用户名: 密码: 验证码:
典型碳质和矿质材料对高氯酸盐的吸附性能、构—效关系及分子机理
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
高氯酸盐(C104-)作为一种新型的持久性环境微量污染物,因其抑制机体甲状腺激素分泌并引发一系列代谢和发育疾病,尤其对育龄女性和婴幼儿的干扰异常显著,从而成为环境领域的研究热点之一。C1O4-具有广泛的人为源和普遍的自然源,污染现状尤为严峻;然而目前的调查主要集中在美国,其他国家因研究刚起步,C104-浓度水平调查数据十分有限。高溶解性、强稳定性和快速迁移性等特点不仅使C104-对人体健康和生态安全构成严重威胁,也使其污染控制与修复存在较大难度。论文在简介C104-污染现状、健康风险及其控制技术的基础上,重点评述了不同类型吸附材料对C104-吸附性能和去除机制的研究进展。针对C104-吸附材料制备条件严苛且设计不系统,C104-在材料界面吸附机制和调控因素尚未阐明等问题;本研究在调查水体(地表水和自来水)和大气环境中C104-浓度水平与来源的同时,改性制备了典型的碳质材料(生物碳、碳纳米管、石墨烯)和矿质材料(不同类型与负载量的有机膨润土),利用XPS、XRD、FTIR、 Raman光谱、SEM、Zeta电位、元素分析、比表面积测定和有机碳含量测定等手段表征材料的结构特征、微观形貌和表面性质;系统研究了不同吸附材料对C104-的吸附性能及影响因素,结合吸附前后的结构表征,探讨了C104-在不同材料界面上的作用机制,并建立吸附材料基体、表面性质与吸附性能之间的定量构-效关系。研究结果为设计和制备功能吸附材料、经济高效去除C104-提供理论依据与技术支撑。论文的主要创新性结论如下:
     (1)通过实际调查与测定首次发现不同消毒工艺对自来水中Cl04-浓度水平的影响。结果表明,臭氧和液氯消毒对饮用水中C104-浓度无影响;而C1O2和NaClO消毒会显著增加出厂水中Cl04-浓度水平,因为两者均可作为C104-形成的活性前体物质,这在以往的研究中被忽略;该结果为重新进行饮用水的安全管理提供理论参考。同时提出人为的烟花燃放活动不仅给大气带来高强度C104-污染,在干/湿沉降的迁移辅助下,也会使地面水C104-污染显著加剧。
     (2)提出了氢键作用在碳质材料吸附C104-中的相对贡献及其调控因素,阐明了碳质材料的基体和表面性质对C104-绑定的决定性作用。由废弃的生物质材料通过裂解温度的控制制备得到一系列具有不同结构特征和表面性质的生物碳材料,发现高温裂解得到的生物碳不仅适用范围广,且呈现优越的C104-吸附能力并可简易再生。高温生物碳因其疏水性表面和芳香性基体进一步强化含氧官能团对ClO4-的氢键绑定。通过碳基纳米材料碳纳米管和石墨烯的可控改性,证实了碳质材料的界面性质决定着其特定吸附位点的可获得性,疏水性界面有助于吸附位点的暴露并与C104-接触:材料表面的含氧官能团(羟基和羧基)则是C104-吸附绑定的主要位点,而溶液pH值会显著影响这两类官能团的存在形态,并主导着静电引力和氢键作用对C1O4-的吸附贡献。因此,可通过调控碳质材料的基体(芳香性/脂肪性)和表面性质(官能团含量/亲疏水性),以及溶液条件(pH值/共存离子),从而设计碳质材料实现最佳的C104-吸附去除。
     (3)证实了非常规蓝移氢键在C104-吸附绑定中的作用及其调控因素,建立了有机改性膨润土上阳离子表面活性剂负载量与其吸附能力之间的定量化关系。长碳链阳离子表面活性剂(十六烷基三甲基溴化铵,CTMAB)改性的有机膨润土具有很强的C104-吸附能力,且CTMAB负载量越高,吸附能力越强,两者呈很好的线性关系,实现了吸附材料的可控制备。在有机膨润土纳米层间域,除了常规的离子交换或静电引力外,光谱信息和量子化学计算均证实C104-与CTMAB上[(CH3)3N+-]中的C-H形成了非常规蓝移氢键并以三重成键的构型键合;且可通过纳米层间的亲疏水程度来定量控制蓝移氢键的吸附贡献,疏水性微环境中蓝移氢键的吸附贡献是亲水环境的5.6倍。
Perchlorate (ClO4-), as an emerging persistent and trace pollutant, has become one of the research hotspots in environmental field, because it can inhibit the secretion of thyroid hormone in organism and then cause various metabolic or developmental diseases, especially for the women of childbearing age and infant. Due to its broad anthropogenic source and universal natural origin, ClO4-contamination has been very serious, however, the current investigation was mainly limited in America, and the survey data about ClO4-level was extremely deficient in other countries. With the properties of high solubility, strong stability and fast mobility, ClO4-not only poses a great risk for human health and ecological safety, but also makes it hard for the control and remediation