用户名: 密码: 验证码:
PINK1蛋白相互作用蛋白的筛选与鉴定
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
帕金森病(Parkinson's disease,PD)是一种常见于老年人的神经退行性疾病。目前其发病机制尚不清楚,但是众多研究显示,线粒体功能障碍在PD发病机制中起了重要作用:线粒体毒素(如MPTP)可以在人类或动物模型引起PD样表现;PD患者的线粒体功能障碍常见;PD致病基因之一的编码产物PINK1蛋白在线粒体上发挥其生物学功能。
     研究显示,PINK1蛋白定位于线粒体,对线粒体具有保护功能。了解PINK1蛋白的功能对于理解PD的发病机制以及治疗具有重要意义。虽然已经对PINK1蛋白的功能进行了许多研究,目前对其如何发挥保护线粒体功能并不清楚。许多蛋白质通过相互作用参与生物学过程而发挥其功能,因此寻找PINK1蛋白的相互作用蛋白是理解PINK1蛋白功能的一个重要途径。为了寻找可能与PINK1蛋白存在相互作用的蛋白,我们从如下5个方面进行了研究:
     1.首先应用基因重组技术,以本研究小组前期工作中构建的pcDNA3.1-PINK1为模板,成功构建了野生型PINK1蛋白酵母表达质粒pGBKT7-PINK1。经测序证实PINK1基因阅读框正确,载体构建正确。然后将pGBKT7-PINK1转化到酵母细胞AH109中,应用Western blot技术,检测PINK1蛋白在酵母菌株AH109中的表达情况。结果发现PINK1蛋白能够在酵母菌株AH109中正确表达。
     2.将27μl MATCHMAKER Human Fetal Brain GAL4 cDNA &genomic libraries原始菌液铺到300个150mm皿中,在30℃温箱中培养24-36小时至菌落融合,刮取菌落,共收集菌液1000ml。使用QIAGEN Tip2500试剂盒抽提1000ml菌液的cDNA质粒,共获得2.593mg文库cDNA质粒。
     3.采用大规模酵母质粒转化技术,将所抽提的cDNA文库质粒转化至酵母细胞AH109/pGBKT7-PINK1,进行人胎脑cDNA文库筛选。按照文库说明书要求,共进行了4次文库筛选,共筛选了6.65×10~6个克隆,筛选得到77个His~+克隆,继续进行Ade~+/Mell~+表型检测,我们总共获得了61个Ade~+/His~+/Mell~+克隆。
     4.61个Ade~+/His~+/Mell~+克隆经过划线、PCR及酶谱分析消除重复克隆,我们获得了49个Ade~+/His~+/Mell~+克隆。通过自激活验证消除能够自激活的克隆,最终我们筛选获得了2个真阳性克隆。经过测序和在NCBI数据库中进行BLAST,这两个真阳性克隆都是已知的蛋白质,它们是KIF1A(kinesin family member 1A)和BAG5(BCL2-associated athanogene 5)。这说明PINK1蛋白可能与KIF1A和BAG5分别存在相互作用。
     5.由于我们获得的KIF1A序列位于其mRNA的不翻译区,因此认为KIF1A不能作为PINK1蛋白互作蛋白的候选蛋白。而我们筛选到的BAG5序列位于其氨基端编码区,故继续进行了BAG5与PINK1蛋白是否存在互作的验证。收集HEK293A细胞中过表达的HA-PINK1蛋白,与JM109表达的GST-BAG5相孵育,在G4B(Glutathione 4 B)匀浆中进行pull down结合实验,Western blot中应用抗HA抗体作免疫印迹,结果发现在Input及HA-PINK1+GST-BAG5中均见一条63kDa大小的全长型和一条52kDa大小的成熟型PINK1条带;将PKH3-HA-PINK1和pEGFP-N3-BAG5质粒共转染HEK293A细胞,用抗GFP抗体免疫沉淀BAG5蛋白,分别用抗HA抗体和抗GFP抗体做免疫印迹,结果发现在经抗GFP抗体沉淀的蛋白复合物中检测到GFP和GFP-BAG5蛋白,说明免疫沉淀成功;用抗HA抗体做免疫印迹,结果发现共转染细胞组中存在一条63kDa大小的全长型PINK1条带及一条52kDa大小的成熟型PINK1条带。这些结果说明PINK1蛋白与BAG5在细胞体内、外均存在相互作用。继续进行体外结合实验证实PINK1蛋白与BAG5之间的相互作用是直接相互作用。
     我们首次采用酵母双杂交技术筛选PINK1蛋白的相互作用蛋白,首次发现PINK1蛋白可能与BAG5和KIF1A分别存在相互作用,首次证实PINK1蛋白与BAG5存在直接相互作用。本研究结果不但为进一步深入研究PINK1基因的功能奠定了基础,而且对于我们理解PINK1基因在PD发病机制中的作用、PD的治疗药物的开发以及线粒体功能障碍与PD的关系,甚至是线粒体与衰老的关系均具有重要意义。
Parkinson's disease(PD) is a common neurodegenerative disorder. The cause of the disease is still unknown,although substantial evidence suggests that mitochondrial dysfunction is a major contributor:Several mitochondrial toxins induce PD-like symptoms in humans and animal models;systemic mitochondrial dysfunction appears to be a feature of a large proportion of PD sufferers;and several genes involved in rare heritable forms of Parkinsonism have been implicated in mitochondrial biology,including the PTEN-induced kinase 1(PINK1).
     PINK1 protein has been shown to localize in the mitochondria.The mechanism by which PINK1 protects cells remains unknown.Studying on the function of PINK1 is important to understand the neuropathology of PD.Many,if not all,essential biological processes require selective interactions between proteins.Therefore,an important step in the analysis of PINK1 function is identification of the interaction partners of PINK1. The objectives of the present study are to identify proteins which may interact with PINK1 on the following five aspects:
     1.The full-length code domain sequence of PINK1 was amplified from pcDNA3.1-P1NK1 which was constructed in our previous experiments and was cloned to pGBKT7 vector.The integrity of the constructs was confirmed by sequencing.Yeast strain AH109 cells were transiently transformed with pGBKT7-PINK1.We prepared Western blots from the transformants and confirmed that PINK1 protein could be normally expressed in Saccharomyces cerevisiae(strain AH109).
     2.In order to obtain enough plasmids for library screening in yeast, we must amplify the premaded MATCHMAKER Human Fetal Brain GAL4 cDNA & genomic libraries.Plate 27μl library directly on 300 150-mm plates,and incubate at 30℃for 24-36 hours,the resulting colonies were nearly confluent.Then we scraped colonies,and obtained 1000 ml yields.Then prepare eDNA plasmid with QIAGEN Tip2500 kit. We obtained 2.593mg library plasmid in total.
     3.By using large-scale transformation,AH109/pGBKT7-PINK1 cells were transformed with library plasmid.According to the manual of the library,we screened for MATCHMAKER Human Fetal Brain GAL4 cDNA & genomie libraries four times.We screened 6.65×10~6 independent clones in total,and acquired 77 His~+ clones.After retesting Ade~+/Mel1~+ phenotypes,61 Ade~+/His~+/Mel1~+ clones were acquired.
