用户名: 密码: 验证码:
传统米制松糕的货架期预测模型研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
传统食品(糕点)是具有独特风味特色的民族产品,如何对传统食品的品质进行有效的控制,保持产品的新鲜度,是传统食品工业化生产需要解决的关键性问题,也是困扰生产者的一个重要技术难题,同时引发的米制品安全问题也是消费者最为关注的核心。本文以微生物指标和淀粉回生指标为主要依据,建立高水分食品的货架期预测模型和方法,为高水分米制食品生产、流通和销售过程中的品质和安全监督提供理论依据和技术支持,指导食品的工业化生产。
     首先通过研究米制松糕的理化特性及贮存稳定性,确定影响米制松糕货架期的关键性因素是微生物的腐败变质和淀粉的回生。新鲜松糕的水分含量39.5%,水分活度为0.92,pH值接近中性,因而适合多种腐败微生物的增殖,根据国家糕点销售标准,判断米制松糕的货架期为3天;在贮存过程中松糕的水分含量逐渐减小,持水性、总水溶物和水溶性淀粉含量逐渐降低;从生理学的角度出发,分析松糕贮存中体外消化特性的变化,结果表明,慢消化淀粉和抗性淀粉含量逐渐增加,快消化淀粉含量逐渐降低;利用物性仪分析测定松糕的质构特征,结果表明:硬度、粘性和咀嚼性在贮存期间逐渐增加。
     微生物容易滋生是影响松糕货架期的主要因素。本实验对米制松糕初始菌相的构成及菌相在贮存中的变化进行了分析,并且对导致腐败的主要微生物进行了初步的分离和鉴定。研究表明,随着贮存时间的延长,松糕中优势腐败菌发生了变化,新鲜的松糕中以葡萄球菌属(staphylococci)为主要优势菌群,存放3天后的松糕中以芽孢杆菌属(bacilli)为主。经分离鉴定的优势细菌主要有短芽孢杆菌(Bacillus brevis)、枯草芽孢杆菌(Bacillus subtilis)、表皮葡萄球菌(S.epidermidis)和金黄色葡萄球菌(S.aureus);分离鉴定的霉菌主要是黄绿青霉(Penicillium citreoviride)和桔青霉(Penicillium citrinum)。米制松糕中腐败菌的种类简单,主要是由于米制松糕熟制过程中的高温杀灭了绝大部分微生物而造成的,米制松糕中腐败菌的来源主要是产品熟制后,在后续的包装、流通、贮存过程中的二次污染造成的。芽孢杆菌属主要来源于原料中的芽孢污染。
     应用微生物预测技术(Predictive Microbiology Technology),研究米制松糕中腐败微生物的生长、残存特性,建立环境因素与微生物生长之间的预测模型,在此基础上对米制松糕的货架期进行预测。根据Gompertz函数和Logistic函数建立了不同温度条件下腐败微生物在松糕中的生长曲线和模型。结果表明,建立的数学模型能很好的预测特定腐败微生物在20℃、25℃和30℃下的生长状态;应用Belehradek模型建立了特定腐败微生物随温度变化的动力学模型;根据Gompertz模型和Logistic模型计算出不同温度下的动力学参数,依据腐败微生物生长模型,判断20℃-30℃松糕的微生物生长规律。结果表明,特定腐败微生物动力学模型可以快速可靠的实时预测松糕的腐败程度,保证产品的品质和安全性。
     将偏最小二乘回归方法(Partial Least Square)应用到微生物生长动力学建模分析中,研究不同温度和水分活度条件下黄绿青霉和桔青霉在松糕中的生长情况,建立了青霉在松糕中生长的预测模型。研究发现,黄绿青霉和桔青霉的生长速率随着温度的升高而增加,水分活度越高,黄绿青霉和桔青霉的生长速率越快;黄绿青霉和桔青霉的延滞时间随着温度的升高而减少,当水分活度增加时,延滞时间随之减少。在温度15-30℃、a_w0.80-0.90范围内,应用响应面分析的方法,建立了温度和水分活度与青霉生长速率和延滞时间之间的数学模型。
     通过对米制松糕贮存过程的热特性和结晶特性的研究,探讨松糕的老化机理,研究结果表明,淀粉老化是糊化淀粉分子形成有规律排列的结晶化过程,并得出以下结论:从样品的粘度特性分析可知,松糕的峰值粘度、低谷粘度、崩解值、最终粘度和回复值随贮存时间的延长逐渐增大,峰值时间随贮存时间的延长而逐渐减少,糊化温度降低;通过热力学性质的分析可知,早期的重结晶(晶核)融化顶点温度T_P为52.331℃,略高于后期的重结晶融化顶点温度,随着储藏时间的延长,融化支链淀粉重结晶所需的热焓△H由0.747 J/g增加到1.352 J/g,表明支链淀粉重结晶含量,即回生程度增加;松糕淀粉主要的红外光谱带主要集中在1153 cm~(-1)、1082 cm~(-1)、1047 cm~(-1)、1022 cm~(-1)、930 cm~(-1),随着贮存时间的延长,1047 cm~(-1)和1022 cm~(-1)处峰高的比值由0.87增加到0.90,说明淀粉颗粒中无定形分子迅速减少,有序分子逐渐增多,即淀粉的结晶度增加;根据样品的X-射线衍射可以看出,松糕淀粉在2θ为15°,18°,23°和34°处有强的衍射峰,表明该淀粉是A-型结构,松糕在贮存过程中结晶度有增加的趋势,由37%增加到46%,说明在贮存过程中,淀粉结晶区的双螺旋结构转变使晶体的排列更有序,无定形区的直链淀粉向双螺旋结构转变;从样品的扫描电镜图中可以看到,新鲜松糕内部有很多细小颗粒,贮存5天后松糕内部细小颗粒减少,颗粒体积增大,说明贮存过程中,膨胀的淀粉粒逐渐失水、塌陷,逐渐破坏原有的颗粒结构,最终导致颗粒之间粘结在一起。
     研究延缓米制松糕淀粉老化速率的方法。在松糕中分别添加黄原胶、CMC、真菌α-淀粉酶和β-淀粉酶,对松糕的硬度进行分析测定,研究表明,黄原胶、CMC、β-淀粉酶可以有效抑制松糕回生速度,提高松糕品质,保持松糕新鲜度,而α-淀粉酶的添加对改善松糕品质没有效果。α-淀粉酶使部分脱支下的外侧短链和直链淀粉一起参与了支链淀粉的成核,使得起始晶核增多,同时由于部分支链淀粉被脱支,分子间移动的阻力变小,链与链的迁移更加容易,堆积结晶的可能性加大,加快了支链淀粉的回生。
     为了发现松糕中淀粉回生的本质、应用Avrami回生动力学模型,研究松糕中淀粉回生动力学,结果发现,原松糕淀粉和含有黄原胶的松糕淀粉的Avrami参数n值小于1,表明淀粉重结晶的成核方式为一次成核,而添加CMC和β-淀粉酶的松糕,Avrami参数n值大于1小于2,说明淀粉重结晶的成核方式为不断成核,从结晶速率常数K来看,添加黄原胶、CMC和β-淀粉酶可以降低松糕淀粉结晶速率常数,其中β-淀粉酶的结晶速率常数最低。综合添加0.2%黄原胶、0.25%CMC和0.03%β-淀粉酶,可以有效的延缓米制松糕淀粉的老化速率。
Rice is one of the leading food corps in South East Asia including China. It can be ground into powder and utilized to produce many kinds of foods, including several types of cake. MiGao is one of the most widespread of these types of cake. It is famous for its soft and sticky texture and it is usually served as a dessert.
     The physical and chemical characters of Migao were studied during storage. The moisture content decreased after 2 days of storage and during the following days the crumb moisture content remained practically unchanged. The pH and a_w were fairly stable during storage. Water holding capacity, total water-solubles, soluble starch and Water holding capacity of MiGao decreased continuously throughout storage. Total plate counts in the products under study in the third day of storage were in the range <10~3 CFU/g and the shelf-life of the product was estimated to be only 2 or 3 days by the panelists. Firmness was developed mainly during the first day of storage, remained at a similar level from 2 to 3 day and increased slightly after the third day of storage. In view of the nutritional importance of starch, the major starch fractions viz, rapidly digestible starch, slowly digestible starch and resistant starch were measured by using controlled enzymic hydrolysis.
     Microbiological changes in MiGao were studied during storage at 25℃. Microorganisms examined for were: Enterobactericeae, lactic acid bacteria, Gram positive, catalase positive cocci, Staphylococcus aureus, Bacillus strains, yeasts and moulds. During the first 2 days, Gram-positive bacteria were dominant, mainly represented by S. epidermidis. Bacillus strains occurred by the third day, reaching a maximum level of 1×10~6 CFU/g after 5 days of storage. No Enterobactericeae or Lactic acid bacteria were detected in the processed products throughout the storage period. All the isolated strains from the mannitol salt agar belonged to the genus Staphylococcus. The predominant species were S. epidermidis and S. aureus. Most Bacillus strains, isolated from the tryptone soya agar, belonged to the species B. brevis. The count of yeasts and moulds increased slowly but remained low throughout the storage period and the isolated strains from the DG18 belonged to the species of Penicillium citreoviride and Penicillium citrinum.
