体通量的影响[D]:[学位论文].北京:中国科学院植物研究所,2006.
    [45] Cai Z-C(蔡祖聪), Moiser AR. Effects of water status on CH4 oxidation, N2O and CO2 emission [J]. Soil(土壤), 1999,6:289-298.
    [46] Czepiel PM, Crill PM, Harriss RC. Environmental factors in fluencing the variability of methane oxidation in temperate zone soils [J]. Geoph Res, 1995, 100(D5):9359-9364.
    [47] Gulledge J, Steudler PA and Schimel JP. Moisture control over atmospheric CH4 consumption and CO2 production in diverse Alaskan soils [J]. Soil Biol Biochem, 1998, 30:1127-1132.
    [48] Dong Y-S(董云社), Zhang S(章申), et al. Fluxes of CO2、N2O and CH4 from a typical temperate grassland in Inner Mongolia and its daily variation [J]. Chinese Science Bulletin, 2000, 45:318-322.
    [49] Wang Y-F(王艳芬),Ji B-M(纪宝明),Chen Z-Z(陈佐忠), et al. Preliminary results of a study on CH4 flux in Xilin River Basin steppe under different grazing intensities [J]. Acta Phytoecol Sin, 2000, 24(6):693-696.
    [50] Steinkamp R, Butterbach-Bahl K, Papen H. Methane oxidation by soil of an N limited and N fertilized spruce forest in the Black Forest, Germany [J]. Soil Biol Biochem, 2001, 33:145-153.
    [51] Shigehiro I, Tadashi S, et al. Methane oxidation in Japanese forest soils [J]. Soil Biol Biochem,2000, 32:769-777.
    [52]郑循华,王明星,王跃思等.稻麦轮作生态系统中土壤湿度对N2O产生与排放的影响[J].应用生态学报,1996,7(3):273-279.
    [53]王智平,曾江海等.农田土壤N2O排放的影响因素[J].农业环境保护,1994,13(1):40-42.
    [54] Topp E, Pattery E. Soils as sources and sinks for atmospheric methane [J]. Canana Journal of Soil Science, 1997, 77:167-178.
    [55]李明峰,董云社,齐玉春,等.极端干旱对温带草地生态系统CO2、CH4、N2O通量特征的影响[J].资源科学,2004,26(3): 89-96.
    [56]耿远波,章申,董云社等.草原土壤的碳氮含量及其与温室气体通量的相关性[J].地理学报,2001, 56 (1):44-54.
    [57]太仆寺旗人民政府.内蒙古太仆寺旗土地利用总体规划[R].1989.
    [58]王海亮.太仆寺旗志[M].海拉尔:内蒙古文化出版社,2000:1-101.
    [59]李酉开,蒋柏藩,袁可能.土壤农业化学常规分析方法[M] .北京:科学出版社,1983:1-112.
    [60]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,1999:1-247.
    [61]尹萍,李小刚,李银科,等.开垦年限对亚高山草地土壤有机碳、氮和土壤团聚体稳定性的影响[J].甘肃农业大学学报,2008, 4(8):97-102.
    [62] Davidsone A, Ackermani L. Changes in soil carbon inventories following cultivation of previously untilled soils [J]. Biogeochemmistry, 1993, 20:161-193.
    [63]陈佐忠, LARRY T T.人类活动对锡林郭勒地区主要草原土壤有机碳分布的影响[J].植物生态学报, 1998, 22(6):545-551.
    [64] Post W M, Man L K. Changes in soil organic carbon and nitrogen as a result of cultivation. Bouw- man A F. Soils and the Greenhouse Effect [M]. New York:John Wiley&Sons, 1990, 401-406.
    [65] Flessa H, Ludwig B, Heil B. The origin of soil organic C, dissolved organic and respiration in along term maize experiment in Halle, Germany, determined by C natural abundance [J]. Journal of Plant Nutrition and Soil Science, 2000, 163:157-163.
    [66] Celik I. Land-use effects on organic matter and physical properties of soil in a southern Mediterran- ean highland of Turkey [J]. Soil and Tillage Research, 2005, 83:270-277.
    [67] Schlesinger WH. An overview of global carbon cycle [A].In: Lai R, eds. Soils and Global Change [C]. Boca Raton, Florida: CRC Press, 1995, Inc. 9-25.
    [68] Stenvensen FJ. Humus Chemistry: Genesis, Composition, Reaction [M]. New York: John Wiley and Sons, 1994, Inc. 1-24.
    [69] Cole C V, Flach K, Lee J. Agricultural sources and sinks of carbon [J]. Water, Air and Soil Pollution, 1993, 70:111-122.
    [70] Chapman S J, M.Thurlow. The influence of climate on CO2 and CH4 emissions from organic soils [J]. Agricultural and Forest Meteorology, 1996, 79:205-217.
    [71] AguilarR, Kelly E.F, Heil RD.Effects of cultivation on soils in northern Great Plains rangeland [J].Soil Science Society of America Journal, 1988, 52: 1081-1085.
    [72] Anderson D W, Coleman D C.The dynamics of organic matter in grassland soils [J].Journal of Soil and WaterConservation, 1985, 40:211-216.