     4.By restreaking Ade~+/His~+/Mel1~+ clones,amplifying library inserts by PCR and characterizing PCR products by digesting with HaeⅢ,we sorted clones to eliminate duplicates.We acquired 49 Ade~+/His~+/Mel1~+ clones.By eliminating self-activating clones,we acquired 2 true positive clones.By sequencing and BLAST in NCBI,we know the two positive inserts are part of KIF1A(kinesin family member 1A) and BAG5 (BCL2-associated athanogene 5).PINK1 protein may interact with KIF1A and BAG5 respectively.
     5.KIF1A is not supposed to be a candidate protein interacting with PINK1 because the acquired sequence is located on untranslated region of KIF1A.The acquired sequence of BAG5 is located on its N-terminal coding region,so we continued experiments on confirming interaction between PINK1 and BAG5.Incubate GST-BAG5 fusion protein from JM109 and HA-PINK1 fusion protein from HEK293A cells together with G4B(Glutathione 4B),which were then collected and washed.Collected complexes were resolved by SDS-PAGE and processed for further analysis by Western blotting,63kDa and 52kDa PINK1 protein bands in both input and HA-PINK1+GST-BAG5 were found.Collect cell extracts from HEK293A cells cotransfected with PKH3-HA-PINK1 and pEGFP-N3-BAGS,immunoprecipitate the cell extracts with anti-GFP antibody,then perform Western blotting by using anti-HA antibody, 63kDa and 52kDa PINK1 protein bands in cotransfected cells were found, both the full-length and the processed forms of endogenous PINK1 co-immunoprecipitated with BAGS.These results suggest that PINK1 interacts with BAG5 in vitro and in vivo.The following in vitro binding assay showed us that PINK1 directly interacts with BAG5.
     For the first time,we used yeast two-hybrid system to identify PINK1 interacting proteins and acquired two proteins,which were BAG5 and KIF1A,either of them may interact with PINK1.And we confirmed that PINK1 directly interacts with BAG5.These data not only establish the basis for further investigating PINK1 gene function,but also suggest a novel PINK1 related mitochondrial pathway in PD pathogenesis,even in understanding the relationship between mitochondrial and aging.
引文
[1] Parkinson J. An essay on the shaking palsy. 1817. J Neuropsychiatry Clin Neurosci, 2002,14(2):223-236; discussion 222.
    [2] de Lau LM, Breteler MM. Epidemiology of Parkinson's disease. Lancet Neural, 2006, 5(6):525-535. [3] Couzin J. Clinical research. Testing a novel strategy against Parkinson's disease. Science, 2007, 315(5820): 1778.
    [4] Farrer MJ. Genetics of Parkinson disease: paradigm shifts and future prospects. Nat Rev Genet, 2006, 7(4):306-318.
    [5] Lin MT, Beal MR Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases. Nature, 2006,443(7113):787-795.
    [6] Mayeux R. Epidemiology of neurodegeneration. Annu Rev Neurosci, 2003, 26:81-104.
    [7] Zhang ZX, Roman GC, Hong Z, et al. Parkinson's disease in China: prevalence in Beijing, Xian, and Shanghai. Lancet, 2005, 365(9459):595-597.
    [8] Wang G, Cheng Q, Zheng R, et al. Economic burden of Parkinson's disease in a developing country: a retrospective cost analysis in Shanghai, China. Mov Disord, 2006,21(9):1439-1443.
    [9] Guarente L. Mitochondria-a nexus for aging, calorie restriction, and sirtuins? Cell, 2008,132(2):171-176.
    [10] Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol, 2003, 53 Suppl 3:S26-36; discussion S36-28.
    [11] Giasson BI, Lee VM. Are ubiquitination pathways central to Parkinson's disease? Cell, 2003,114(1): 1-8.
    [12] Dawson TM, Dawson VL. Molecular pathways of neurodegeneration in Parkinson's disease. Science, 2003,302(5646):819-822.
    [13] Greenamyre JT, Hastings TG Biomedicine. Parkinson's-divergent causes, convergent mechanisms. Science, 2004, 304(5674): 1120-1122.
    [14]Pinton P, Rimessi A, Marchi S, et al. Protein kinase C beta and prolyl isomerase 1 regulate mitochondrial effects of the life-span determinant p66Shc. Science, 2007, 315(5812):659-663.
    [15] Miller RA. Evaluating evidence for aging. Science, 2005, 310(5747):441-443; author reply 441-443.
    [16] Fan W, Waymire KG, Narula N, et al. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science, 2008, 319(5865):958-962.
    [17] Balaban RS, Nemoto S, Finkel T. Mitochondria, oxidants, and aging. Cell, 2005,120(4):483-495.
    [18] Hengartner MO. The biochemistry of apoptosis. Nature, 2000, 407(6805):770-776.
    [19] Langston JW, Ballard P, Tetrud JW, et al. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 1983, 219(4587):979-980.
    [20] Terzioglu M, Gaiter D. Parkinson's disease: genetic versus toxin-induced rodent models. Febs J, 2008,275(7):1384-1391.
    [21] Chan CS, Guzman JN, Ilijic E, et al. 'Rejuvenation' protects neurons in mouse models of Parkinson's disease. Nature, 2007,447(7148):1081-1086.
    [22] Bradbury AJ, Costall B, Domeney AM, et al. l-methyl-4-phenylpyridine is neurotoxic to the nigrostriatal dopamine pathway. Nature, 1986, 319(6048):56-57.
    [23] Snyder SH. Parkinson's disease. Clues to aetiology from a toxin. Nature, 1984, 311(5986):514.
    [24] Schapira AH, Cooper JM, Dexter D, et al. Mitochondrial complex I deficiency in Parkinson's disease. Lancet, 1989,1(8649):1269.
    [25] Bindoff LA, Birch-Machin M, Cartlidge NE, et al. Mitochondrial function in Parkinson's disease. Lancet, 1989, 2(8653):49.
    [26] Parker WD, Jr., Boyson SJ, Parks JK. Abnormalities of the electron transport chain in idiopathic Parkinson's disease. Ann Neurol, 1989, 26(6):719-723.
    [27] Mizuno Y, Ohta S, Tanaka M, et al. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem Biophys Res Commun, 1989,163(3):1450-1455.
    [28] Keeney PM, Xie J, Capaldi RA, et al. Parkinson's disease brain mitochondrial complex I has oxidatively damaged subunits and is functionally impaired and misassembled. J Neurosci, 2006,26(19):5256-5264.
    [29] Radad K, Gille G, Rausch WD. Dopaminergic neurons are preferentially sensitive to long-term rotenone toxicity in primary cell culture. Toxicol In Vitro, 2008,22(1):68-74.
    [30] Betarbet R, Sherer TB, MacKenzie G, et al. Chronic systemic pesticide exposure reproduces features of Parkinson's disease. Nat Neurosci, 2000, 3(12):1301-1306.
    [31] Betarbet R, Canet-Aviles RM, Sherer TB, et al. Intersecting pathways to neurodegeneration in Parkinson's disease: effects of the pesticide rotenone on DJ-1, alpha-synuclein, and the ubiquitin-proteasome system. Neurobiol Dis, 2006,22(2):404-420.
