用户名: 密码: 验证码:
基于模拟贮运的马拉巴栗形态及生理变化研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验以二年生盆栽马拉巴栗为试验材料,用智能光照培养箱进行模拟贮运,采用正交设计,用dps软件和excel进行数据分析,研究不同贮运前处理(考虑光照、水分、基质、杀菌剂等四个因素)、不同贮运处理(考虑温度、药剂、包装等三个因素)对马拉巴栗叶片的形态(考虑观赏形态和叶面表面形态)和生理变化的影响,找出其变化的规律,从中筛选出不同贮运前处理和不同贮运处理的最佳组合,并比较处理中因子的显著性,从而为马拉巴栗生产中实施贮运技术提供参考。本研究意在探索影响马拉巴栗观赏品质的主要因子,及最佳的贮运前处理和贮运处理,为解决长期黑暗、缺水的贮运环境中如何保持观赏品质提供新途径。主要研究结果如下:
     1.马拉巴栗经过模拟贮运前处理后,以30d遮光、运前1d停止浇水、基质2(椰糠60%+珍珠岩30%+草炭10%)、50%多菌灵800倍液的组合最佳,在观赏形态方面,叶片保存率达76%,绿色叶占叶片总数的80%以上。综合评价指数(叶片保存率、叶色、株型)达到4.321。在生理方面,叶绿素含量为1.195,叶片的含水量为79.71%,REC值相对初始值上升了0.643,SOD酶活性下降了0.023,MDA含量下降了3.739。
     2.马拉巴栗经过模拟贮运处理后,以13℃,5mg/L的KT喷洒植株,纸箱包装处理的组合为最佳,在观赏形态方面,叶片保存率达83.52%,绿色叶占叶片总数的80%以上。综合评价指数(叶片保存率、叶色、株型)达到4.507。在生理方面,叶片含水量为65.37%,SOD酶活性上升了3.56%,POD活性133.33%,CAT活性下降了48.81%,MDA含量上升了200%,REC值上升了77.78%。
     3.马拉巴栗叶片下表皮气孔下陷,排列紧密,有利于水分的保持,上表皮细胞排列紧密,可以减少气孔开闭时散失水分。气孔形态为椭圆近圆形,不利于气孔的开闭,也能有效地防止水分的流失。这些观察结果表明马拉巴栗叶片的结构能够适应不良的贮运环境。
     贮运植株的老叶与新叶相比,前者的气孔较大,发育更完全,气孔周围的细胞受挤压的程度更明显,而后者的上表皮细胞受挤压的程度更大。后者的气孔密度和气孔器的纵横比较大,表明了新叶气孔开合较为容易,对环境的敏感性较强。贮运植株叶片的气孔密度和气孔纵横比均大于正常生长的植株,表明了保卫细胞为了维持植物的生长,需要改变自身的结构来适应不良的环境。贮运中马拉巴栗长期处于黑暗条件下,气孔开度减小或者关闭,也会引起叶片黄化、衰老。
This experiment carried on the simulate storage and transportation to the biennial plants Pachira macrocarpa with the intelligent illumination incubator. We choose biennial bonsai P. macrocarpa as the experimental materials.We used the method of orthogonal design,with dps data software and excel to analysis,studying the affect of the different pretreatments (considering four factors,such as light, moisture, ground substance and sterilising agents) before storage, the different treatments (considering three factors,such as temperature, reagents and packaging)during the storage on the P. macrocarpa leaves' morphology (Considering viewing patterns and leaf morphology) and physiological changes, finding out the rules of the changes, selecting the best combination of different processing before storage and different processing during storage and Comparing Factors’Significance during the processing, so as to provide a reference of transportation technology to the P. macrocarpa 's production implementation. The purpose of this research is to analyse the main factor that effect the quality for appreciation of P. macrocarpa and the best pretreatments and treatments, in order to find a new way to deal with the problem about appreciation quality under the situation of darkness and shortage of water. The main results were as follows:
     1. Through the Pre-Processing of simulating storage and transportation of P .macrocarpa, The results showed that selection of 30d shading, stop watering before the 1d,coconut coir 60% + perlite 30% + peat 10%, 50% carbendazim by 800 times is the best combination during the pre-processing of storage and transportation for the P. macrocarpa.In ornamental morphology side, The leaf survival rate received 76% after 45d storage and transportation.The green leaf account for above 80% in the mature leaf. The leaf appearance kept well. Its multiple evaluation number received 4.321.