    [73] Kosmas C., Danalatos N., Moustakas N., Tsatiris B., Kallianou Ch., Yassoglou, N. The impacts of parent material and landcape position on drought and biomass production of wheat under semi-arid conditions [J].Soil Technology, 1993, 6:337-349.
    [74] Bronson K F, Zobeck T M, Chua T T, et al. Carbon and nitrogen pools of Southern High Plains cropland and grassland soils [J]. Soil Science Society of America Journal, 2004, 68:1695-1704.
    [75] Strebel O, B?ttcher J, Aldag R. Quantitative and qualitative changes in soil properties of horizons of sandy soils caused by conversion of grassland to arable land [J]. Journal of Plant Nutrition and Soil Science, 1988, 151:341-347 (in German).
    [76] Bauer A, Black A L. Soil carbon, nitrogen, and bulk density comparisons in two cropland tillage systems after 25 years sand in virgin grassland [J]. Soil Science Society of America Journal, 1981, 45:1166-1170.
    [77] Franzluebbers A J, Stuedemann J A, Schomberg H H, Wilkinso S R. Soil organic C and N pools under long-term pasture management in the Southern Piedmont USA [J]. Soil Biology & Biochem- istry, 2000, 32:469-478.
    [78] Thurman N C, Sencindiver J C. Properties, classification, and interpretations of mine soils at two sites in West Virginia [J]. Soil Sci Soc Am J, 1986, 50:181-185.
    [79]李玉娥,林而达.土壤甲烷吸收汇研究进展[J].地球科学进展, 1999,14,(6):613-619.
    [80]齐玉春,董云社.土壤氧化亚氮产生、排放及其影响因素[J].地理学报,1999,54(6): 534-543.
    [81]谢军飞,李玉娥.农田土壤温室气体排放机理与影响因素研究进展[J].中国农业气象,2002,23(4):47-53.
    [82]周存宇,周国逸,王迎红,等.鼎湖山主要森林生态系统地表CH4通量[J].生态科学, 2006, 25(4) :289-293.
    [83] Le Mer, Roger P. Production, oxidation, emission and consumption of methane by soils [J]. Europe Soil Biol, 2001, 37:25-50.
    [84] Xu X-C(徐星凯),Zhou L-K(周礼恺). Main factors affecting soil born methane oxidation and measurements for reducing CH4 fluxes[J]. Eco-Agric Res(生态农业研究),1999,7(2):18-22.
    [85] WOLF I., RUSSOW R. Different pathways of formation of N2O, N2 and NO in black earth soil[J]. Soil Biol Biochem, 2000, 32:229-239.
    [86] FLOWERS T H., OCALLAGHAN J R. Nitrification in soils incubated with pig slurry or ammonium sulphate [J].Soil Biology Biochemistry, 1983, 15:337-342.
    [87] Sexstone A J., Parkin T B., Tiedje J M. Temporal response of soil denitrifiation rates and irrigation[J].Soil Sci Soc AmJ,1985,49:99-103.
    [88]梁东丽,吴庆强,李生秀.旱地反硝化作用和N2O排放影响因子的研究[J].西北农林科技大学学报,2007,35(12):93-98.
    [89] Del Grosso S J, Parton W J, Mosier A R, et al. General model for N2O and N2gas emissions from soils due to nitrification [J]. Global Biogeochemical Cycles, 2000, 14:1045-1060.
    [90] Smith KA, Dobbie KE, Ball BC, et al. Oxidation of atmospheric methane in northern European soils, comparison with other ecosystems, and uncertainties in the global terrestrial sink [J]. Global Change Biol, 2000, 6:791-803.
    [91] Ojima DS, Valentine DW, Mosier AR, et al. Effect of land use change on methane oxidation in temperate forest and grassland soils [J].Chemosphere, 1993, 26:1-4,675-685.
    [92] Hütsch B W, Webster C P, Powlson D S. Long-term effects of nitrogen fertilization on methane oxidation in soil of the Broadbalk wheat experiment [J]. Soil Biology and Biochemistry, 1993, 25:1307-1315.
    [93] Bender M, Conrad R. Effect of CH4 concentrations and soil conditions on the induction of CH4 oxidation activity [J]. Soil Biology and Biochemistry, 1995, 27:1517-1527.
    [94]丁洪,王跃思,项虹艳,李卫华.福建省几种主要红壤性水稻土的硝化与反硝化活性[J].农业环境科学学报, 2003, 22(6):715-719.
    [95] Davidson E A. Sources of nitric oxide and nitrous oxide following wetting of dry soil [J]. Soil Sci. Soc. Am.J., 1992, 56:95-102.
    [96] Karene Debbie, Keith A Smith. Nitrous oxide emission factors for agricultural soils in Great Britain: the impact of soil water filled pore space and other controlling variables [J]. Global Change Biology, 2003, 9:204-218.
    [97] Manuela Rover, Otto Heinemeyer, Ernst-august Kaiser. Microbial induced nitrous oxide emissions from an arable soil during winter [J]. Soil Biol. Biochem., 1998, 30(14):1859-1865.
    [98]杜睿.温带草甸草原土壤N2O产生过程研究[J].生态科学,2006, 25(3):202-206.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700