    [32] Sherer TB, Betarbet R, Stout AK, et al. An in vitro model of Parkinson's disease: linking mitochondrial impairment to altered alpha-synuclein metabolism and oxidative damage. J Neurosci, 2002, 22(16):7006-7015.
    [33] Wallace DC. Mitochondrial genetics: a paradigm for aging and degenerative diseases? Science, 1992, 256(5057):628-632.
    [34] Ikebe S, Tanaka M, Ohno K, et al. Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem Biophys Res Commun, 1990,170(3):1044-1048.
    [35] Schapira AH, Holt IJ, Sweeney M, et al. Mitochondrial DNA analysis in Parkinson's disease. Mov Disord, 1990, 5(4):294-297.
    [36] Lestienne P, Nelson I, Riederer P, et al. Mitochondrial DNA in postmortem brain from patients with Parkinson's disease. J Neurochem, 1991, 56(5):1819.
    [37] Kraytsberg Y, Kudryavtseva E, McKee AC, et al. Mitochondrial DNA deletions are abundant and cause functional impairment in aged human substantia nigra neurons. Nat Genet, 2006, 38(5):518-520.
    [38] van der Walt JM, Nicodemus KK, Martin ER, et al. Mitochondrial polymorphisms significantly reduce the risk of Parkinson disease. Am J Hum Genet, 2003, 72(4):804-811.
    [39] Ghezzi D, Marelli C, Achilli A, et al. Mitochondrial DNA haplogroup K is associated with a lower risk of Parkinson's disease in Italians. Eur J Hum Genet, 2005,13(6):748-752.
    [40] Pyle A, Foltynie T, Tiangyou W, et al. Mitochondrial DNA haplogroup cluster UKJT reduces the risk of PD. Ann Neurol, 2005, 57(4):564-567.
    [41] Ross OA, McCormack R, Maxwell LD, et al. mt4216C variant in linkage with the mtDNA TJ cluster may confer a susceptibility to mitochondrial dysfunction resulting in an increased risk of Parkinson's disease in the Irish. Exp Gerontol, 2003, 38(4):397-405.
    [42] Swerdlow RH, Parks JK, Miller SW, et al. Origin and functional consequences of the complex I defect in Parkinson's disease. Ann Neurol, 1996, 40(4):663-671.
    [43] Gu M, Cooper JM, Taanman JW, et al. Mitochondrial DNA transmission of the mitochondrial defect in Parkinson's disease. Ann Neurol, 1998,44(2): 177-186.
    [44] Ekstrand MI, Terzioglu M, Gaiter D, et al. Progressive parkinsonism in mice with respiratory-chain-deficient dopamine neurons. Proc Natl Acad Sci U S A, 2007,104(4): 1325-1330.
    [45] Tanner CM. Is the cause of Parkinson's disease environmental or hereditary? Evidence from twin studies. Adv Neurol, 2003, 91:133-142.
    [46] Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997,276(5321):2045-2047.
    [47] Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science, 2003, 302(5646):841.
    [48] Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392(6676):605-608.
    [49] Leroy E, Boyer R, Auburger G, et al. The ubiquitin pathway in Parkinson's disease. Nature, 1998, 395(6701):451-452.
    [50] Valente EM, Abou-Sleiman PM, Caputo V, et al. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science, 2004, 304(5674):1158-1160.
    [51] Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299(5604):256-259.
    [52] Paisan-Ruiz C, Jain S, Evans EW, et al. Cloning of the gene containing mutations that cause PARK8-linked Parkinson's disease. Neuron, 2004, 44(4):595-600.
    [53] Zimprich A, Biskup S, Leitner P, et al. Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 2004, 44(4):601-607.
    [54] Ramirez A, Heimbach A, Grundemann J, et al. Hereditary parkinsonism with dementia is caused by mutations in ATP13A2, encoding a lysosomal type 5 P-type ATPase. Nat Genet, 2006, 38(10):l 184-1191.
    [55] Strauss KM, Martins LM, Plun-Favreau H, et al. Loss of function mutations in the gene encoding Omi/HtrA2 in Parkinson's disease. Hum Mol Genet, 2005, 14(15):2099-2111.
    [56] Moore DJ, West AB, Dikeman DA, et al. Parkin mediates the degradation-independent ubiquitination of Hsp70. J Neurochem, 2008.
    [57] Chung KK, Thomas B, Li X, et al. S-nitrosylation of parkin regulates ubiquitination and compromises parkin's protective function. Science, 2004, 304(5675):1328-1331.
    [58]Yang Y, Nishimura I, Imai Y, et al. Parkin suppresses dopaminergic neuron-selective neurotoxicity induced by Pael-R in Drosophila. Neuron, 2003, 37(6):911-924.
    [59] Zhang Y, Gao J, Chung KK, et al. Parkin functions as an E2-dependent ubiquitin- protein ligase and promotes the degradation of the synaptic vesicle-associated protein, CDCrel-1. Proc Natl Acad Sci U S A, 2000, 97(24):13354-13359.
    [60] Kuroda Y, Mitsui T, Kunishige M, et al. Parkin enhances mitochondrial biogenesis in proliferating cells. Hum Mol Genet, 2006,15(6):883-895.
    [61] Palacino JJ, Sagi D, Goldberg MS, et al. Mitochondrial dysfunction and oxidative damage in parkin-deficient mice. J Biol Chem, 2004, 279(18): 18614-18622.
    [62] Muftuoglu M, Elibol B, Dalmizrak O, et al. Mitochondrial complex Ⅰ and Ⅳ activities in leukocytes from patients with parkin mutations. Mov Disord, 2004, 19(5):544-548.
    [63] Zhang L, Shimoji M, Thomas B, et al. Mitochondrial localization of the Parkinson's disease related protein DJ-1: implications for pathogenesis. Hum Mol Genet, 2005,14(14):2063-2073.
    [64] Canet-Aviles RM, Wilson MA, Miller DW, et al. The Parkinson's disease protein DJ-1 is neuroprotective due to cysteine-sulfinic acid-driven mitochondrial localization. Proc Natl Acad Sci U S A, 2004, 101(24):9103-9108.
    [65] Yokota T, Sugawara K, Ito K, et al. Down regulation of DJ-1 enhances cell death by oxidative stress, ER stress, and proteasome inhibition. Biochem Biophys Res Commun, 2003, 312(4):1342-1348.
    [66] Goldberg MS, Pisani A, Haburcak M, et al. Nigrostriatal dopaminergic deficits and hypokinesia caused by inactivation of the familial Parkinsonism-linked gene DJ-1.Neuron,2005,45(4):489-496.
    [67]Pisani A,Martella G,Tscherter A,et al.Enhanced sensitivity of DJ-1-deficient dopaminergic neurons to energy metabolism impairment:role of Na+/K+ATPase.Neurobiol Dis,2006,23(1):54-60.
    [68]Kim RH,Smith PD,Aleyasin H,et al.Hypersensitivity of DJ-1-deficient mice to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyrindine(MPTP) and oxidative stress.Proc Natl Acad Sci U S A,2005,102(14):5215-5220.
    [69]Martins LM,Morrison A,Klupsch K,et al.Neuroprotective role of the Reaper-related serine protease HtrA2/Omi revealed by targeted deletion in mice.Mol Cell Biol,2004,24(22):9848-9862.