     A numerical model was developed and validated to predict microbial growth during storage of Migao. For this the growth of the naturally occurring bacteria was studied at temperatures from 20℃to 30℃. Fitting of the model to the experimental data derived from Migao stored aerobically at 20℃, 25℃and 30℃successfully desc ribed the microbial growth kinetics in the
     Migao. Finally, the parameter values estimated by the fitting of the model on the data were used to predict microbial growth and shelf life in Migao at storage temperatures.
     Contamination by mold is serious problem of the steam-cooked rice cake, a traditional Chinese food. Growth responses to different temperatures and water activity values for Penicillium citreoviride and Penicillium citrinum, two of the most common molds, were investigated. Partial Least Square regression analysis showed that the growth of the two fungi did not differ in response to changes in water activity and temperature. Optimum a_w for growth was 0.90 a_w and optimum temperatures for growth were 30℃in most cases.
     Starch properties of MiGao were characterized during storage. Pasting viscosities of crumb-water slurries were measured with a Rapid Visco Analyser for evaluating the texture of MiGao. The most significant change in the pasting curve was the increase in peak viscosity over time. Differential scanning calorimetry was used to follow changes of starch retrogradation in MiGao crumb. Amylopectin recrystallisation in MiGao continued to increase during storage. FT-IR indicated changes in crystallinity of the MiGao crumb and the crystallinity of Migao stored at 25℃for up to 5 days was studied using X-Ray. The microstructure of Migao was studied by SEM.
     The effects of the addition of xantha, CMC,α- amylase andβ- amylase, in rice flour doughs, were studied in Migao. Thermal mechanical analysis techniques were used in order to evaluate the effect of additives on the retrogradation of starch in Migao. The type and extent of influence on Migao quality was dependent on the specific additives used and its supplementation level. Generally, the hardness of Migao decreased with addition of xantha, CMC andβ- amylase except forα- amylase. The Migao with good quality can be added with 0.2% xantha, 0.25% CMC和0.03%β- amylase.
引文
1.李里特.中华传统食品的科学与价值[J].食品科技,2004,(1):8-11.
    2.励建荣.论中国传统食品的工业化和现代化.[J].食品工业科技,2004:25(2):6-12.
    3.杨君.传统食品工业面临的挑战及其发展对策[J].广东农工商职业技术学院学报,2003,19(3):56-59.
    4.杨铭铎,曲敏.传统食品及工业化的涵义与意义[J].食品科学,2002,23(2):145-147.
    5.李文达.传统食品企业在21世纪全球化过程中的定位[J].农产品加工,2002(1):37-38.
    6.陈永斌.传统食品行业发展的探讨[J].上海商业,2002,(5):34-37.
    7.杨育谋.传统食品业蕴育着新商机[J].杭州科技,2000,21(3):45-46.
    8.李里特.开发传统食品,弘扬中华文化[J].食品工业,2003,(5):15-18.
    9.沈志远.论中国传统食品的工业化[J].中国烹饪研究,2000,17(1):50-52.
    10.李里特.食品加工业与传统主食品工业化[J].中国食品工业,2000,(9):4-6.
    11.尹宗伦.中国传统食品工业化问题[J].中国食物与营养,1999,(1):1-5.
    12.郑允斌.中国传统食品进入国际大市场的途径[J].科学中国人,2000,12:1.
    13.孟素荷.中国食品市场的变化及传统食品工业化的发展机遇[J].食品与机械,1999,(5):7-9.
    14.冯秉钧.苏州糕团概述[EB/OL].http://www.douban.com/group/topic/1548210/
    15.万象苇.微波延长了糕点商品在陈列架上的寿命[J].食品研究与开发,1980,(1):18-19.
    16.李世钊,胡可进,王德培.中草药添加剂延长绿豆糕贮存保鲜期试验初报[J].湖北农业科学,1988,(6):15-16.
    17.林克忠,吴长庆,耿敬坤.糕点食品最佳防霉保鲜剂的筛选[J].食品科学,1994,(8):56-58.
    18.梅约,郑晓斌.糕点食品的气调包装保鲜试验[J].食品工业,1997,(3):38-39.
    19.傅小伟,冯凤琴,林美富.复配型糕团品质改良剂的试验研究[J].农业工程学报,2003,19(4):212-215.
    20.王辛.传统糕团类食品防腐保鲜技术的研究[D]:[硕士学位论文],无锡:江南大学食品学院,2006.
    21.赵炜.添加变性淀粉的糯米糕团制品的研究[J].食品研究与开发,2007,28(5):57-59.
    22.IFT.Shelf life of foods.Journal of Food Science,1974,39:1-4.
    23.Alice,P.Shelf-life.Nutrition and food science,1999,99:131-135
    24.IFST.Shelf Life of Foods-Guidelines for its Determination and Prediction.IFST,London.1993.
    25.Mcginn,C.J.P.Evaluation of shelf life.IFST Proceedings,London:IFST.1982,15(3):153-161.
    26.Dappolonia.B.L and Morad.M.M.Bread staling.Cereal chemistry,1981,58:186-191.
    27.Roger,D.E.,Zeleznak,K.J.,Lai,C.et al.Effect of native lipids,shortening,and bread moisture on bread firming.Cereal Chem.1988,65:398.
    28.Kadan,R.S.,Robinson,M.G.,Thibodeaux,D.P.et al.Texture and other physicochemical properties of whole rice bread.Journal of food science,2001,66:940-944.
    29.Piazza,L and Masi,P.Moisture distribution throughout the bread loaf during staling and its effect on mechanical properties.Cereal Chemistry,1995,73:320-325.
    30.Stollman,U and Lundgren,B.Texture Changes in White Bread:Effects of Processing and Storage.Cereal Chemistry,1987,64:230-236.
    31.Wang,H.H.,Sun,D.W.,Zeng,Q.X.et al.Effect of pH,corn starch and phosphates on the pasting properties of rice flour.Journal of Food Engineering,2000,46:133-138.
    32.Moore,M.M.,Schober,T.J.,Dockery,P.et al.Textural Comparisons of Gluten-Free and Wheat-Based Doughs,Batters,and Breads.Cereal Chem,2004,81:567-575.
    33.Fu B,Labuza T P.Shelf life prediction theory and ap lication.Food Control,1993,4(3):125-33
    34.Gacula,M.C.The design of experiments for shelf-life study.Journal of Food Science,1975,40:399-403.
    35. Aguilera, J. M and Karel, M. Preservation of biological materials underdesiccation. Critical Reviews in Food Science and Nutrition, 1997, 37 (3): 287-309.
    36. Acker, L. W. Water activity and enzyme activity, Food Technology, 1969, 23 (10): 1257-70.
    37. Ablett, S., Izzard, M. J., Lillford, P. J., Arvanitoyannis, I et al. Calorimetric study of the glass transition occurring in fructose solutions. Carbohydrate Research, 1993b, 246: 13-22.
    38. Bell, L. N. Kinetics of non-enzymatic browning in amorphous solidsystems: distinguishing the effects of aw and the glass transition. Food Research International, 1996, 28 (6): 59-597.
    39. Bell, LN and Hageman, M. J. A model system for differentiating between water activity and glass transition effects on solid-state chemical reactions. J. Food Quality, 1995, 18: 141-147.
    40. Bell, L.N and Labuza, T .P. Influence of the low moisture state on pH and its implication for reaction kinetics. Food Engineering, 1994, 22: 291-312.
    41. Williams, R.J and Hirsch, A. G. On the freezing of water and the melting of ice in scanning calorimeters. Cryo-letters, 1986, 7: 146-161.
    42. Williams, M. L., Landel, R. F and Ferry, J. D. The temperature dependence of relaxation mechanisms in amorphous polymers and other glass forming liquids. J. American Chemical Soc, 1955, 77: 3701-3707.
    43. Troller, J. A. Influence of water activity on micro-organisms in foods. Food Technology, 1980, 34 (5): 76-80, 82.
    44. Shimada, Y., Ross, Y and Karel, M. Oxidation of methyl linoleate encapsulated in amorphous lactose-based food model. J. Agricultural and Food Chemistry, 1991, 39 (4): 637-41.
    45. Roos, Y. H and Karel, M. DSC study of phase transitions affecting the quality of dehydrated materials. Biotechnology Progress, 1990, 6: 159-63.
    46. Peleg, M. On the use of the WLF model in polymers and foods. Critical Reviews in Food Science and Nutrition, 1992, 32: 59-66.