     In physiology side, It indicated that Chlorophyll content was 1.195.Leaf content was 79.71%.Compared with the beginning,its REC value had increased 0.643.SOD activity had decreased 0.023,and the MDA content decreased 3.739.
     2. Through simulating storage and transportation of P .macrocarpa, The results showed that selection of the 13℃,1000 times of the thiophanate-methyl sprinkling and using the packing boxes was the best combination,the survival rate of leaves accounts for 83.52% after 45d storage and transportation.In ornamental morphology side, The green leaf account for above 80% in the mature leaf. Its mutiple evaluation number received 4.507.
     In physiology side,its water content was 65.37%,SOD activity had increased by 3.56%.POD activity had increased by 133.33%,and CAT activity had decreased by 48.81%.MDA content had increased by 200%,and REC value by 77.78%.
     3. The pores in the lower epidermis lower epidermis of P .macrocarpa’s leaves are bogging down and arrange closly . upper epidermic cells arrange closly , which being squeezed obviously . pores bogging down are good for keeping water . the closer epidermic cells are , the less water loss when pores are closed . The form of pores is ellipse close to round , goes against to the lockage of pores , and also keeps off the water loss effectively .These results make clearly that the leaves’structure of P. mcrocarpa can adapt to the ill-natured condition of storage and transportation .
     Compare the adult plant's older leaves with the new one in storage and transportation , the former's pore is bigger, and the growth is completer, the cells around the pore are squeezed more obviously. However , the latter's epidermal cells are squeezed more obviously . The pore density and stomatal apparatus's aspect ratio of storage and transportation adult plants’new leaves are bigger than older one , which indicates that the new leaves’pore opens and closes more easily , and is more sensitive to environment . The pores’density and the stomatal index of P. macrocarpa’s leaves in the storage and transportation is bigger than the normal growth one . Compared to the normal plants , The aspect ratio of leaves in storage and transportation is bigger , which indicates that guard cell need to change its own structure to adopt the bad environment to keep the normal growth of plants . P. macrocarpa during the storage and transportation is in a dark condition for a long time , and the stomatal aperture minishes or close totally , which may leads to the etiolation and senescence of leaves .
引文
[1]王江霞.发财树[J].河北林业, 2001, (6): 21.
    [2]许荣彦.发财树[J].中国花卉盆景, 1996, (10): l.
    [3]赵良华.发财树的由来[J].新疆林业, 1999, (2): 71.
    [4]庄馥萃,陈朝阳.新型盆景植物——马拉巴栗[J].技术开发与引进, 1993, (3): 24-25.
    [5]郑翊旻,陈颖.木棉科的四种观赏树木[J].广东园林, 2006, 10(5): 42-44.
    [6]田晓琴,吐尔逊?阿衣,贾娜古丽.“吉祥”花木[J].新疆林业, 2005, 4: 35.
    [7]臧小平,马蔚红.木棉科观赏植物的主要特性、园林绿化应用与繁殖[J].南方农业, 2007, 2(2).
    [8]梁繁荣.发财树的栽培技术[J].特种经济植物, 2001, (3): 16.
    [9]冯文星,雷新涛,赵霞.编辫马拉巴栗观赏植株的种植与加工[J].中国热带农业, 2005, 4.
    [10]刘芳,巢强.室内盆栽发财树[J].北京农业, 2001, (10): 16.
    [11]雷洽祥.马拉巴栗编辫造型及养护[J].园林, 2002, (9): 24-25.
    [12]程士国.中国花卉出口日本现状透视[J].中国花卉园艺, 2006, 23: 7-9.
    [13]白燕枫.走马观花在东瀛[J].中国花卉园艺, 2006, 23: 10-15.