    [70]Valente EM,Salvi S,Ialongo T,et al.PINK1 mutations are associated with sporadic early-onset parkinsonism.Ann Neurol,2004,56(3):336-341.
    [71]Hatano Y,Li Y,Sato K,et al.Novel PINK1 mutations in early-onset parkinsonism.Ann Neurol,2004,56(3):424-427.
    [72]Rohe CF,Montagna P,Breedveld G,et al.Homozygous PINK1 C-terminus mutation causing early-onset parkinsonism.Ann Neurol,2004,56(3):427-431.
    [73]Healy DG,Abou-Sleiman PM,Gibson JM,et al.PINK1(PARK6) associated Parkinson disease in Ireland.Neurology,2004,63(8):1486-1488.
    [74]Rogaeva E,Johnson J,Lang AE,et al.Analysis of the PINK1 gene in a large cohort of cases with Parkinson disease.Arch Neurol,2004,61(12):1898-1904.
    [75]Li Y,Tomiyama H,Sato K,et al.Clinicogenetic study of PINK1 mutations in autosomal recessive early-onset parkinsonism.Neurology,2005,64(11):1955-1957.
    [76]Klein C,Djarmati A,Hedrich K,et al.PINK1,Parkin,and DJ-1 mutations in Italian patients with early-onset parkinsonism.Eur J Hum Genet,2005,13(9):1086-1093.
    [77]Bonifati V,Rohe CF,Breedveld GJ,et al.Early-onset parkinsonism associated with PINK1 mutations:frequency,genotypes,and phenotypes.Neurology,2005,65(1):87-95.
    [78]Fung HC,Chert CM,Hardy J,et al.Analysis of the PINK1 gene in a cohort of patients with sporadic early-onset parkinsonism in Taiwan.Neurosci Lett,2006,394(1):33-36.
    [79]Ibanez P,Lesage S,Lohmann E,et al.Mutational analysis of the PINK1 gene in early-onset parkinsonism in Europe and North Africa. Brain, 2006, 129(Pt 3):686-694.
    [80] Toft M, Myhre R, Pielsticker L, et al. PINK1 mutation heterozygosity and the risk of Parkinson's disease. J Neurol Neurosurg Psychiatry, 2007, 78(1):82-84.
    [81] Marongiu R, Brancati F, Antonini A, et al. Whole gene deletion and splicing mutations expand the PINK1 genotypic spectrum. Hum Mutat, 2007,28(1):98.
    [82] Marongiu R, Ferraris A, Ialongo T, et al. PINK1 heterozygous rare variants: prevalence, significance and phenotypic spectrum. Hum Mutat, 2008, 29(4):565.
    [83] Hedrich K, Hagenah J, Djarmati A, et al. Clinical spectrum of homozygous and heterozygous PINK1 mutations in a large German family with Parkinson disease: role of a single hit? Arch Neurol, 2006, 63(6):833-838.
    [84] Klein C, Grunewald A, Hedrich K. Early-onset parkinsonism associated with PINK1 mutations: frequency, genotypes, and phenotypes. Neurology, 2006, 66(7):1129-1130; author reply 1129-1130.
    [85] Savettieri G, Annesi G, Civitelli D, et al. Identification of the novel D297fsX318 PINK1 mutation and phenotype variation in a family with early-onset Parkinson's disease. Parkinsonism Relat Disord, 2008.
    [86] Prestel J, Gempel K, Hauser TK, et al. Clinical and molecular characterisation of a Parkinson family with a novel PINK1 mutation. J Neurol, 2008.
    [87] Gelmetti V, Ferraris A, Brusa L, et al. Late onset sporadic Parkinson's disease caused by PINK1 mutations: Clinical and functional study. Mov Disord, 2008.
    [88] Deng H, Le W, Shahed J, et al. Mutation analysis of the parkin and PINK1 genes in American Caucasian early-onset Parkinson disease families. Neurosci Lett, 2008,430(1): 18-22.
    [89] Bras J, Guerreiro R, Ribeiro M, et al. Analysis of Parkinson disease patients from Portugal for mutations in SNCA, PRKN, PINK1 and LRRK2. BMC Neurol, 2008, 8:1.
    [90] Unoki M, Nakamura Y. Growth-suppressive effects of BPOZ and EGR2, two genes involved in the PTEN signaling pathway. Oncogene, 2001, 20(33):4457-4465.
    [91] Muqit MM, Abou-Sleiman PM, Saurin AT, et al. Altered cleavage and localization of PINK1 to aggresomes in the presence of proteasomal stress. J Neurochem, 2006, 98(1): 156-169.
    [92] Taymans JM, Van den Haute C, Baekelandt V. Distribution of PINK1 and LRRK2 in rat and mouse brain. J Neurochem, 2006, 98(3):951-961.
    [93] Gandhi S, Muqit MM, Stanyer L, et al. PINK1 protein in normal human brain and Parkinson's disease. Brain, 2006,129(Pt 7): 1720-1731.
    [94] Silvestri L, Caputo V, Bellacchio E, et al. Mitochondrial import and enzymatic activity of PINK1 mutants associated to recessive parkinsonism. Hum Mol Genet, 2005,14(22):3477-3492.
    [95] Pridgeon JW, Olzmann JA, Chin LS, et al. PINK1 Protects against Oxidative Stress by Phosphorylating Mitochondrial Chaperone TRAP1. PLoS Biol, 2007, 5(7):e172.
    [96] Weihofen A, Ostaszewski B, Minami Y, et al. Pinkl Parkinson mutations, the Cdc37/Hsp90 chaperones and Parkin all influence the maturation or subcellular distribution of Pinkl. Hum Mol Genet, 2008, 17(4):602-616.
    [97] Lin W, Kang UJ. Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem, 2008, [Epub ahead of print].
    [98] Mills RD, Sim CH, Mok SS, et al. Biochemical aspects of the neuroprotective mechanism of PTEN-induced kinase-1 (PINK1). J Neurochem, 2008.
    [99] Hanks SK, Hunter T. Protein kinases 6. The eukaryotic protein kinase superfamily: kinase (catalytic) domain structure and classification. Faseb J, 1995, 9(8):576-596.
    [100] Endo T, Kohda D. Functions of outer membrane receptors in mitochondrial protein import. Biochim Biophys Acta, 2002, 1592(1):3-14.
    [101] Beilina A, Van Der Brug M, Ahmad R, et al. Mutations in PTEN-induced putative kinase 1 associated with recessive parkinsonism have differential effects on protein stability. Proc Natl Acad Sci U S A, 2005, 102(16):5703-5708.
    [102] Yang Y, Gehrke S, Imai Y, et al. Mitochondrial pathology and muscle and dopaminergic neuron degeneration caused by inactivation of Drosophila Pinkl is rescued by Parkin. Proc Natl Acad Sci U S A, 2006,103(28): 10793-10798.
    [103] Sim CH, Lio DS, Mok SS, et al. C-terminal truncation and Parkinson's disease-associated mutations down-regulate the protein serine/threonine kinase activity of PTEN-induced kinase-1. Hum Mol Genet, 2006,15(21):3251-3262.
    [104] Djarmati A, Hedrich K, Svetel M, et al. Heterozygous PINK1 mutations: a susceptibility factor for Parkinson disease? Mov Disord, 2006, 21(9):1526-1530.