    47. Labuza, T. P. The effect of water activity on reaction kinetics of food deterioration. Food Technology, 1980, 34 (4) :36-59.
    48. Karmas, R., Del PILAR BUERA, M and Karel, M. Effect of glass transition on rates of non-enzymatic browning in food systems. J. Agric. Food Chem., 1992, 40: 873-879.
    49. Jouppila, K and Roos, Y. H. Glass transitions and crystallisation in milk powders. J. Dairy Science, 1994, 77: 2907-2915.
    50. Hutchings, J.B. Food Colour and Appearance. Blackie A&P,Glasgow. 1994
    51. Bourne, M.C. Food Texture and Viscosity. Academic Press, New York. 1982
    52.Rosenthal,A.Food Texture,Perception and Measurement.Aspen Publishers Inc,Gaithersberg.1999
    53.Vickers,Z.M.Sound perceptions and food quality.Journal of Food Quality,1991,14(1):87-96.
    54.PiggottI,J.R.Design questions in sensory and consumer science.Food Quality and Preference,1995,6(4):217-20.
    55.Jack,F.R.,Piggott,J.R.and Paterson,A.Discrimination of texture and appearance in cheddar cheese using consumer free-choice profiling.Journal of Sensory Studies,1993,8:167-176.
    56.ShamilL,S.H.,Wyeth,L.J.and Kilcast,D.Flavour release and perception in reduced-fat foods.Food Quality and Preference,1992,3(1):51-60.
    57.Aishima,T.and Nakai,S.Chemometrics in flavour research.Food Reviews International,1991,7(1):33-101.
    58.Lavigne,J.J.,Savoy,S.,Clevenger,M.B et al.Solution-based analysis of multiple analytes by a sensor array:toward the development of an 'Electronic tongue'.J.Am.Chem.Soc.,1988,120,6429-6430.
    59.Quast,D.G and Karel,M.Effects of environmental factors on the oxidation of potato chips.Journal of Food Science,1972,37:584.
    60.Weissman,I,Ramon,O,Kopelman,I.J et al.A kinetic model foraccelerated tests of Maillard browning in a liquid model system.Journal of Food Processing and Preservation,1993,17:455-70.
    61.Mizrahi,S,Labuza,T.P and Karel.M.Feasibility of accelerated tests for browning in dehydrated cabbage.J of Food Science,1970,35:804-807.
    62.Labuza,T.P and Roboh,D.Theory and application of Arrhenius kinetics to the prediction of nutrient losses in food.Food Technology,1982,36:66-74.
    63.Labuza,T.P and Schmidl,M.K.Accelerated shelf-life testing of foods.Food Technology,1988,39(9):57-62,64.
    64.Nelson,K and Labuza,T.P.Water activity and food polymer science:implications of state on Arrhenius and WLF models in predicting shelflife.Journal of Food Engineering,1994,22:271-190.
    65.Haralampu,S.G,Saguy,I and Karel,M.Estimating of Arrhenius model parameters using three least square method.Journal of Food Processing and Preservation,1985,9:129-143.
    66.王璋,许时婴,江波,等.食品化学[M].北京:中国轻工业出版社,2003.
    67.王璋,钟芳,徐良增,等.食品科学[M].北京:中国轻工业出版社,2001.
    68. Buera, P and Karel, M. Application of the WLF equation to describe thecombined effect of moisture, temperature and physical changes on nonenzymatic browning rates in food systems. Journal of Food Processing and Preservation, 1993, 17: 31-47.
    69. Chirife, J and Buera, P. Water activity, glass transition and microbial stability in concentrated semimoist food systems. Journal of Food Science, 1994, 59: 921-927.
    70. Saguy, I., Mizrahi, S, Villota, R. et al. Accelerated method for determining the kinetic model of ascorbic acid loss during dehydration', Journal of Food Science, 1978, 43: 1861-1864.
    71. Labuza, T. P and Ragnarsson, J. O. Kinetic history effect on lipid oxidation of methyl linoleate in model system. Journal of Food Science, 1985, 50 (1): 145.
    72. Phillips, C. A. Review: Modified atmosphere packaging and its effect on the microbiological quality and safety of produce. International Journal of Food Science and Technology, 1996, 31:463-479.
    73. Stapeifeldt H. Nieison, B.R and Skibsted L.H. Towards use of ecectron spin resonance spesonance spectrometry in auality control of milk powder. Correlation between sensory score of instant whole milk powders and concentration of free radicals. Milchwissenschaft, 1997,52:682-685
    74. Labuza T P, M K Schmidl. Use of SensoryData in the ShelfLife Testing of Foods: Principles and GraphicalMethods for Evaluation. Cereal Foods World, 1988, 33 (2): 193 - 194,196 -198,200-206
    75. Marilyn C, Hung Yen - Con. Quality in frozen food. Chapman & Hall, 1997
    76. David, K and Persis, S. The stability and shelf- life of food. Woodhead Publishing Limited, 2000
    77. McMeekin, T.A and Olley, J. Predictive microbiology: towards the interface and beyond. Int. Journal Food Microbiol, 2002, 73: 395-407.
    78. Thomas, A., Meekin, M and Thomas, R. Shelf life prediction: status and future possibilities. Int J Food Microbiol, 1996, 33: 65-83.
    79. Buchanan, R. L. Predictive food microbiology. Trends Food Science Tech, 1993, 4: 6-11.
    80. Hill, R.A and Lacey, J. Factors determining the microflora of stored barley grain. Annual Applied Biology, 1983, 102: 467-483.
    81. Hill, R.A and Lacey, J. Penicillium species associated with barley grain in the UK. Transactions of the British Mycological Society, 1984, 82: 297-303.
    82. Legan, J.D. Mould spoilage of bread: the problem and some solutions. Int. Biodeterior. Biodegrad, 1993,32:33-53.
    83. Leistner, L. Food preservation by combined methods. Appl. Technol, 1992, 25: 151-158.
    84. Buchanan, R.L. Using spreadsheet software for predictive microbiology applications. J Food Safety, 1991,11: 123-134.
    85. Riemann, H. Opinion: predictive modeling. Lett Appl Microbial, 1992, 14: 127-131.
    86. Mass, M. R. Development and use of probability models: the industry perspective. Journal of Indust Microbiol, 1993, 12:162-171.
    87. Whiting, R. C and Buchanan, R.L.A. Classification of models for predictive microbiology. Food Microbiol, 1993,10:175-177.
    88. Ratkowsky, D. A., Lowry, R. K., McMeekin, T. A. et al. Model for bacterial culture growth rate throughout the entire biokinetic temperature range. J Bacteriol, 1983,154: 1222-1226.
    89. Zwietering, M. H and Rombouts, F. M. Some aspects of modeling microbial quality of food. Food Control, 1993,4: 89-96.
    90. Zwietering, M. H, Jongenburger, I., Rombouts, F. M. et al. Modeling of the bacterial growth curve. Appl Environ Microbiol, 1990, 56: 1875-1881.
    91. Whiting, R C and Buchanan, R. L. Microbial Modeling. Food Technol, 1994, 48: 113-120.
    92. Jones, J. E. A real-time database/models base/expert system in predictive microbiology. J Indust Microbiol, 1993, 12: 268-272.
    93. Ross, T. Indices for performance evaluation of predictive models in food microbiology. 1996, 81:501-508.
    94. Gompertz, B. On the function expressive of the law of human mortality, and on a new method of determining the value of life contingencies. Philosophical Transactions of the Royal Society, 1825, 513-585.
    95. Gibson, A. M and Roberts, T. A. The effect of pH, water activity, sodium nitrite and storage temperature on the growth of enteropathogenic Escherichia coli and Salmonellae in a laboratory medium. Int. J Food Microbiol, 1986, 3:183-194.
    96. Gibson, A. M., Bratchell, N and Roberts, T. A. The effect of sodium chloride and storage temperature on the rate and extent of growth of Clostridium botulinum type A in pasteurized pork slurry. J Appl Bacteriol, 1987, 62: 479-490.
    97. McMeekin, T. A., Chandler, R. E., Doe, P. E. et al. Model for combined effect of temperature and salt concentraion/water activity on the growth rate of staphylococcus xylosus. J Appl Bacteriol, 1987, 62: 543-550.
    98. Davey, K. R. A predictive model for combined temperature and water activity on microbial growth during the growth phase. J Appl Bacteriol, 1989, 67: 483-488.
    99. Davey, K. R. Applicability of the Davey(linear Arrhenius) predictive model to the lag phase of microbial growth. J Appl Bacteriol, 1991, 70:253-257.
    100.Einarsson, H and Eriksson, S. G. Microbial growth models for prediction of shelf life of chilled meat. Int J Food Microbiol, 1986, 301-305.
    101.Lindroth, S. E and Genigeorgis, C. A. Probability of growth and toxin production by nonproteolytic clostridium botulinum in rockfish stored under modified atmospheres. J Food Microbiol, 1986, 3: 167-181.