    [14]韩娜.人参榕贮运过程中落叶的原因及改善措施研究[硕士论文].福州:福建农林大学, 2007.
    [15]王晓云.发财树栽培技术[J].安徽农学通报, 2006, 12(11): 120.
    [16] Patricia Peres Polizelli Fernanda Dell Antonio Facchini, Hamilton Cabral and Gustavo Orlando Bonilla-Rodriguez. A New Lipase Isolated from Oleaginous Seeds from Pachira aquatica (Bombacaceae)[J]. Applied Biochemistry and Biotechnology, 2008, 9(3): 150.
    [17] Mariko Shibatani Yasuyuki Hashidoko and Satoshi Tahara. A Major Fungitoxin from Pachira aquatica and Its Accumulation in Outer Bark[J]. Chemical Ecology, 1999, 2(2): 25.
    [18] Volker Spitzer . GC-MS characterization (Chemical lonization and electron impact modes) of the methyl esters and oxazoline derivatives of cyclopropenoid fatty acids[J]. the American Oil Chemists' Society, 1991, (12): 12.
    [19] Dulce Infante Mata Patricia Moreno-Casasola. Effect of in situ storage, light, and moisture on the germination of two wetland tropical trees[J]. Aquatic Botany, 2005,( 83): 206–218.
    [20] J.T.A. Oliveira I.M. Vasconcelos, L.C.N.M. Bezerra, S.B. Silveira,A.C.O. Monteiro, etc. Composition and nutritional properties of seeds from Pachira aquatica Aubl, Sterculia striata StHil et Naud and Terminalia catappa Linn[J]. Food Chemistry, 2000, (70): 185-191.
    [21] Choi JongIn H E, Paek KeeYoeup Choi JI, Hahn EJ,Paek KY. Peroxidase activity, chlorophyll fluorescence response, and photosynthesis of Aphelandra squarrosa 'Dania', Ficus benjamina, and Pachira aquatica during water deficit stress[J].1993,(10):12
    [22]章宁,黄维南.马拉巴栗胚胎发育及离体胚再生植株的研究[J].园艺学报, 2000, 27(1): 71-73.
    [23]王月英,郭秀珠,黄品湖等.不同类型花卉植物体营养分析及其在营养液配制中的应用[J].浙江林学院学报, 2004, 21(4): 413-417.
    [24]李永红,马颖敏,韩蕾.超氧化物歧化酶与马拉巴栗种子脱水耐性之间的关联[J].林业科学, 2009, 45(5): 74-79.
    [25]刘慧民,张蕾等.发财树大树桩生根处理技术研究[J].北方园艺, 2004, (2): 73.
    [26]周畅,刘付东标.发财树的伤口处理与植株生长关系的研究[J].西南农业大学学报(自然科学版), 2006, 4(28): 295-297.
    [27]刘艳丽,周建民,徐胜光等.马拉巴栗净化室内空气中甲醛的研究[J].生态环境, 2007, 16(2): 332-335.
    [28]吴丽华.室内观叶植物价值评价体系研究[J].福建林业科技, 2003, 12(30): 62-65.
    [29]李影,蓝炎阳,程志明等.富贵竹出口贮运栽培基质的研究[J].福建热作科技, 2005, 30(1): 11-12.
    [30]宁伟,葛晓光,李天来等.富里酸处理对番茄幼苗贮运中生理效应及激素水平的影响[J].园艺学报, 2005, 32(4): 704-706.
    [31]鲍桐,宁伟,刘延吉.黄腐酸对番茄秧苗贮运过程中内源激素的影响[J].安徽农业科学, 2006, 34(3): 405-406.
    [32]高俊平,王子华.采后保鲜—提升我国花卉产业整体水平的关键[J].中国花卉园艺, 2004, 7: 10-11.
    [33]盛爱武,乔爱民,高飞等.富贵竹切口保鲜及贮运研究[J].中国农学通报, 2005, 21(9): 329-331.
    [34]张碧波,刘奕清.富贵竹的贮运保鲜与霉菌控制[J].林业实用技术, 2006, 3: 33-34.