    [105] Rafie-Kolpin M, Chefalo PJ, Hussain Z, et al. Two heme-binding domains of heme-regulated eukaryotic initiation factor-2alpha kinase. N terminus and kinase insertion. J Biol Chem, 2000,275(7):5171-5178.
    [106] Doostzadeh J, Tetrud JW, Allen-Auerbach M, et al. Novel features in a patient homozygous for the L347P mutation in the PINK1 gene. Parkinsonism Relat Disord,2007,13(6):359-361.
    [107] Abou-Sleiman PM, Muqit MM, Wood NW. Expanding insights of mitochondrial dysfunction in Parkinson's disease. Nat Rev Neurosci, 2006, 7(3):207-219.
    [108] Deng H, Jankovic J, Guo Y, et al. Small interfering RNA targeting the PINK1 induces apoptosis in dopaminergic cells SH-SY5Y. Biochem Biophys Res Commun, 2005, 337(4):1133-1138.
    [109] Petit A, Kawarai T, Paitel E, et al. Wild-type PINK1 prevents basal and induced neuronal apoptosis, a protective effect abrogated by Parkinson disease-related mutations. J Biol Chem, 2005,280(40):34025-34032.
    [110] Exner N, Treske B, Paquet D, et al. Loss-of-function of human PINK1 results in mitochondrial pathology and can be rescued by parkin. J Neurosci, 2007, 27(45):12413-12418.
    [111] Yang Y, Ouyang Y, Yang L, et al. Pinkl regulates mitochondrial dynamics through interaction with the fission/fusion machinery. Proc Natl Acad Sci U S A, 2008,105(19):7070-7075.
    [112] Pallanck L, Greenamyre JT. Neurodegenerative disease: pink, parkin and the brain. Nature, 2006,441(7097):1058.
    [113] Poole AC, Thomas RE, Andrews LA, et al. The PINKl/Parkin pathway regulates mitochondrial morphology. Proc Natl Acad Sci U S A, 2008, 105(5):1638-1643.
    [114] Park J, Lee SB, Lee S, et al. Mitochondrial dysfunction in Drosophila PINK1 mutants is complemented by parkin. Nature, 2006,441(7097):1157-1161.
    [115] Clark IE, Dodson MW, Jiang C, et al. Drosophila pinkl is required for mitochondrial function and interacts genetically with parkin. Nature, 2006, 441(7097):1162-1166.
    [116] Haque ME, Thomas KJ, D'Souza C, et al. Cytoplasmic Pinkl activity protects neurons from dopaminergic neurotoxin MPTP. Proc Natl Acad Sci U S A, 2008, 105(5):1716-1721.
    [117] Chao JR, Parganas E, Boyd K, et al. Haxl-mediated processing of HtrA2 by Parl allows survival of lymphocytes and neurons. Nature, 2008, 452(7183):98-102.
    [118] Plun-Favreau H, Klupsch K, Moisoi N, et al. The mitochondrial protease HtrA2 is regulated by Parkinson's disease-associated kinase PINK1. Nat Cell Biol, 2007, 9(11):1243-1252.
    [119] Leskovar A, Wegele H, Werbeck ND, et al. The ATPase cycle of the mitochondrial Hsp90 analog Trapl. J Biol Chem, 2008.
    [120] Hua G, Zhang Q, Fan Z. Heat shock protein 75 (TRAPl) antagonizes reactive oxygen species generation and protects cells from granzyme M-mediated apoptosis. J Biol Chem, 2007,282(28):20553-20560.
    [121] Yoon Y, Krueger EW, Oswald BJ, et al. The mitochondrial protein hFisl regulates mitochondrial fission in mammalian cells through an interaction with the dynamin-like protein DLP1. Mol Cell Biol, 2003,23(15):5409-5420.
    [122] Koch A, Yoon Y, Bonekamp NA, et al. A role for Fisl in both mitochondrial and peroxisomal fission in mammalian cells. Mol Biol Cell, 2005, 16(11):5077-5086.
    [123] Gavin AC, Aloy P, Grandi P, et al. Proteome survey reveals modularity of the yeast cell machinery. Nature, 2006, 440(7084):631-636.
    [124] Kim PM, Lu LJ, Xia Y, et al. Relating three-dimensional structures to protein networks provides evolutionary insights. Science, 2006, 314(5807):1938-1941.
    [125] Beasley SA, Hristova VA, Shaw GS. Structure of the Parkin in-between-ring domain provides insights for E3-ligase dysfunction in autosomal recessive Parkinson's disease. Proc Natl Acad Sci U S A, 2007,104(9):3095-3100.
    [126] Tang B, Xiong H, Sun P, et al. Association of PINK1 and DJ-1 confers digenic inheritance of early-onset Parkinson's disease. Hum Mol Genet, 2006, 15(11):1816-1825.
    [127] Giot L, Bader JS, Brouwer C, et al. A protein interaction map of Drosophila melanogaster. Science, 2003, 302(5651): 1727-1736.
    [128] Stelzl U, Worm U, Lalowski M, et al. A human protein-protein interaction network: a resource for annotating the proteome. Cell, 2005, 122(6):957-968.
    [129] Matsuzawa S, Reed JC. Yeast and mammalian two-hybrid systems for studying protein-protein interactions. Methods Mol Biol, 2007, 383:215-225.
    [130] Chen DC, Yang BC, Kuo TT. One-step transformation of yeast in stationary phase. Curr Genet, 1992,21(1):83-84.
    [131] Gietz D, St Jean A, Woods RA, et al. Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res, 1992, 20(6): 1425.
    [132] Lim J, Hao T, Shaw C, et al. A protein-protein interaction network for human inherited ataxias and disorders of Purkinje cell degeneration. Cell, 2006, 125(4):801-814.
    [133] Hackney DD. Motor proteins. Polar explorations. Nature, 1995, 376(6537):215-216.
    [134] Kikkawa M, Okada Y, Hirokawa N. 15 A resolution model of the monomeric kinesin motor, KIF1A. Cell, 2000,100(2):241-252.
    [135] Okada Y, Yamazaki H, Sekine-Aizawa Y, et al. The neuron-specific kinesin superfamily protein KIF1A is a unique monomeric motor for anterograde axonal transport of synaptic vesicle precursors. Cell, 1995, 81(5):769-780.
    [136] Kikkawa M. The role of microtubules in processive kinesin movement. Trends Cell Biol, 2008,18(3):128-135.
    [137] Kikkawa M, Sablin EP, Okada Y, et al. Switch-based mechanism of kinesin motors. Nature, 2001,411(6836):439-445.
    [138] Hirokawa N. Kinesin and dynein superfamily proteins and the mechanism of organelle transport. Science, 1998,279(5350):519-526.
    [139] Lee JR, Shin H, Ko J, et al. Characterization of the movement of the kinesin motor KIF1A in living cultured neurons. J Biol Chem, 2003, 278(4):2624-2629.
    [140] Saxton WM, Hicks J, Goldstein LS, et al. Kinesin heavy chain is essential for viability and neuromuscular functions in Drosophila, but mutants show no defects in mitosis. Cell, 1991, 64(6): 1093-1102.