    102.Cole, M. B., Davies, K. W., Munro, G. et al. A vitalistic model to describe the thermal inactivation of Listeria monocytogenes. Soc Ind Microbiol, 1993, 12: 232-239.
    103.Buchanan, R. L, Golden, M. H and Phillips, J. G. Expanded models for the nonthermal inactivation of Listeria monocytogenes. J Appl Microbiol, 1997, 82: 567-577.
    104.Cayre, M. E and Vignolo, G. Modeling lactic acid bacteria growth in vacuum-packaged cooked meat emulsions stored at three temperatures. Food Microbiol, 2003, 20: 561-566.
    105.Marttne. K and Christine. C. Combined effects of pH and sugar on growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl Environ microbiol, 1999, 65:4921-4925.
    
    106.Battey, A. S., Duffy, S and Schaffne, D. W. Modelling mould spoilage in cold-filled ready- to-drink beverages by Aspergillus nigerand Penicillium spinulosum. Food Microbiol, 2001, 18:521-529.
    107.Abellana, M., Sanchis, V and Ramos, A.J. Effect of water activity and temperature on growth of three Penicillium species and Aspergillus flavus on a sponge cake analogue. International Journal of Food Microbiology, 2001, 71:151-157.
    108.Fustier, P., Lafond, A., Champagne, C.P. etc. Effect of inoculation techniques and relative humidity on the growth of moulds on the surfaces on yellow layer cakes. Appl Environ. Microbiol, 1998, 64: 192-196.
    109.Frederico, V. P and Fleming, H. P. Modeling growth of Saccharomyces rosei in cucumber fermentation. Food Microbiol, 2001, 14: 533-542.
    110.Marin, S., Sanchis, V., Saez, R. etc. Ecological determinants for germination and growth of some Aspergillus and Penicillium spp. from maize grain. J. Appl. Microbiol, 1998, 84: 25- 36.
    111.Membre, J., Kubaczka, M and Chene, C. Combined effects of pH and sugar on the growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl Environ. Microbiol, 1999,65:4921-4925.
    112.Seiler, D. Microbiological problems associated with cereal based foods. Food Sci. Technol. Today, 1988,2:37-41.
    113.Abellana, M., Magri, X., Sanchis, V. etc. Water activity and temperature effects on growth of Eurotium amstelodami, E. chevalieri and E. herbariorum on a sponge cake analogue. Int. J. Food Microbiol, 1999, 52: 97-103.
    114.Rosa, M. Garcia-Gimeno and Gonzalo Zurera-Cosano. Determination of ready-to-eat vegetable salad shelf life. International Journal of Food Microbiology, 1997, 36:31-38.
    115.Devlieghere, F., Van Belle, B. etc. Shelf life of modified atmosphere packed cooked meat products: a predictive model. International Journal of Food Microbiology, 1999,46: 57-70.
    116.Koutsoumanis, K and Nychas, G. J. E. Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions. International Journal of Food Microbiology, 2000,60: 171-184.
    117.Dalgaard, P., Mejlholm, O. and Huss, H. H. Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish. Int. J. Food Microbiol, 1997,38:169-179.
    118.Kyrana,V.R., Lougovois,V.P and Valsamis, D.S. Assessment of shelf life of maricultured gilthead sea bream (Sparus aurata) stored in ice. Int. J. Food Sci. Technol, 1997, 32, 339-347.
    119.Sinigaglia, M., Corbo, M.R., D'Amato, D. et al. Shelf-life modelling of ready-to-eat coconut. International Journal of Food Science and Technology, 2003, 38: 547-552.
    120.Rasmussen, S.K.J., Ross, T., Olley, J. et al. A process risk model for the shelf life of Atlantic salmon fillets. International Journal of Food Microbiology, 2002, 73: 47-60.
    121.Gookoglu, N., Cengiz, E and Yerlikaya, P. Determination of the shelf life of marinated sardine (Sardina pilchardus) stored at 4 C. Food Control, 2004, 15:1-4.
    122.Kilinc, B and Cakli, K. Determination of the shelf life of sardine (Sardina pilchardus) marinades in tomato sauce stored at 4 C. Food Control, 2005, 16:639-644.
    123.Konstantinos, K. Predictive Modeling of the Shelf Life of Fish under Nonisothermal Conditions. Appl Environ Microbiol, 2001, 67: 1821-1829.
    124.Alklint, C, Wadso, L and Sjoholm, I. Effects of modified atmosphere on shelf-life of carrot juice. Food Control, 2004, 15: 131-137.
    125.Koutsoumanis, K., Giannakourou, M. C., Taoukis, P. S. et al. Application of shelf life decision system (SLDS) to marine cultured fish quality. International Journal of Food Microbiolog, 2002, 73: 375-382.
    126.Thomas, C and O'Beirne, D. Evaluation of the impact of short-term temperature abuse on the microbiology and shelf life of a model ready-to-use vegetable combination product. International Journal of Food Microbiology, 2000, 59: 47-57.
    1.王辛.传统糕团类食品防腐保鲜技术的研究[D]:[硕士学位论文],2006.
    2.AOAC.Official Methods of Analysis,15th edition.Method 925.09.Association of Official Analytical Chemists.Arlington,VA.1990
    3.Pinnavaia,G.G and Pizzirani,S.Evaluation of the degree of gelatinization by water holding capacity.Starch/Starke,1998,50:64-67.
    4.中华人民共和国国家标准.GB7099-2003,糕点、面包卫生标准[S].2004.
    5.苏世彦.食品微生物检验手册.北京:中国轻工业出版社[M],1998,10.
    6.Leistner,L.Food preservation by combined methods.Appl.Technol.1992,25:151-158.
    7.Marin,S.,Sanchis,V.,Saez,R,et al.Ecological determinants for germination and growth of some Aspergillus and Penicillium spp.from maize grain.J.Appl.Microbiol,1998,84:25-36.
    8. Zardetto, S. Effect of modified atmosphere packaging at abuse temperature on the growth of Penicillium aurantiogriseum isolated from fresh filled pasta. Food Microbiology, 2005, 22: 367-371.
    9. Whilloft, E. M. A. Mechanism and theory of staling of bread and baked goods, and associated changes in textural properties. J.Texture Stud,1973, 4:292.
    10. Zeleznak, K. J and Hoseney, R. C. The role of water in the retrogradation of wheat gels and bread crumb. Cereal Chem. 1986, 63:407.
    11. Roger, D. E., Zeleznak, K. J., Lai, C,et al. Effect of native lipids, shortening, and bread moisture on bread firming. Cereal Chem. 1988, 65:398.
    12. Martin, M. L., Zeleznak, K. J and Hoseney, R. C. A mechanism of bread firming. I. Role of starch swelling. Cereal Chem. 1991, 68:498.
    13. Martin, M. L and Hoseney, R. C. A mechanism of bread firming. II. Role of starch hydrolyzing enzymes. Cereal Chem. 1991, 68:503.
    14. Zeleznak, K. J and Hoseney, R. C. Characterization of starch from bread aged at different temperatures. starch/saterke, 1987, 39:231-233.
    15. Slade, L and Levien, H. Beyond Water Activity: Recent Advances Based on an Alternative Approach to the Assessment of Food Quality and Safety. Crit Rev Food Sci Nutr, 1991, 30:115
    16. Piazza, L and Masi, P. Moisture redistribution throughout the bread loaf during staling and its effect on mechanical properties. Cereal Chem, 1995, 72:320-325.
    17. Owusu-Ansah, J., van de Voort, F. R and Stanley, D.W. Physicochemical changes in cornstarch as a function of extrusion variables. Cereal Chemistry, 1983,60: 319-324.
    18. Hoover, R and Manuel, H. Effect of heat-moisture treatment on the structure and physicochemical properties of legume starches. Food Res. Int, 1996, 29: 731-750.
    19. Hoover, R and Manuel, H. The effect of heat-moisture treatment on the structure and physicochemical properties of normal maize, waxy maize, dull waxy maize and amylomaize v starches, J. Cereal Sci. 1996, 23: 153-162.
    20. Colonna, P., Leloup, V and Bule'on, A. Limiting factors of starch hydrolysis. European Journal of Clinical Nutrition, 1992, 46: 17-32.
    21. Patela, B.K., Waniskab, R.D and Seetharaman, K. Impact of different baking processes on bread firmness and starch properties in breadcrumb. Journal of Cereal Science, 2005, 42: 173-184.
    22. Morrisson, W. R. Properties of Damaged Starch Granules. II. Crystallinity, Molecular Order and Gelatinisation of Ball-milled Starches. J. Cereal Sci, 1994, 19: 209-217.
    23.Dappolonia.B.L and Morad,M.M.Bread staling.Cereal chemistry,1981,58:186-191.