of ClO4-polluted environments. On the basis of brief introduction about the contamination status, health risk, and control technologies of ClO4-, the progresses of ClO4-adsorption onto different type of materials were particularly reviewed, including their removal capacities and adsorption mechanisms. In view of the tough conditions and unsystematic design in the preparation of ClO4-adsorption materials, and the unclear recognition of the adsorption mechanisms and regulation factors of ClO4-onto the interface of materials, this dissertation firstly carried out the concentration levels and sources survey of ClO4-in water (surface water and tap water) and air. Then, typical carbonaceous materials (biochar, carbon nanotubes, and graphene) and mineral materials (organobentonites modified with different types and loading-amount of surfactants) were synthesized. Their structural properties were characterized via XPS, XRD, FTIR, Raman spectra, SEM, Zeta potential, elemental analysis, the specific surface area and organic carbon content. In addition to the systematic test of the adsorption capacity and influential factors of the obtained materials for ClO4-, the molecular interaction mechanisms of ClO4-on different material interfaces were deeply investigated according to the structural evolvement before and after ClO4adsorption. The quantitative relationships between the adsorption capacities and material structures (including matrix and surface properties) were established, which provide a theoretical basis and an engineering reference for designing novel and high-efficient adsorption materials for ClO4-removal. The main original conclusions of this work are drawn as follows:
     (1) The effect of disinfection process on ClO4-concentrations in the tap water was first discovered through the field survey. Results showed that disinfection using ozone and liquid chlorine did not affect the C1O4-concentrations in drinking water, while disinfection using ClO2and NaClO would significantly increase the ClO4-concentration in water, which was mainly resulted from that both of them can act as the active precursor of C1O4-formation. This observation usually ignored in previous studies should be paid attention for drinking water safety management. Meanwhile, the pollution contribution of human fireworks was also elucidated, which not only brought high C1O4-pollution to the air, but also significantly increased the ClO4-contamination in surface water via the dry and wet depositions.