    [141] Hwang W, Lang MJ, Karplus M. Force generation in kinesin hinges on cover-neck bundle formation. Structure, 2008,16(1):62-71.
    [142] Carter NJ, Cross RA. Mechanics of the kinesin step. Nature, 2005, 435(7040):308-312.
    [143] Lee JH, Takahashi T, Yasuhara N, et al. Bis, a Bcl-2-binding protein that synergizes with Bcl-2 in preventing cell death. Oncogene, 1999, 18(46):6183-6190.
    [144] Takayama S, Sato T, Krajewski S, et al. Cloning and functional analysis of BAG-1: a novel Bcl-2-binding protein with anti-cell death activity. Cell, 1995, 80(2):279-284.
    [145] Sondermann H, Scheufler C, Schneider C, et al. Structure of a Bag/Hsc70 complex: convergent functional evolution of Hsp70 nucleotide exchange factors. Science, 2001,291(5508): 1553-1557.
    [146] Song J, Takeda M, Morimoto RI. Bagl-Hsp70 mediates a physiological stress signalling pathway that regulates Raf-1/ERK and cell growth. Nat Cell Biol, 2001, 3(3):276-282.
    [147] Luders J, Demand J, Hohfeld J. The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J Biol Chem, 2000,275(7):4613-4617.
    [148] Connell P, Ballinger CA, Jiang J, et al. The co-chaperone CHIP regulates protein triage decisions mediated by heat-shock proteins. Nat Cell Biol, 2001, 3(1):93-96.
    [149] Alberti S, Demand J, Esser C, et al. Ubiquitylation of BAG-1 suggests a novel regulatory mechanism during the sorting of chaperone substrates to the proteasome. J Biol Chem, 2002,277(48):45920-45927.
    [150] Thress K, Song J, Morimoto RI, et al. Reversible inhibition of Hsp70 chaperone function by Scythe and Reaper. Embo J, 2001,20(5):1033-1041.
    [151] Pawson T, Scott JD. Signaling through scaffold, anchoring, and adaptor proteins. Science, 1997, 278(5346):2075-2080.
    [152] Sparks AB, Rider JE, Hoffman NG, et al. Distinct ligand preferences of Src homology 3 domains from Src, Yes, Abl, Cortactin, p53bp2, PLCgamma, Crk, and Grb2. Proc Natl Acad Sci U S A, 1996, 93(4):1540-1544.
    [153] Doong H, Price J, Kim YS, et al. CAIR-l/BAG-3 forms an EGF-regulated ternary complex with phospholipase C-gamma and Hsp70/Hsc70. Oncogene, 2000,19(38):4385-4395.
    [154] Takayama S, Xie Z, Reed JC. An evolutionarily conserved family of Hsp70/Hsc70 molecular chaperone regulators. J Biol Chem, 1999, 274(2):781-786.
    [155] Kalia SK, Lee S, Smith PD, et al. BAG5 inhibits parkin and enhances dopaminergic neuron degeneration. Neuron, 2004,44(6):931-945.
    [156] Doong H, Vrailas A, Kohn EC. What's in the 'BAG'?--A functional domain analysis of the BAG-family proteins.Cancer Lett,2002,188(1-2):25-32.
    [157]Takayama S,Bimston DN,Matsuzawa S,et al.BAG-1 modulates the chaperone activity of Hsp70/Hsc70.Embo J,1997,16(16):4887-4896.
    [158]Chung KK,Dawson TM.Parkin and Hsp70 sacked by BAG5.Neuron,2004,44(6):899-901.
    [159]Takayama S,Reed JC.Molecular chaperone targeting and regulation by BAG family proteins.Nat Cell Biol,2001,3(10):E237-241.
    [160]Liani E,Eyal A,Avraham E,et al.Ubiquitylation of synphilin-1 and alpha-synuclein by SIAH and its presence in cellular inclusions and Lewy bodies imply a role in Parkinson's disease.Proc Natl Acad Sci U S A,2004,101(15):5500-5505.
    [161]Olanow CW,Perl DP,DeMartino GN,et al.Lewy-body formation is an aggresome-related process:a hypothesis.Lancet Neurol,2004,3(8):496-503.
    [162]Kabbage M,Dickman MB.The BAG proteins:a ubiquitous family of chaperone regulators.Cell Mol Life Sci,2008,65(9):1390-1402.
    [163]Moriwaki Y,Kim YJ,Ido Y,et al.L347P PINK1 mutant that fails to bind to Hsp90/Cdc37 chaperones is rapidly degraded in a proteasome-dependent manner.Neurosci Res,2008,61(1):43-48.
    [164]Zhou C,Huang Y,Shao Y,et al.The kinase domain ofmitochondrial PINKI faces the cytoplasm.Proc Natl Acad Sci U S A,2008,105(33):12022-12027.
    [1]Lin MT,Beal MF.Mitochondrial dysfunction and oxidative stress in neurodegenerative diseases.Nature,2006,443(7113):787-795.
    [2]Kirkwood TB,Austad SN.Why do we age? Nature,2000,408(6809):233-238.
    [3] Finkel T, Holbrook NJ. Oxidants, oxidative stress and the biology of ageing. Nature, 2000,408(6809):239-247.
    [4] Mattson MP, Magnus T. Ageing and neuronal vulnerability. Nat Rev Neurosci, 2006, 7(4):278-294.
    [5] Hofer SM, Berg S, Era P. Evaluating the interdependence of aging-related changes in visual and auditory acuity, balance, and cognitive functioning. Psychol Aging, 2003,18(2):285-305.
    [6] Cleveland DW, Rothstein JD. From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat Rev Neurosci, 2001,2(11):806-819.
    [7] Moore DJ, West AB, Dawson VL, et al. Molecular pathophysiology of Parkinson's disease. Annu Rev Neurosci, 2005,28:57-87.
    [8] Mattson MP. Pathways towards and away from Alzheimer's disease. Nature, 2004, 430(7000):631-639.
    [9] Hawkes CH. Parkinson's disease and aging: same or different process? Mov Disord, 2008,23(1):47-53.
    [10] Levy G The relationship of Parkinson disease with aging. Arch Neurol, 2007, 64(9): 1242-1246.
    [11]Guarente L, Kenyon C. Genetic pathways that regulate ageing in model organisms. Nature, 2000,408(6809):255-262.
    [12]Polymeropoulos MH, Lavedan C, Leroy E, et al. Mutation in the alpha-synuclein gene identified in families with Parkinson's disease. Science, 1997, 276(5321):2045-2047.
    [13]Kitada T, Asakawa S, Hattori N, et al. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature, 1998, 392(6676):605-608.
    [14]Bonifati V, Rizzu P, van Baren MJ, et al. Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science, 2003, 299(5604):256-259.
    [15]Zecca L, Youdim MB, Riederer P, et al. Iron, brain ageing and neurodegenerative disorders. Nat Rev Neurosci, 2004, 5(11):863-873.
    [16] Ames BN, Liu J. Delaying the mitochondrial decay of aging with acetylcarnitine. Ann NYAcad Sci, 2004,1033:108-116.
    [17] Ames BN. Delaying the mitochondrial decay of aging. Ann N Y Acad Sci, 2004, 1019:406-411.
    [18]Kyng KJ, Bohr VA. Gene expression and DNA repair in progeroid syndromes and human aging. Ageing Res Rev, 2005, 4(4):579-602.