    24.Sidhu,J.S.,Al-Saqer,J and AEZenki,S.Comparison of methods for the extent of staling in assessment of bread.Food Chemisrry,1997,58:161-167.
    25.Englyst,H.N.,Kingman,S.M and Cummings,J.H.Classification and measurement of nutritionally important starch fractions European Journal of Clinical Nutrition,1992,46:533-550.
    26.丁文平,王月慧,丁霄霖.大米淀粉理化指标对其回生特性的影响[J].郑州工程学院学报,2003,24(1):38-42.
    27.Ylimaki,G.Hawrysh,Z.J.Hardin,R.T,et al.Application of response surface methodology to the development of rice flour yeast bread:objective measurements.Journal of food science,1988,53:1800-1805.
    28.Mohamed,S and Hamid,N.A.Effects of Ingredients on the Characteristics of Rice Cakes.J Sci Food Agric.1998,76:464-468.
    29.Kadan,R.S.,Robinson,M.G.,Thibodeaux,D.P and Peppermanjr,A.B.Texture and other physicochemical properties of whole rice bread.Journal of food science.2001,66:940-944
    30.Sanchez,H.D.,Osella,C.A and Dela torre,M.A.Optimization of gluten-free bread prepared from cornstarch,rice flour,and cassava starch.Journal of food science,2002,67:416-419.
    31.Mccarthy,D.F.,Gallagher,E.,Gormley,T.R,et al.Application of response surface methodology in the development of gluten-free bread.Cereal Chemistry,2005,82:609-615.
    32.Shih,F.F.,Truong,V.D and Daigle,K.W.Physicochemical properties of gluten-free pancakes from rice and sweet potato flours.Journal of Food Quality,2006,29:97-107.
    33.Krog,N.,Olesen,S.K.,Toemaes,H,et al.Retrogradation of the starch fracrtion in wheat bread.Cereal Foods World,1989,34:281-285.
    34.Roach,R.R and Hoseney,R.C.Effect of Certain Surfactants on the Swelling,Solubility,and Amylograph Consistency of Starch.Cereal Chemistry,1995,72:515-666.
    35.Baker,L.A and Rayas-Duarte,P.Retrogradation of amaranth starch at different storage temperatures and the effects of salt and sugars.Cereal Chem,1998,75:308-314.
    36.Kadan,R.S.,Robinsonm,M.G.,Thibodeux,D.P,et al.Texture and other physiochemical properties of whole rice bread.J.Food Sci,2001,66:940-944.
    37.Wen,Q.B,Lorenz,K.J.Carbohydrate digestibility and resistant starch of steamed bread.Starch,1996,48:180-185.
    38. Lu, S and Chen, L.N. Correlations between the fine structure, physicochemichal properties and retrogradation of amylopectins from Taiwan rice varieties. Cereal Chemistry, 1997, 74 :34-39.
    39. Miles, M.J and Morris. The roles of amylose and amylopectin in the gelation and retrgradation of starch. Carbohydrate Research, 1985, 135: 271-281.
    1.王辛.传统糕团类食品防腐保鲜技术的研究[D]:[硕士学位论文].无锡:江南大学食品学院,2006.
    2.Condon,S.,Lopez,P.,Oria,R,et al.Thermal death determination:design and evaluation of a thermoresistometer.J.Food Sci,1989,54:451-457.
    3.Condon,S.,Palop,A.,Raso,J,et al.Influence of the incubation temperature after heat treatment upon the estimated heat resistance values of spores of Bacillus subtilis.Lett.Appl.Bacteriol,1996,22:149-152.
    4.Quintavalla,S and Parolari,G.Effects of temperature,aw and pH on the growth of Bacillus cells and spores:a response surface methodology study.Int.J.Food Microbiol.1993,19:207-216.
    5.Pattison,T.L.,Lindsay,D and Vonholy,A.In vitro growth response of bread-spoilage Bacillus strains to selected natural antimicrobials.J.Basic Microbiol.2003,43:341-347.
    6.Kaur.P.Survival and growth of Bacillus cereus in bread.J.Appl.Bacteriol,1986,60,513-516
    7.Quintavalla,S and Paroli,G.Effects of temperature,aw and pH on the growth of Bacillus cells and spores:A response surface mothodology study.Int.J.Food Microbiol,1993,19,207-216.
    8.Thompson,J.M.,Dodd.C.E.R and Waites,W.M.Spoilage of bread by Bacillus.Int.Biodeterior.Biodegrad.1993,32,55-66.
    9.Keshri,G.Voysey,P and Magan,N.Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assay,J.App.Microbiol,2002,92:165-172.
    10.Bailey,C.P and Von Holy,A.Bacillus spore contamination associated with commercial bread manufacture.Food Microbiol,1993,10:287-294.
    11.Guynot,M.E.,Ramos,A.J.,Sala,D,et al.Combined effects of weak acid preservatives,pH and water activity on growth of Eurotium species on a sponge cake.Int.J.Food Microbiol.2002,76:39-49.
    12.Patterson,M and Damoglou,A.P.The effect of water activity and pH on the production of mycotoxins by fungi growing on bread analogue,Lett.App.Microbiol,1986,3:123-125.
    13.东秀珠,蔡妙英.常见细菌系统鉴定手册[M].北京:科学出版社,2001.
    14.布坎南.R.E.《伯杰细菌鉴定手册》[M].北京:科学出版社,1984.
    15.魏景超遗著.真菌鉴定手册[M].上海:上海科学技术出版社,1979.9.
    16.戴芳澜遗著.真菌的形态和分类[M].科学出版社,1987.3.
    17.Bailey,C.P and A.von Holy.Bacillus spore contamination associated with commercial bread manufacture.Food Microbiol,1993,10:287-294.
    18.Rosenkvist,H and Hansen,A.Contamination profiles and characterisation of bacillus species in wheat bread and raw materials for bread production.International Journal of Food Microbiology,1995,26:353-363.
    19.Te Giffel,M.C.,Beumer,R.R.,Leijendekkers,S,et al.Incidence of Bacillus cereusand Bacillus subtilisin foods in the Netherlands.Food Microbiology,1996,13:53-58.
    20.Kotzekidou,P.A.microtitre tray procedure for a simplified identification of Bacillus spp.in spoiled canned foods.Food Microbiology,1996,13:35-40.
    21.Needhama,R.,Williams,J.,Beales,N,et al.Early detection and differentiation of spoilage of bakery products.Sensors and Actuators B,2005,106:20-23.
    22.秦泓,符丽媛,陶平.面粉及面制品中的芽孢杆菌[J].面粉通讯,2006,(1):38-39.
    23.连英姿,张敬党,安静.一起由蜡样芽孢杆菌引起的食物中毒的病原学调查[J].中国卫生检验杂志,2005,15(6):766.
    24. Schleifer, K. H and Kloos, W. E. A simple test for separation of staphylococci from micrococci. Journal of Clinical Microbiology, 1975, 1: 337-338.
    25. Kloos, W. E. Systematics and the natural history of staphylococci 1. J. Appl. Bacteriol. Symp. Suppl. 1990,69:25-37.
    26. Schleifer, K. H. Bergey's Manual of Systematic Bacteriology. Gram positive cocci. 1986, 999-1003. Baltimore: Williams and Wilkins.
    27. Knight, R.A and Menlove, E.M. Effect of the bread-baking process on destruction of certain mould spores. Journal of the Science of Food and Agriculture, 1961, 12: 653- 656.
    28. Legan, J.D. Mould spoilage of bread: the problem and some solutions. Int. Biodeterior. Biodegrad. 1993, 32: 33-53.
    29. Abellana, M., Magri, X., Sanchis, V, et al. Water activity and temperature effects on growth of Eurotium amstelodami, E. chevalieri and E. herbariorum on a sponge cake analogue. Int. J. Food Microbiol, 1999, 52: 97-103.
    1.Thomas,A.,Meekin,M and Thomas,R.Shelf life prediction:status and future possibilities.International Journal of Food Microbiology,1996,33:65-83.
    2.Van Impe,J.F.,Poschet,F.,Geeraerd,A.H,et al.Towards a novel class of predictive microbial growth models.International Journal of Food Microbiology,2005,100:97-105.
    3.Roberts,T.A.Microbial Growth and Survival:Developments in Predictive Modelling.International Biodeterioration & Biodegradation,1995,3:297-309.
    4.Soboleva,T.K.Pleasants,A.B and le Roux,G.Predictive microbiology and food safety.International Journal of Food Microbiology,2000 57:183-192.
    5.McMeekin,T.A and Ross.T.Predictive microbiology:providing a knowledge-based framework for change management.International Journal of Food Microbiology,2002,78:133-153.
    6.McMeekin,T.A.,Olley,J.,Ratkowsky,D.A,et al.Predictive microbiology:towards the interface and beyond.International Journal of Food Microbiology,2002,73:395-407.