    [35]孙震,何文华.盆花采前驯化与采后保鲜技术的研究进展[J].江西农业学报, 2006, 18(6): 75-78.
    [36] Joanna Nowak Ryszard.M Rudnichi. Postharvest Handling and Storage Cut Flowers, Florist Greens, and Potted Plants[M]. Timber Press, 1990:
    [37] Michelle H. Williams Eva Rosenqvist, Marianne Buchhave. The effect of reducing p roduction water availability on the post - production quality of potted miniature roses(Rosa hybrida)[J]. Postharvest Biology and Technology, 2000, 18: 143-150.
    [38]赵世杰.植物生理学实验指导[M].北京:中国农业科技出版社, 2002:
    [39]刘祖祺,张石城.植物抗性生理学[M].北京:中国农业出版社, 1994: 371-372.
    [40] mccord J M,Fridovich I.Superoxide dis mutase. An enzyme function for erythrocuprein(hemocuprein)[J]. Journal of Biological Chemistry, 1969, 244(22): 6049-6055.
    [41]王素平,郭世荣,胡晓辉等.盐胁迫对黄瓜幼苗叶片光合色素含量的影响[J].江西农业大学学报, 2006, 28(1): 32-38.
    [42]赵丽英,邓西平,山仑.不同水分处理下冬小麦旗叶叶绿素荧光参数的变化研究[J].中国生态农业学报, 2007, 15(1): 63-66.
    [43]卢从明,张其德,匡延云.水分胁迫对小麦叶绿体激发能分配和光系统II原初光能转换效率的影响[J].植物物理学报, 1995, 1l(1): 82-86.
    [44]许大全,张玉忠,张荣铣.植物光合作用的光抑制[J].植物生理学通讯, 1992, 28(4): 237-243.
    [45]康国芳,杨路华,李经伟.水分胁迫对小麦叶绿素a荧光参数的影响[J].湖北农业科学, 2008, 47(1): 22-23.
    [46] BJOKMAN O Demming B. Photon yield of O2 evolution and chlorophyllfluorescence characteristics at 77Kamong vascular plants of diverse origins[J]. planta, 1987, 170: 489-504.
    [47]华东师范大学生物系.植物生理学实验指导[M].北京:人民教育出版社, 1980:
    [48] Rao M V Paliyath G, Ormrod D P. Ultraviolet-B-and ozone-induced biocheemical changes in antioxidant enzymes of arabidopsis thaliana[J]. Plant Physiology, 1996, 110(1): 125-136.
    [49]郭素枝.扫描电镜技术及其应用[M].厦门:厦门大学出版社, 2006: 100-155.
    [50]黄鹤丽,林电,章金强.水分胁迫对巴西香蕉幼苗水分状况、质膜透性和根系活力的影响[J].基因组学与应用生物学, 2009, 28(4): 740-744.
    [51]刘彦琴,张丰雪,杨敏生.电导率在白杨杂种无性系耐旱鉴定中的应用[J].河北林果研究, 1997 (4): 301-305.
    [52]朱湘渝.欧美杨新品种抗寒性的研究[J].林业科学, 1990, 5(3): 487-490.
    [53]王启明,徐心诚,马原松等.干旱胁迫下大豆开花期的生理生化变化与抗旱性的关系[J].干旱地区农业研究, 2005, 23(4): 98-10.
    [54] Molisch H Der L d p. In the longevity of plants[M]. New York: Translated and published by H.Filling, 1978:
    [55]沈成国.植物衰老生理与分子生物学[M].北京:中国农业出版社, 2001: 166-167.
    [56] Misra G et al. Bot[J]. Gaz, 1973, 138: 5-11.
    [57] Yang S F. [J]. Hort Sci, 1980, 15(3): 238-243.
    [58]刘道宏.植物叶片的衰老[J].植物生理学通讯, 1983, (2): 14-19.
    [59]黄颜海,张健,罗承德.树木抗旱性研究(综述)[J].四川农业大学学报, 1997, 5(1): 49-54.