    [19] Butler RN, Austad SN, Barzilai N, et al. Longevity genes: from primitive organisms to humans. J Gerontol A Biol Sci Med Sci, 2003, 58(7):581-584.
    [20]Wolkow CA. Life span: getting the signal from the nervous system. Trends Neurosci, 2002,25(4):212-216.
    [21]Mattson MR Methylation and acetylation in nervous system development and neurodegenerative disorders. Ageing Res Rev, 2003, 2(3):329-342.
    [22] Yehuda S, Rabinovitz S, Carasso RL, et al. The role of polyunsaturated fatty acids in restoring the aging neuronal membrane. Neurobiol Aging, 2002,23(5):843-853.
    [23] Floyd RA, Hensley K. Oxidative stress in brain aging. Implications for therapeutics of neurodegenerative diseases. Neurobiol Aging, 2002, 23(5):795-807.
    [24]Jenner P. Oxidative stress in Parkinson's disease. Ann Neurol, 2003, 53 Suppl 3:S26-36; discussion S36-28.
    [25]Beal MF. Mitochondria take center stage in aging and neurodegeneration. Ann Neurol, 2005, 58(4):495-505.
    [26]Rakhit R, Crow JP, Lepock JR, et al. Monomeric Cu,Zn-superoxide dismutase is a common misfolding intermediate in the oxidation models of sporadic and familial amyotrophic lateral sclerosis. J Biol Chem, 2004, 279(15):15499-15504.
    [27]Cuervo AM, Stefanis L, Fredenburg R, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science, 2004, 305(5688):1292-1295.
    [28]Weindruch R, Sohal RS. Seminars in medicine of the Beth Israel Deaconess Medical Center. Caloric intake and aging. N Engl J Med, 1997, 337(14):986-994.
    [29]Mattson MP, Maudsley S, Martin B. BDNF and 5-HT: a dynamic duo in age-related neuronal plasticity and neurodegenerative disorders. Trends Neurosci, 2004,27(10):589-594.
    [30]Barja G Free radicals and aging. Trends Neurosci, 2004,27(10):595-600.
    [31]Cotman CW, Berchtold NC. Exercise: a behavioral intervention to enhance brain health and plasticity. Trends Neurosci, 2002, 25(6):295-301.
    [32] Liu D, Chan SL, de Souza-Pinto NC, et al. Mitochondrial UCP4 mediates an adaptive shift in energy metabolism and increases the resistance of neurons to metabolic and oxidative stress. Neuromolecular Med, 2006, 8(3):389-414.
    [33]Parker JA, Arango M, Abderrahmane S, et al. Resveratrol rescues mutant polyglutamine cytotoxicity in nematode and mammalian neurons. Nat Genet, 2005, 37(4):349-350.
    [34] Morrison BM, Hof PR, Morrison JH. Determinants of neuronal vulnerability in neurodegenerative diseases. Ann Neurol, 1998,44(3 Suppl 1):S32-44.
    [35]Braak H, Del Tredici K, Rub U, et al. Staging of brain pathology related to sporadic Parkinson's disease. Neurobiol Aging, 2003,24(2): 197-211.
    [36]Nagatsu T, Sawada M. Biochemistry of postmortem brains in Parkinson's disease: historical overview and future prospects. J Neural Transm Suppl, 2007, (72):113-120.
    [37] Yuan J, Yankner BA. Apoptosis in the nervous system. Nature, 2000, 407(6805):802-809.
    [38]Batchelder AJ, Gordon-Weeks AN, Walker RA. Altered expression of anti-apoptotic proteins in non-involved tissue from cancer-containing breasts. Breast Cancer Res Treat, 2008.
    [39] Robinson BW, Behling KC, Gupta M, et al. Abundant anti-apoptotic BCL-2 is a molecular target in leukaemias with t(4;11) translocation. Br J Haematol, 2008.
    [40] Cheung EC, Melanson-Drapeau L, Cregan SP, et al. Apoptosis-inducing factor is a key factor in neuronal cell death propagated by BAX-dependent and BAX-independent mechanisms. J Neurosci, 2005, 25(6):1324-1334.
    [41]Stefanis L. Caspase-dependent and -independent neuronal death: two distinct pathways to neuronal injury. Neuroscientist, 2005, 11(1):50-62.
    [42]Tatton WG, Chalmers-Redman R, Brown D, et al. Apoptosis in Parkinson's disease: signals for neuronal degradation. Ann Neurol, 2003, 53 Suppl 3:S61-70; discussion S70-62.
    [43]Crocker SJ, Smith PD, Jackson-Lewis V, et al. Inhibition of calpains prevents neuronal and behavioral deficits in an MPTP mouse model of Parkinson's disease. J Neurosci, 2003,23(10):4081-4091.
    [44]Mattson MP, Kroemer G. Mitochondria in cell death: novel targets for neuroprotection and cardioprotection. Trends Mol Med, 2003, 9(5):196-205.
    [45]Culmsee C, Mattson MP. p53 in neuronal apoptosis. Biochem Biophys Res Commun, 2005, 331(3):761-777.
    [46] Bruckner SR, Perry G, Estus S. 4-hydroxynonenal contributes to NGF withdrawal-induced neuronal apoptosis. J Neurochem, 2003, 85(4):999-1005.
    [47]Zhou H, Li XM, Meinkoth J, et al. Akt regulates cell survival and apoptosis at a postmitochondrial level. J Cell Biol, 2000,151(3):483-494.
    [48] White LD, Barone S, Jr. Qualitative and quantitative estimates of apoptosis from birth to senescence in the rat brain. Cell Death Differ, 2001, 8(4):345-356.
    [49]Hiona A, Leeuwenburgh C. WITHDRAWN: Life-long caloric restriction counteracts apoptotic effects of aging in the brain and bolsters the action of apoptosis inhibitors. Neurobiol Aging, 2005.
    [50] Sun W, Winseck A, Vinsant S, et al. Programmed cell death of adult-generated hippocampal neurons is mediated by the proapoptotic gene Bax. J Neurosci, 2004, 24(49): 11205-11213.
    [51]Peruche B, Krieglstein J. Mechanisms of drug actions against neuronal damage caused by ischemia-an overview. Prog Neuropsychopharmacol Biol Psychiatry, 1993,17(1):21-70.
    [52]Mattson MP. Excitotoxic and excitoprotective mechanisms: abundant targets for the prevention and treatment of neurodegenerative disorders. Neuromolecular Med, 2003, 3(2):65-94.
    [53]Toescu EC, Verkhratsky A, Landfield PW. Ca2+ regulation and gene expression in normal brain aging. Trends Neurosci, 2004,27(10):614-620.
    [54] Martinez J, Moeller I, Erdjument-Bromage H, et al. Parkinson's disease-associated alpha-synuclein is a calmodulin substrate. J Biol Chem, 2003, 278(19):17379-17387.
    [55]Iacopino AM, Christakos S. Specific reduction of calcium-binding protein (28-kilodalton calbindin-D) gene expression in aging and neurodegenerative diseases. Proc Natl Acad Sci U S A, 1990, 87(11):4078-4082.