    7.Baranyi,J and Pin,C.A Parallel Study on Bacterial Growth and Inactivation.J.theor.Biol.,2001,210:327-336.
    8.Baranyi,J and Roberts,T.A.A dynamic approach to predicting bacterial growth in food.Int.J.Food Microbiol.1994,23:277-294.
    9.Duh,Y.H and Schaffner,D.W.Modelling the effect of temperature on the growth rate and lag time of Listeria monocytogenes.J.Food Prot,1993,56:205-210.
    10.Presser,K.,Ross,T and Ratkowsky,D.A.,Modelling the growth limits(growth/no growth)interface of Escherichia coli as a function of pH,lactic acid and temperature.Appl.Environ.Microbiol,1998,64:1733-1779.
    11.Adamberg,K.,Kask,S.,Laht,T,et al.The effect of temperature and pH on the growth of lactic acid bacteria:a pH-auxostat study.International Journal of Food Microbiology,2003,85:171-183.
    12.Corradini,M.G and Peleg,M.Estimating non-isothermal bacterial growth in foods from isothermal experimental data.Journal of Applied Microbiology,2005,99,1365-2672.
    13.Theron,H.,Venter,P and Lues,J.F.R.Bacterial growth on chicken eggs in various storage environments.Food Research International,2003,36:969-975.
    14. Dalgaard, P., Mejlholm, O. and Huss, H. H. Application of an iterative approach for development of a microbial model predicting the shelf-life of packed fish. Int. J. Food Microbiol. 1997, 38:169-179.
    15. Taoukis, P. S., Koutsoumanis, K and Nychas, G. J. E. Use of time temperature integrators and predictive modelling for shelf life control of chilled fish under dynamic storage conditions. Int. J. Food Microbiol. 1999, 53:21-31.
    16. Dalgaard, P. Modelling of microbial activity and predic-tion of shelf life of packed fresh fish. Int. J. Food Microbiol. 1995a, 19: 305-318.
    17. Kyrana,V.R., Lougovois,V.P and Valsamis, D.S., Assessment of shelf life of maricultured gilthead sea bream (Sparus aurata) stored in ice. Int. J. Food Sci. Technol, 1997, 32, 339-347.
    18. Neumeyer, K., Ross, T and McMeekin, T.A. Development of a predictive model to describe the effects of temperature and water activity on the growth of spoilage pseudomonads. Int. J. Food Microbiol, 1997, 38: 45-54.
    19. Pin, C, Sutherland, J.P and Baranyi, J. Validating predictive models of food spoilage organisms. J. Appl. Microbiol. 1999, 87: 491-499.
    20. Sinigaglia, M., Corbo, M.R., D'Amato, D, et al. Shelf-life modelling of ready-to-eat coconut. International Journal of Food Science and Technology, 2003, 38: 547-552.
    21. Rasmussen, S.K.J., Ross, T., Olley, J, et al. A process risk model for the shelf life of Atlantic salmon fillets. International Journal of Food Microbiology, 2002, 73: 47-60.
    22. Koutsoumanis, K and Nychas, G. J. E. Application of a systematic experimental procedure to develop a microbial model for rapid fish shelf life predictions. International Journal of Food Microbiology, 2000, 60: 171-184.
    23. Gookoglu, N., Cengiz, E and Yerlikaya, P. Determination of the shelf life of marinated sardine (Sardina pilchardus) stored at 4 C. Food Control, 2004, 15: 1-4.
    24. Kilinc, B and Cakli, K. Determination of the shelf life of sardine (Sardina pilchardus) marinades in tomato sauce stored at 4 C. Food Control, 2005, 16:639-644.
    25. Abdullah, B., Gardini, F., Paparella, A, et al. Growth modelling of the predominant microbial groups in hamburgers in relation to the modulation of atmosphere condition, storage temperature and diameter of meat particle. Meat Science, 1994, 38: 511-526.
    26. Baranyi, J., Pin, C. and Ross, T. Validating and comparing predictive models. International Journal of Food Microbiology, 1999, 48: 159-166.
    27. Van Impe, J.F. Poschet, F. Geeraerd, A.H, et al. Towards a novel class of predictive microbial growth models. International Journal of Food Microbiology, 2005, 100: 97-105.
    28. George, S.M., Richardson, L.C.C and Peck, M.W. Predictive models of the effect of temperature, pH and acetic and lactic acids on the growth of Listeria monocytogenes. International Journal of Food Microbiology, 1996, 32: 73-90.
    29. Griffiths, M.W. Predictive modelling: applications in the dairy industry. International Journal of Food Microbiology, 1994, 23: 305-315.
    30. Pin, C and Baranyi, J. Predictive models as means to quantify the interactions of spoilage organisms. International Journal of Food Microbiology, 1998, 41: 59-72.
    31. Lo'peza, S., Prietob, M., Dijkstrac, J, et al. Statistical evaluation of mathematical models for microbial growth International Journal of Food Microbiology, 2004, 96:289-300.
    32. Baranyi, J. and Roberts, T.A. Mathematics of predictive food microbiology. International Journal of Food Microbiology, 1995, 26: 199-218.
    33. Konstantinos, K. Predictive Modeling of the Shelf Life of Fish under Nonisothermal Conditions. Appl Environ Microbiol, 2001, 67: 1821-1829.
    34. Alklint, C, Wadso, L and Sjoholm, I. Effects of modified atmosphere on shelf-life of carrot juice. Food Control, 2004, 15: 131-137.
    35. Koutsoumanis, K., Giannakourou, M. C, Taoukis, P. S, et al. Application of shelf life decision system (SLDS) to marine cultured fish quality. International Journal of Food Microbiology , 2002, 73: 375-382.
    36. Thomas, C and O'Beirne, D. Evaluation of the impact of short-term temperature abuse on the microbiology and shelf life of a model ready-to-use vegetable combination product. International Journal of Food Microbiology, 2000, 59: 47-57.
    37. Ross, T. Indices for performance evaluation of predictive models in food microbiology. J Appl Microbiol, 1996, 81:501-508.
    1. Seiler, D. Microbiological problems associated with cereal based foods. Food Sci. Technol. Today. 1988,2:37-41.
    2. Keshri, G. Voysey, P and Magan, N. Early detection of spoilage moulds in bread using volatile production patterns and quantitative enzyme assay, J. App. Microbiol, 2002,92:165-172.
    3. Guynot, M.E., Ramos, A.J., Sala, D, et al. Combined effects of weak acid preservatives, pH and water activity on growth of Eurotium species on a sponge cake. Int. J. Food Microbiol. 2002,76: 39-49.
    4. Patterson, M and Damoglou, A.P. The effect of water activity and pH on the production of mycotoxins by fungi growing on bread analogue, Lett. App. Microbiol, 1986,3:123-125.
    5. Abellana, M., Magri, X., Sanchis, V, et al. Water activity and temperature effects on growth of Eurotium amstelodami, E. chevalieri and E. herbariorum on a sponge cake analogue. Int. J. Food Microbiol. 1999, 52: 97-103.
    6. Guynot, M. E., Marin, S., Sanchis, V, et al. An attempt to minimize potassium sorbate concentration in sponge cakes by modified atmosphere packaging combination to prevent fungal spoilage. Food Microbiology, 2004, 21: 449-457.
    7. Thomas. A., McMeekin, Olley, J, et al. Predictive microbiology: towards the interface and beyond. International Journal of Food Microbiology, 2002, 73:395-407.
    8. Van Impe, J.F., Poschet, F., Geeraerd, A.H, et al. Towards a novel class of predictive microbial growth models. International Journal of Food Microbiology, 2005, 100: 97-105.
    9. Thomas, A., Meekin, M and Thomas, R. Shelf life prediction: status and future possibilities. International Journal of Food Microbiology, 1996, 33: 65-83.
    10. Roberts, T. A. Microbial Growth and Survival: Developments in Predictive Modelling. International Biodeterioration & Biodegradation, 1995, 3: 297-309.
    11. McMeekin, T.A and Ross. T. Predictive microbiology: providing a knowledge-based framework for change management. International Journal of Food Microbiology, 2002, 78: 133-153.
    12. Soboleva, T.K. Pleasants, A.B and le Roux, G. Predictive microbiology and food safety. International Journal of Food Microbiology, 2000 57:183-192.
    13. T.A. McMeekin, T. Ross. Predictive microbiology: providing a knowledge-based framework for change management. International Journal of Food Microbiology, 2002, 78:133-153.
    14. Marin, S., Sanchis, V. and Magan, N. Water activity,temperature, and pH effects on growth of Fusarium moniliforme and Fusarium proliferatum isolates from maize. Canadian Journal of Microbiology. 1995,41: 1063-1070.
    15. Membre, J., Kubaczka, M and Chene, C. Combined effects of pH and sugar on the growth rate of Zygosaccharomyces rouxii, a bakery product spoilage yeast. Appl Environ. Microbiol. 1999, 65: 4921-4925.