    [60]黄桂珍,黄庆昌.中国红树营养器官结构与生态适应的研究[J].植物学通报, 1991, 8(3): 41-44.
    [61]李杨汉主编.植物学[M].上海:上海科技出版社, 1984:
    [62] Stevens K, L,Pertson,R,L,Stephenson,G.R. Morphological and anatomical responses Lythrum Salicarial(Purle Loesestrife) to an imposed water gradient[J]. Plans Sci, 1997, 158(2): 172-183.
    [63] Williarn K S, David,J.Bell,Kelly A.Snepherd. Associations Between leaf structure , orientation , and sunlight exposure in five western Austrialian communities[J]. AmerJBot, 1998, 85(1): 56-63.
    [64]张延龙,牛立新.中国葡萄属植物叶片气孔特征的研究[J].植物研究, 1997, 17(3): 315-319.
    [65]曹冬梅,康黎芳,王云山等.根外施钾对苹果幼树气孔特征及光合速率的影响[J].山西农业科学, 20002, 30(1): 57-60.
    [66]王国英.葡萄叶片气孔与霜霉病抗性[J].果树科学, 1988, 5(1): 120-121.
    [67]陆嘉惠,李学禹,周玲玲等.甘草属植物叶表皮特征及其系统学意义[J].云南植物研究, 2005, 27(5): 525-533.
    [68] Kuraishi s. [J]. Plant Cell Physiol, 1976, 17: 875-885.
    [69] Thimann.K.V. Pron.Natl.Acad[J]. SciUSA, 1979, 73(9): 2295-2293.
    [70] DXC T W. Adaptation of leaf mesophyll structure to environmental light condition and its effect on leaf photo synthesis[J]. Chinese Journa of Applied Ecology, 1990, 1: 142-148.
    [71] Klessing D F al e. The salicylic acid signal in plant[J]. Plant mol Biol, 1994, 26: 14-39.
    [72]郝建军,康宗利.植物生理学[M].北京:化学工业出版社, 2005: 260.
    [73]姚瑞玲,肖青青.不同桉树无性系幼苗对离体干旱胁迫的生理响应[J].安徽农业科学, 2009, 37(25): 12262-12264,12334.
    [74]朱俊刚,王曙光,李晓燕. PEG胁迫对六倍休小麦幼苗SOD、POD活性及MDA含量的影响[J].中国农学通报, 2009, 25(18): 202-204.
    [75]刘明学,李邦发,王晓东.干旱胁迫对不同衰老型小麦抗氧化酶活性的影响[J].安徽农业科学, 2008, 36(23): 9851-9853.
    [76]陶丽华,周青.农业环境保护中的酸雨监测技术[J].中国农业生态学报, 2006, 14(4): 34—37.
    [77]李志博,魏亦农,杨敏等.低温胁迫对棉花幼苗叶绿素荧光特性的影响初探[J].棉花学报, 2006, 18(4): 255.
    [78]唐韦华,李天来,张秀美等.苗期弱光胁迫对番茄生长和叶绿素含量的影响及其恢复效应[J].沈阳农业大学学报, 2007, 38(3): 278-282.
    [79]李建武,王蒂.水分胁迫对马铃薯试管苗抗氧化酶活性的影响[J].北方园艺, 2008, (1): 7-9.
    [80] Harman D. The free-radical theory of ageing , In:Prypr WA ed , Free Radicals in Biology Vol.V[M]. Lonon: Academic Press, 1982: 255-266.
    [81] Willekens H Langebartels C T C et al. Diferential expression of catalase genes in Nicotiana plumbaginifolia(L.)[J]. Proceedings of the national acaderny of sciences of the United States of America, 1994, 91(22): 10450-10454.
    [82] Asadak. The water-water cycle in chloroplasts:scavenging of active oxygens and dissipation of excess photons[J]. Annual Review of Plant Physiology and Plant Molecular Biology, 1999, 50: 601-639.
    [83]罗云波.果蔬采后生物技术研究进展,见:园艺学年评[M].北京:科学出版社, 1995: 39-56.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700