     (2) Hydrogen bonding and its regulating factors contributed to C1O4-adsorption onto carbonaceous materials were proposed, and the dominant roles of the matrix and surface properties of the carbonaceous materials for ClO4-binding were clearly illustrated. A series of biochars with different structures and properties were prepared from the waste biomass via pyrolysis under different temperatures. It was found that high-temperature derived biochars not only had a broad scope of application, but also behaved superior adsorption capacity for ClO4-and can be easily regenerated. The hydrophobic surface and aromatic matrix of high-temperature biochars can further enhance the hydrogen bonding derived from the surface oxygen-containing groups for ClO4-binding. Carbon nanomaterials of carbon nanotubes and graphene were controllably modified and used for ClO4-adsorption, which demonstrated that the interface property of carbonaceous materials determined the availability of their adsorption sites and a hydrophobic interface will help to expose the sites for ClO4-binding. Furthermore, surface oxygen-containing functional groups (hydroxyl and carboxyl) were the main adsorption sites, whose forms were largely dependent on the solution pH and dominated the contribution of electrostatic attraction and hydrogen bonding for ClO4-adsorption. Thus, the carbonaceous materials can be designed through the regulation of matrix (aromatic/aliphatic) and surface (functional groups/hydrophobic) of materials as well as the solution conditions (pH and co-existing ions), achieving the optimal removal of ClO4-
     (3) The non-conventional blue-shift hydrogen bonding (BSHB) involved in ClO4-binding and its influential factors were first verified, and a quantitative relationship between the loading amount of cationic surfactant and adsorption capacity of organobentonites was established. The modification using cationic surfactant with long chain (cetyltrimethylammonium bromide, CTMAB) made the obtained organoclay behave high adsorption capacity for ClO4-, and the adsorption capacity will be improved with the increase of the loading amount of CTMAB, which presented good linear relationship between them and reached the controllable preparation of adsorption materials. In the nano-interlayer of organobentonite, besides the ion-exchange and electrostatic attraction, non-conventional BSHB formed between ClO4-and C-H from [(CH3)3N+-] on CTMAB was demonstrated through spectral information and quantum chemical calculations, and the BSHB were bonded in configuration of triple forms. It can be quantitatively controlled of the adsorption contribution of BSHB via the adjustment of the hydrophilic or hydrophobic degree of nano-interlayer, and the contribution of BSHB for ClO4-adsorption in hydrophobic micro-environment was5.6time of that in hydrophilic micro-environment.
引文
[1]Kirk, A. B. Environmental perchlorate:Why it matters. Anal. Chim. Acta,2006,567,4-12.
    [2]McDougal, J. N.; Jones, K. L.; Fatuyi, B.; Jo Gray, K.; Blount, B. C.; Valentin-Blasini, L. Fisher, J. W. The effects of perchlorate on thyroidal gene expression are different from the effects of iodide deficiency. J. Toxicol. Environ. Heal. A,2011,74,917-926.
    [3]秦娟,李琴,张金良,林海鹏,于云江,史亚利,车飞,王红梅.高氯酸盐对女性甲状腺功能影响的初步调查.环境与健康杂志,2010,27,970-973.
    [4]Duncan, P. B.; Morrison, R. D.; Vavricka, E. Forensic identification of anthropogenic and naturally occurring sources of perchlorate. Environ. Forensics,2005,6,205-215.
    [5]Wu, F.; Zhou, X.; Zhang, R.; Pan, M.; Peng, K-L. The effects of ammonium perchlorate on thyroid homeostasis and thyroid-specific gene expression in rat. Environ. Toxicol.,2012,27, 445-452.
    [6]Kounaves, S. P.; Stroble, S. T.; Anderson, R. M.; Moore, Q.; Catling, D. C.; Douglas, S.; McKay, C. P.; Ming, D. W.; Smith, P. H.; Tamppari, L. K.; Zent, A. P. Discovery of natural perchlorate in the Antarctic dry valleys and its global implications. Environ. Sci. Technol., 2010,44,2360-2364.
    [7]US EPA. Fact sheet:Final regulatory determination for perchlorate.2011, http://water.epa.gov/drink/contaminants/unregulated/upload/FactSheet_PerchlorateDetermina tion.pdf
    [8]Urbansky, E. T.; Brown, S. K. Perchlorate retention and mobility in soils. J. Environ. Monit., 2003,5,455-462.
    [9]Kirk, A. B.; Smith, E. E.; Tian, K.; Anderson, T. A.; Dasgupta, P. K. Perchlorate in milk. Environ. Sci. Technol.,2003,37,4979-4981.
    [10]Blount. B. C.; Valentin-Blasini, L.; Osterloh, J. D.; Mauldin, J. P.; Pirkle, J. L. Perchlorate exposure of the US population,2001-2002. J. Expo. Sci. Env. Epid.,2007,17,400-407.
    [11]Dasgupta, P. K.; Kirk, A. B.; Dyke, J. V.; Ohira, S-I. Intake of iodine and perchlorate and excretion in human milk. Environ. Sci. Technol.,2008,42,8115-8121.