    16.Cuppers,H.G.A.M,Oomes,S and Brul S.A Model for the Combined Effects of Temperature and Salt Concentration on Growth Rate of Food Spoilage Molds.Applied and enironmental microbiology,1997,3764-3769.
    17.Gbosh,M.K.,Chhabra,A.,Atreja,P.P,et al.Effect of treating with propionic acid,sodium bisulfite and sodium hydroxide on the biosynthesis aflatoxin on groundnut cake.Animal Feed Science Technology,1996,60:43-49.
    18.Abellana,M.,Benedl,J.,Sanchis,V,et al.Water activity and temperature effects on germination and growth of Eurotium amstelodami,E.chevalieri and E.herbariorum isolates from bakery products.Journal of Applied Microbiology,1999,87:371-380.
    19.Guynot,M.E.,Marin,S.,Sanchis,V,et al.An attempt to optimize potassium sorbate use to preserve lowpH(4.5-5.5) intermediate moisture bakery products bymodelling Eurotium spp.,Aspergillus spp.and Penicillium corylophilum growth.International Journal of Food Microbiology,2005,101:169-177.
    20.Gock,M.A.,Hocking,A.D.,Pitt,J.I,et al.Influence of temperature,water activity and pH on growth of some xerophilic fungi.International Journal of Food Microbiology,2003,81:11-19.
    21.Pardo,E.,Marin,S.,Sanchis,V,et al.Prediction of fungal growth and ochratoxin A production by Aspergillus ochraceus on irradiated barley grain as influenced by temperature and water activity.International Journal of Food Microbiology,2004,95:79-88.
    22.Abellana,M.,Ramos,A.J.,Sanchis,V,et al.Effect of modified atmosphere packaging and water activity on growth of Eurotium amstelodami,E.chevalieri and E.herbariorum on a sponge cake analogue.Journal of Applied Microbiology.2000,88:606-616.
    23.Marin,S.,Guynot,M.E.,Neira,P,et al.Sanchis,V and Ramos.A.J.Risk assessment of the use of sub-optimal levels of weak-acid preservatives in the control of mould growth on bakery products.International Journal of Food Microbiology,2002,79:203-211.
    24.Fustier,P.,Lafond,A.,Champagne,C.P,et al.Effect of inoculation techniques and relative humidity on the growth of moulds on the surfaces on yellow layer cakes.Appl Environ.Microbiol.1998,64:192-196.
    25.李敏,李耘,韩北忠.金华火腿中杂色曲霉的生长预测模型[J],食品与发酵工业,2005,31(11):56-59.
    26.彭坚,韩北忠.小麦中黄曲霉生长的预测模型[J].河南工业大学学报,2005,26(2):51-57.
    27.王惠文.偏最小二乘回归方法及其应用[M].北京:国防工业出版社1999.
    28.Abellana,M.,Sanchis,V and Ramos,A.J.Effect of water activity and temperature on growth of three Penicillium species and Aspergillus flavus on a sponge cake analogue.International Journal of Food Microbiology.2001,71:151-157.
    29.Legan,J.D.Mould spoilage of bread:the problem and some solutions.Int.Biodeterior.Biodegrad.1993,32:33-53.
    30.Pardo,E.,Malet,M.,Matin,S,et al.Effects of water activity and temperature on germination and growth profiles of ochratoxigenic Penicillium verrucosum isolates on barley meal extract agar.International Journal of Food Microbiology,2006,106:25-31.
    31. Earle, M.D and Putt, G.J. Microbial spoilage and use of sorbate in bakery products. Food Technol. N. Z. 1984, 19: 25-36.
    32. Hill, R.A and Lacey, J. Factors determining the microflora of stored barley grain. Annual Applied Biology, 1983,102: 467-483.
    33. Leistner, L. Food preservation by combined methods. Appl. Technol. 1992, 25: 151-158.
    34. Marin, S., Sanchis, V., Saez, R, et al. Ecological determinants for germination and growth of some Aspergillus and Penicillium spp. from maize grain. J. Appl. Microbiol, 1998, 84: 25-36.
    35. Zardetto, S. Effect of modified atmosphere packaging at abuse temperature on the growth of Penicillium aurantiogriseum isolated from fresh filled pasta. Food Microbiology, 2005, 22: 367-371.
    1.Kadan,R.S.,Robinson,M.G.,Thibodeaux,D.P,et al.Texture and other physicochemical properties of whole rice bread.Journal of food science,2001,66:940-944.
    2.Mohamed,S and Hamid,N.A.Effects of Ingredients on the Characteristics of Rice Cakes.J Sci Food Agric.1998,76:464-468.
    3.Sanchez,H.D.,Osella,C.A and Dela torre,M.A.Optimization of gluten-free bread prepared from cornstarch,rice flour,and cassava starch.Journal of food science,2002,67:416-419.
    4.Ylimaki,G.Hawrysh,Z.J.Hardin,R.T,et al.Application of response surface methodology to the development of rice flour yeast bread:objective measurements.Journal of food science,1988,53:1800-1805.
    5.Miles,M.J and Morris,V.J.Gelation ofamylose.Carbohydrate Reserch,1985,135:257-269.
    6.Longton,J and Legrys,G.A.DSC studies on the crystallinity of aging wheat starch gels.Starch,1981,33:410-414.
    7.Gabriella G and Claudio P.Effect of baking temperature on crumb - staling kinetics.Cereal Chemistry,1997,74:710-714.
    8.He H and Hoseney R.C.Changes in bread and moisture during storge.Cereal Chem,67:603-605.
    9.Pramila A and Nussinovitch A.Effects of selected surfactants on amylopectin recrystallization and on recoverability of bread crumb during storage.Cereal Chem.1992.69:613-618.
    10.Dappolonia,B.L and Morad,M.M.Bread staling.Cereal chemistry,1981,58:186-191.
    11.Krog,N.,Olesen,S.K.,Toemaes,H,et al.Retrogradation of the starch fracrtion in wheat bread.Cereal Foods World,1989,34:281-285.
    12. Martin, M. L., Zeleznak, K. J and Hoseney, R. C. A mechanism of bread firming. I. Role of starch swelling. Cereal Chemistry, 1991, 68: 498-503.
    13. Martin, M. L and Hoseney, R. C. A mechanism of bread firming. II. Role of starch hydrolyzing enzymes. Cereal Chem. 1991, 68:503.
    14. Whilloft, E. M. A. Mechanism and theory of staling of bread and baked goods, and associated changes in textural properties. J.Texture Stud, 1973, 4:292.
    15. Piazza, L and Masi, P. Moisture distribution throughout the bread loaf during staling and its effect on mechanical properties. Cereal Chemistry, 1995, 73: 320-325.
    16. Zeleznak, K. J and Hoseney, R. C. The role of water in the retrogradation of wheat gels and bread crumb. Cereal Chem. 1986, 63:407.
    17. Zeleznak, K. J and Hoseney, R. C. Characterization of starch from bread aged at different temperatures. Starch/Starke, 1987, 39:231-233.
    18. Patela, B.K., Waniskab, R.D and Seetharaman, K. Impact of different baking processes on bread firmness and starch properties in breadcrumb. Journal of Cereal Science, 2005, 42: 173-184.
    19. Sidhu, J. S., Al-Saqer, J and AEZenki, S. Comparison of methods for the extent of staling in assessment of bread. Food Chemistry, 1997, 58: 161-167.
    20. Stollman, U and Lundgren, B. Texture Changes in White Bread: Effects of Processing and Storage. Cereal Chemistry, 1987, 64: 230-236.
    21. Limpisut, P. and Jindal, V. K. Comparison of Rice Flour Pasting Properties using Brabender Viscoamylograph and Rapid Visco Analyser for Evaluating Cooked Rice Texture. Starch/Starke, 2002, 54: 350-357.
    22. Wang, H. H., Sun, D. W., Zeng, Q. X, et al. Effect of pH, corn starch and phosphates on the pasting properties of rice flour. Journal of Food Engineering, 2000, 46: 133-138.
    23. Patel, B.K., Waniska, R.D and Seetharaman, K. Impact of different baking processes on bread firmness and starch properties in breadcrumb. Journal of Cereal Science, 2005, 42:173-184.
    24. Singh, N., Kaur, L., Sandhu, K. S, et al. Relationships between physicochemical, morphological, thermal, rheological properties of rice starches. Food Hydrocolloids, 2006, 20:532-542.
    25. Smits, A. L. M., Ruhnau, F. C, Vliegenthart, J. F. G, et al. Ageing of Starch Based Systems as Observed with FT-IR and Solid State NMR Spectroscopy. Starch/Starke, 1998, 50: 478-483.
    26. Van Soest, J. J. G., Tournois, H., De Wit, D, et al. Short-range structure in ( partially) crystalline potato starch determined with attenuated total reflectance Fourier-transform IR spectroscopy. Carbohydrate Research, 1995, 279: 201-214.