    [56]Mattson MP, Rychlik B, Chu C, et al. Evidence for calcium-reducing and excito-protective roles for the calcium-binding protein calbindin-D28k in cultured hippocampal neurons. Neuron, 1991, 6(1):41-51.
    [57]Melov S. Modeling mitochondrial function in aging neurons. Trends Neurosci, 2004,27(10):601-606.
    [58]Petit-Taboue MC, Landeau B, Desson JF, et al. Effects of healthy aging on the regional cerebral metabolic rate of glucose assessed with statistical parametric mapping. Neuroimage, 1998, 7(3): 176-184.
    [59]Dagher A. Functional imaging in Parkinson's disease. Semin Neurol, 2001, 21(1):23-32.
    [60] Smigrodzki R, Parks J, Parker WD. High frequency of mitochondrial complex Ⅰ mutations in Parkinson's disease and aging. Neurobiol Aging, 2004, 25(10):1273-1281.
    [61] Brown MR, Geddes JW, Sullivan PG Brain region-specific, age-related, alterations in mitochondrial responses to elevated calcium. J Bioenerg Biomembr, 2004, 36(4):401-406.
    [62]Murchison D, Zawieja DC, Griffith WH. Reduced mitochondrial buffering of voltage-gated calcium influx in aged rat basal forebrain neurons. Cell Calcium, 2004, 36(1):61-75.
    [63] Kim GW, Chan PH. Oxidative stress and neuronal DNA fragmentation mediate age-dependent vulnerability to the mitochondrial toxin, 3-nitropropionic acid, in the mouse striatum. Neurobiol Dis, 2001, 8(1):114-126.
    [64]Patel JR, Brewer GJ. Age-related changes in neuronal glucose uptake in response to glutamate and beta-amyloid. J Neurosci Res, 2003, 72(4):527-536.
    [65]Klivenyi P, Andreassen OA, Ferrante RJ, et al. Mice deficient in cellular glutathione peroxidase show increased vulnerability to malonate, 3-nitropropionic acid, and 1-methyl-4-phenyl-1,2,5,6-tetrahydropyridine. J Neurosci, 2000,20(1):1-7.
    [66] Keller JN, Kindy MS, Holtsberg FW, et al. Mitochondrial manganese superoxide dismutase prevents neural apoptosis and reduces ischemic brain injury: suppression of peroxynitrite production, lipid peroxidation, and mitochondrial dysfunction. J Neurosci, 1998,18(2):687-697.
    [67]Duan W, Mattson MP. Dietary restriction and 2-deoxyglucose administration improve behavioral outcome and reduce degeneration of dopaminergic neurons in models of Parkinson's disease. J Neurosci Res, 1999, 57(2): 195-206.
    [68] Szweda PA, Camouse M, Lundberg KC, et al. Aging, lipofuscin formation, and free radical-mediated inhibition of cellular proteolytic systems. Ageing Res Rev, 2003,2(4):383-405.
    [69] Bi X, Yong AP, Zhou J, et al. Regionally selective changes in brain lysosomes occur in the transition from young adulthood to middle age in rats. Neuroscience, 2000, 97(2):395-404.
    [70]Keller JN, Gee J, Ding Q. The proteasome in brain aging. Ageing Res Rev, 2002, l(2):279-293.
    [71]McNaught KS, Olanow CW, Halliwell B, et al. Failure of the ubiquitin-proteasome system in Parkinson's disease. Nat Rev Neurosci, 2001, 2(8):589-594.
    [72] Sullivan PG, Dragicevic NB, Deng JH, et al. Proteasome inhibition alters neural mitochondrial homeostasis and mitochondria turnover. J Biol Chem, 2004, 279(20):20699-20707.
    [73] Nixon RA, Wegiel J, Kumar A, et al. Extensive involvement of autophagy in Alzheimer disease: an immuno-electron microscopy study. J Neuropathol Exp Neural, 2005, 64(2):113-122.
    [74]Yin YI, Bassit B, Zhu L, et al. {gamma}-Secretase Substrate Concentration Modulates the Abeta42/Abeta40 Ratio: IMPLICATIONS FOR ALZHEIMER DISEASE. J Biol Chem, 2007,282(32):23639-23644.
    [75] Perry T, Lahiri DK, Sambamurti K, et al. Glucagon-like peptide-1 decreases endogenous amyloid-beta peptide (Abeta) levels and protects hippocampal neurons from death induced by Abeta and iron. J Neurosci Res, 2003, 72(5):603-612.
    [76] Walker LC, LeVine H, 3rd. The cerebral proteopathies. Neurobiol Aging, 2000, 21(4):559-561.
    [77] Marx J. Alzheimer's disease. A new take on tau. Science, 2007, 316(5830):1416-1417.
    [78]Goedert M, Spillantini MG A century of Alzheimer's disease. Science, 2006, 314(5800):777-781.
    [79]Dixit R, Ross JL, Goldman YE, et al. Differential regulation of dynein and kinesin motor proteins by tau. Science, 2008, 319(5866):1086-1089.
    [80]Marcora E, Gowan K, Lee JE. Stimulation of NeuroD activity by huntingtin and huntingtin-associated proteins HAP1 and MLK2. Proc Natl Acad Sci U S A, 2003, 100(16):9578-9583.
    [81]Petkova AT, Leapman RD, Guo Z, et al. Self-propagating, molecular-level polymorphism in Alzheimer's beta-amyloid fibrils. Science, 2005, 307(5707):262-265.
    [82]Tanzi RE, Moir RD, Wagner SL. Clearance of Alzheimer's Abeta peptide: the many roads to perdition. Neuron, 2004,43(5):605-608.
    [83]Kopito RR. Aggresomes, inclusion bodies and protein aggregation. Trends Cell Biol, 2000, 10(12):524-530.
    [84]Meriin AB, Sherman MY Role of molecular chaperones in neurodegenerative disorders. Int J Hyperthermia, 2005,21(5):403-419.
    [85]Markossian KA, Kurganov BI. Protein folding, misfolding, and aggregation. Formation of inclusion bodies and aggresomes. Biochemistry (Mosc), 2004, 69(9):971-984.
    [86]Hinault MP, Ben-Zvi A, Goloubinoff P. Chaperones and proteases: cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J Mol Neurosci, 2006, 30(3):249-265.
    [87] Singleton AB, Farrer M, Johnson J, et al. alpha-Synuclein locus triplication causes Parkinson's disease. Science, 2003, 302(5646):841.
    [88]Olzmann JA, Li L, Chin LS. Aggresome formation and neurodegenerative diseases: therapeutic implications. Curr Med Chem, 2008,15(1):47-60.
    [89]Maswood N, Young J, Tilmont E, et al. Caloric restriction increases neurotrophic factor levels and attenuates neurochemical and behavioral deficits in a primate model of Parkinson's disease. Proc Natl Acad Sci U S A, 2004, 101(52):18171-18176.
    [90]Duan W, Zhu X, Ladenheim B, et al. p53 inhibitors preserve dopamine neurons and motor function in experimental parkinsonism. Ann Neurol, 2002, 52(5):597-606.
    [91]Kordower JH, Emborg ME, Bloch J, et al. Neurodegeneration prevented by lentiviral vector delivery of GDNF in primate models of Parkinson's disease. Science, 2000,290(5492):767-773.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700