    [12]Oldi, J. F.; Kannan, K. Perchlorate in human blood serum and plasma:Relationship to concentrations in saliva. Chemosphere,2009,77,43-47.
    [13]张云霞,李铁龙,金朝晖,耿兵,王薇,汪帅马,安毅.高氯酸盐污染水体的修复技术.中国给水排水,2007,23,10-14.
    [14]张可佳,高乃云,隋铭皓,卢宁.饮用水中高氯酸盐污染现状与去除技术的综述.四川环境,2008,27,91-95.
    [15]Komarneni, S.; Kim, J. Y.; Parette, R.; Cannon, F. S. As-synthesized MCM-41 silica:new adsorbent for perchlorate. J. Porous. Mater.,2010,17,651-656.
    [16]Kim. J. Y.; Komarneni, S.; Parrette, R.; Cannon, F.; Katsuki, H. Perchlorate uptake by synthetic layered double hydroxides and organo-clay minerals. Appl. Clay Sci.,2011,51, 158-164.
    [17]Wu, X.; Wang, Y.; Xu, L.; Lv, L. Removal of perchlorate contaminants by calcined Zn/Al layered double hydroxides:Equilibrium, kinetics, and column studies. Desalination,2010, 256,136-140.
    [18]Xie, Y.; Li, S.; Wang, F.; Liu, G. Removal of perchlorate from aqueous solution using protonated cross-linked chitosan. Chem. Eng. J.,2010,156,56-63.
    [19]Mahmudov, R.; Huang, C. P. Perchlorate removal by activated carbon adsorption. Sep. Purif. Technol,2010,70,329-337.
    [20]Na, C。; Cannon, F. S.; Hagerup, B. Perchlorate removal via iron-preloaded GAC and borohydride regeneration. J. Am. Water Works Ass.,2002,94,90-102.
    [21]Chen, W.; Cannon, F. S.; Rangel-Mendez, J. R. Ammonia-tailoring of GAC to enhance perchlorate removal. Ⅱ:Perchlorate adsorption. Carbon,2005,43,581-590.
    [22]Xu, J.; Gao, N.; Deng, Y.; Sui, M.; Tang, Y. Perchlorate removal by granular activated carbon coated with cetyltrimethyl ammonium bromide. J. Colloid Interf. Sci.,2011,357, 474-479.
    [23]Yoon, I-H.; Meng, X.; Wang, C。; Kim, K-W.; Bang, S.; Choe, E.; Lippincott, L. Perchlorate Adsorption and Desorption on Activated Carbon and Anion Exchange Resin. J. Hazard. Mater.,2009,164,87-94.
    [24]Wu, C。; Sullivan, K.; Chowdhury, S.; Jian, G.; Zhou, L.; Zachariah, M. R. Encapsulation of perchlorate salts within metal oxides for application as nanoenergetic oxidizers. Adv. Funct. Mater.,2012,22,78-85.
    [25]Dasgupta, P. K.; Dyke, J. V,; Kirk, A. B.; Jackson, W. A. Perchlorate in the United States. Analysis of relative source contribution to the food chain. Environ. Sci. Technol.,2006,40, 6608-6614.
    [26]Oxley, J. C.; Smith, J. L.; Higgins, C.; Bowden, P.; Moran, J.; Brady, J.; Aziz, C.-E.; Cox, E. Efficiency of perchlorate consumption in road flares, propellants and explosives.J. Environ. Manage.,2009,90,3629-3634.
    [27]Motzer, W. E. Perchlorate:problems, detection, and solutions. Environ. Forensics,2001,2, 301-311.
    [28]钱新明,邓楠.烟花爆竹用氯酸钾的安全化研究进展.中国安全生产科学技术,2008,4,63-66.
    [29]Wilkin, R. T.; Fine, D. D.; Burnett, N. G. Perchlorate behavior in a municipal lake following fireworks displays. Environ. Sci. Technol,2007,41,3966-3971.
    [30]Shi, Y.; Zhang, N.; Gao, J.; Li, X.; Cai, Y. Effect of fireworks display on perchlorate in air aerosols during the Spring Festival. Atmos. Environ.,2011,45,1323-1327.