    27. Osborne, B. G. NIR measurements of the development of crystallinity in stored bread crumb. Analysis Magazine, 1998,26: 55-57.
    28. Schiraldi. A., Piazza. L and Riva, M. Bread Staling: A Calorimetric Approach. Cereal Chemistry, 1996, 73: 32-39.
    29. Czuchajowska, Z and Pomeranz, Y. Differential scanning calorimetry, water activity, and moisture contents in crumb centre and near-crust zones of bread during storage. Cereal Chemistry, 1989, 66: 305-309.
    30. Ribotta, P., Cuffini, S., Leon, A, et al. The staling of bread: an X-ray diffraction study. Eur Food Res Technol, 2004, 218: 219-223.
    31. Del Nobile, M.A., Martoriello, T., Mocci, G, et al. Modeling the starch retrogradation kinetic of durum wheat bread. Journal of Food Engineering, 2003, 59: 123-128.
    32. Primo-Martina, C, Van Nieuwenhuijzen, N. H., Hamer, R. J, et al. Crystallinity changes in wheat starch during the bread-making process: Starch crystallinity in the bread crust. Journal of Cereal Science, 2007,45: 219-226.
    33. Komiya, T., Yamada, T and Nara, S. Crystallinity of acid treated corn starch. Starch, 1987, 39:308-311.
    34. Moore, M. M., Schober, T. J., Dockery, P, et al. Textural Comparisons of Gluten-Free and Wheat-Based Doughs, Batters, and Breads. Cereal Chem, 2004, 81: 567-575.
    35. Barcenas, M. E and Rosell, C. M. Effect of HPMC addition on the microstructure, quality and aging of wheat bread. Food Hydrocolloids, 2005, 19: 1037-1043.
    1.Dappolonia.B.L and Morad.M.M.Bread staling.Cereal chemistry,1981,58:186-191.
    2.Martin,M.L,Zeleznak,K.J and Hoseney,R.C.A mechanism of bread firming.I.Role of starch swelling.Cereal Chemistry,1991,68:498-503.
    3.Stollman,U and Lundgren,B.Texture Changes in White Bread:Effects of Processing and Storage.Cereal Chemistry,1987,64:230-236.
    4.Armero,E and Collar,C.Crumb firming kinetics of wheat breads with anti-staling additives.J.Cereal Sci,1998,28:165-174
    5.Del Nobile,M.A.,Martoriello,T.,Mocci,G.et al.Modeling the starch retrogradation kinetic of durum wheat bread.Journal of Food Engineering,2003,59:123-128.
    6.Davidou,S,Le Meste,M,Debever,E.et al.A contribution to the study of staling of white bread:effect of water and hydrocolloid.Food Hydrocoll,1996,10:375-383.
    7.Krog,N.,Olesen,S.K.,Toernaes,H.et al.Retrogradation of the starch fracrtion in wheat bread.Cereal Foods World,1989,34:281-285.
    8.Ylimaki,G.Hawrysh,Z.J.Hardin,R.T,et al.Application of response surface methodology to the development of rice flour yeast bread:objective measurements.Journal of food science,1988,53:1800-1805.
    9.Mohamed,S and Hamid,N.A.:Effects of Ingredients on the Characteristics of Rice Cakes.J Sci Food Agric.I998,76:464-468.
    10.Kadan,R.S.,Robinson,M.G.,Thibodeaux,D.P,et al.Texture and other physicochemical properties of whole rice bread.Journal of food science.2001,66:940-944
    11.Sanchez,H.D.,Osella,C.A and Dela torre,M.A.Optimization of gluten-free bread prepared from cornstarch,rice flour,and cassava starch.Journal of food science,2002,67:416-419.
    12.Mccarthy,D.F.,Gallagher,E.,Gormley,T.R,et al.Application of response surface methodology in the development of gluten-free bread.Cereal Chemistry,2005,82:609-615.
    13. Shih, F.F., Truong, V.D and Daigle, K.W. Physicochemical properties of gluten-free pancakes from rice and sweet potato flours. Journal of Food Quality, 2006, 29: 97-107.
    14. Sahi, S. S and Alava, J. M. Functionality of emulsifiers in sponge cake production. J Sci Food Agric, 2003, 83:1419-1429.
    15. Courtin, C. M. and Delcour J. A. Arabinoxylans and Endoxylanases in Wheat Flour Bread-making. Journal of Cereal Science, 2002, 35: 225-243.
    16. Bollain, C, Angioloni, A and Collar, C. Bread staling assessment of enzyme-supplemented pan breads by dynamic and static deformation measurements. Eur Food Res Technol, 2005, 220:83-89
    17. Kim, J. H., Maeda, T and Morita, N. Effect of fungal a-amylase on the dough properties and bread quality of wheat flour substituted with polished flours. Food Research International, 2006,39: 117-126.
    18. Harada, O., Lysenko, E. D and Preston, K. R. Effects of commercial hydrolytic enzyme additives on Canadian short process bread properties and processing characteristics. Cereal Chemistry, 2000, 77: 70-76.
    19. Maeda, T., Hashimoto, T., Minoda, M, et al. Effects of mutant thermostable a-amylase on rheological properties of wheat dough and bread. Cereal Chemistry, 2003, 80: 722-727.
    20. Hanft, F and Koehler, P. Studies on the effect of glucose oxidase in bread making. J Sci Food Agric, 2006, 86:1699-1704.
    21. Gujral, H. S., Guardiola, I., Carbonell, J. V, et al. Effect of cyclodextrinase on dough rheology and bread quality from rice flour. Journal of Agricultural and Food Chemistry, 2003,51:3814-3818.
    22. Gujral, H. S., Guardiola, I., Carbonell, J. V, et al. Effect of cyclodextrin glucoxyl transferase on dough rheology and bread quality from rice flour. Journal of Agricultural Food Chemistry, 2003. 51: 3814-3818.
    23. Katina, K., Salmenkallio-Marttila, M., Partanen, R, et al. Effects of sourdough and enzymes on staling of high-fibre wheat bread. LWT, 2006, 39: 479-491.
    24. Caballero P.A., Gomez, M and Rosell, CM. Improvement of dough rheology, bread quality and bread shelf-life by enzymes combination. Journal of Food Engineering, 2007, 81:42-53.
    25. Gujral, H. S and Rosell, C. M. Improvement of the breadmaking quality of rice flour by glucose oxidase. Food Research International, 2004, 37: 75-81.
    26. Guarda, A., Rosell, C. M., Benedito, C, et al. Different hydrocolloids as bread improvers and antistaling agents. Food Hydrocolloids, 2004, 18: 241-247.
    27. Ring, S. G. Some Studies on Starch Gelation. Starch, 1985, 37: 80-83.
    28.木俣六司等.米饭的老化防止方法.日本,公开特许公报,1993.
    29.Sharadanant,R and Khan,K.Effect of hydrophilic gums on the quality of frozen dough:Ⅱ.Bread characteristics.Cereal Chemistry,2003,80:773-780.
    30.Haros,M.,Rosell,C.M and Benedito,C.Effect of different carbohydrases on fresh bread texture and bread staling.Eur.Food Res.Technol,2002,215:425-430.
    31.Barcenas,M.E and Rosell,C.M.Effect of HPMC addition on the microstructure,quality and aging of wheat bread.Food Hydrocolloids,2005,19:1037-1043.
    32.Rosell,C.M.,Rojas,J.A and Benedito de Barber,C.Influence of hydrocolloids on dough rheology and bread quality.Food Hydrocolloids,2001:15,75-81.
    33.Collar,C.,Andreu,P.,Martinez,J.C,et al.Optimization of hydrocolloid addition to improve wheat bread dough functionality:a response surface methodology study.Food Hydrocolloids,1999,13:467-475.
    34.Barcenas,M.E.,Benedito,C and Rosell,C.M.Use of hydrocolloids as bread improvers in interrupted baking process with frozen storage.Food Hydrocolloids,2004,18:769-774.
    35.Leon,A.E.,Duran,E and Benedito de Barber,C.Utilization of enzyme mixtures to retard bread crumb firming.J.Agric.Food Chem,2002,50:1416-1419.
    36.Gujral,H.S.,Haros,M and Rosell,C.M.Starch hydrolyzing enzymes for retarding the staling of rice bread.Cereal Chemistry,2003,80:750-754.
    37.Gujral,H.S.,Haros,M and Rosell,C.M.Improving the texture and delaying staling in rice flourchapati with hydrocolloids and a-amylase.Journal of Food Engineering,2004,65:89-94.
    38.Maarel,Marc J.E.C.van der.,Veen,Bart van der,et al.Properties and applications of starch-converting enzymes of the a-amylase family.Journal of Biotechnology,2002,94:137-155.
    39.姚远.米制品回生问题研究.[D]:[博士学位论文].无锡:江南大学食品学院,2000.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700