    [31]Isobe, T.; Ogawa, S. P.; Sugimoto, R.; Ramu, K.; Sudaryanto, A.; Malarvannan, G.; Devanathan, G.; Ramaswamy, B. R.; Munuswamy, N.; Ganesh, D. S.; Sivakumar, J.; Sethuraman, A.; Parthasarathy, V.; Subramanian, A.; Field, J.; Tanabe, S. Perchlorate contamination of groundwater from fireworks manufacturing area in South India. Environ. Monit. Assess.,2013,185,5627-5637.
    [32]Zewdie, T.; Smith, C. M.; Hutcheson, M.; West, C. R. Basis of the Massachusetts reference dose and drinking water standard for perchlorate. Environ. Health. Persp.,2010,118,42-48.
    [33]Rao, B.; Estrada, N.; McGee, S.; Mangold, J.; Gu, B.; Jackson, W. A. Perchlorate production by photodecomposition of aqueous chlorine solutions. Environ. Sci. Technol,2012,46, 11635-11643.
    [34]Urbansky, E. T.; Brown, S. K.; Magnuson, M. L.; Kelty, C. A. Perchlorate levels in samples of sodium nitrate fertilizer derived from Chilean caliche. Environ. Pollut.,2001,112, 299-302.
    [35]Bohlke, J. K.; Hatzinger, P. B.; Sturchio, N. C.; Gu, B.; Abbene, I.; Mroczkowski, S. J. Atacama perchlorate as an agricultural contaminant in groundwater:Isotopic and chronologic evidence from Long Island, New York. Environ. Sci. Technol.,2009,43,5619-5625.
    [36]Plummer, L. N.; Bohlke, J. K.; Doughten, M. W. Perchlorate in Pleistocene and Holocene groundwater in north-central New Mexico. Environ. Sci. Technol.,2006,40,1757-1763.
    [37]Furdui, V. I.; Tomassini, F. Trends and sources of perchlorate in Arctic snow. Environ. Sci. Technol.,2010,44,588-592.
    [38]方齐乐,陈宝梁.环境中高氯酸盐的自然来源、形成机制及其归趋行为.化学进展,2012,24.2040-2053.
    [39]Rao, B.; Anderson, T. A.; Redder, A.; Jackson, W. A. Perchlorate formation by ozone oxidation of aqueous chlorine/oxy-chlorine species:Role of ClxOy radicals. Environ. Sci. Technol.,2010,44,2961-2967.
    [40]Kang, N.; Anderson, T. A.; Jackson, W. A. Photochemical formation of perchlorate from aqueous oxychlorine anions. Anal. Chim. Acta.,2006,567,48-56.
    [41]Parker, D. R.; Seyfferth, A. L.; Reese, B. K. Perchlorate in groundwater:a synoptic survey of "pristine" sites in the coterminous United States. Environ. Sci. Technol.,2008,42, 1465-1471.
    [42]Rajagopalan, S.; Anderson, T.; Cox, S.; Harvey, G.; Cheng, Q.; Jackson, W. A. Perchlorate in wet deposition across North America. Environ. Sci. Technol.,2009,43,616-622.
    [43]Jackson, W. A.; Bohlke, J. K.; Gu, B.; Hatzinger, P. B.; Sturchio, N. C. Isotopic composition and origin of indigenous natural perchlorate and co-occurring nitrate in the Southwestern United States. Environ. Sci. Technol.,2010,44,4869-4876.
    [44]Seyfferth, A. L.; Parker, D. R. Effects of genotype and transpiration rate on the uptake and accumulation of perchlorate (ClO4-) in lettuce. Environ. Sci. Technol.,2007,41,3361-3367.
    [45]Smith, P. N.; Yu, L.; McMurry, S. T.; Anderson, T. A. Perchlorate in water, soil, vegetation, and rodents collected from the Las Vegas Wash, Nevada, USA. Environ. Pollut.,2004,132, 121-127.
    [46]Coates, J. D.; Achenbach, L. A. Microbial perchlorate reduction:rocket-fuelled metabolism. Nat. Rev. Microbiol.,2004,2,569-580.
    [47]Murphy, D. M.; Thomson, D. S. Halogen ions and NO in the mass spectra of aerosols in the upper troposphere and lower stratosphere. Geophys. Res. Lett.,2000,27,3217-3220.
    [48]Dasgupta, P. K.; Martinelango, P. K.; Jackson, W. A.; Anderson, T. A.; Tian, K.; Tock, R. W.; Rajagopalan. S. The origin of naturally occurring perchlorate:the role of atmospheric processes. Environ. Sci. Technol.,2005,39,1569-1575.
    [49]Rao, B. A.; Wake, C. P.; Anderson, T.; Jackson, W. A. Perchlorate depositional history as recorded in North America ice cores from the Eclipse Icefield, Canada, and the Upper Fremont Glacier, USA. Water Air Soil Pollut.,2012,225,181-188.
    [50]Jiang, S.; Li, Y-S.; Sun, B. Determination of trace level of perchlorate in Antarctic snow and ice by ion chromatography coupled with tandem mass spectrometry using an automated sample on-line preconcentration method. Chin. Chem. Lett.,2013,24,311-314.
    [51]Wu, Q.; Zhang, T.; Sun, H.; Kannan, K. Perchlorate in tap water, groundwater, surface waters, and bottled water from China and its association with other inorganic anions and with disinfection byproducts. Arch. Environ. Contam. Toxicol.,2010,58,543-550.
    [52]Kannan, K.; Praamsma, M. L.; Oldi, J. F.; Kunisue, T.; Sinha, R. K. Occurrence of perchlorate in drinking water, groundwater, surface water and human saliva from India. Chemosphere,2009,76,22-26.
    [53]Quinones, O.; Oh, J-E.; Vanderford, B.; Kim, J. H.; Cho, J.; Snyder, S. A. Perchlorate assessment of the Nakdong and Yeongsan watersheds, Republic of Korea. Environ. Toxicol. Chem.,2007,26,1349-1354.
    [54]Impellitteri, C. A.; Saxe, J. P.; Schmitt, E. C.; Young, K. R. A survey on the temporal and spatial distribution of perchlorate in the Potomac River. J. Environ. Monit.,2011,13, 2277-2283.
    [55]Wu, Q.; Oldi, J. F.; Kannan, K. Fate of perchlorate in a man-made reflecting pond following a fireworks display in Albany, New York, USA. Environ. Toxicol. Chem.,2011,30, 2449-2455.
    [56]Kosaka, K.; Asami, M.; Matsuoka, Y.; Kamoshita, M.; Kunikane, S. Occurrence of perchlorate in drinking water sources of metropolitan area in Japan. Water Res.,2007,41, 3474-3482.
    [57]Rao, B.; Anderson, T. A.; Orris, G. J.; Rainwater, K. A.; Rajagopalan, S.; Sandvig, R. M.; Scanlon, B. R.; Stonestrom, D. A.; Walvoord, M. A.; Jackson, W. A. Widespread natural perchlorate in unsaturated zones of the southwest United States. Environ. Sci. Technol.,2007, 41,4522-4528.
    [58]刘勇建,牟世芬,林爱武,崔建华,杜兵.北京市饮用水中溴酸盐、卤代乙酸及高氯酸盐研究.环境科学,2004,25,51-55.
    [59]Brandhuber, P.; Clark, S.; Morley, K. A review of perchlorate occurrence in public drinking water systems. J. Am. Water Works Ass.,2009,101,63-73.
    [60]Stetson, S. J.; Wanty, R. B.; Helsel, D. R.; Kalkhoff, S. J.; Macalady, D. L. Stability of low levels of perchlorate in drinking water and natural water samples. Anal. Chim. Acta.,2006, 567,108-113.
    [61]Kang, N.; Jackson, W. A.; Dasgupta, P. K.; Anderson, T. A. Perchlorate production by ozone oxidation of chloride in aqueous and dry systems. Sci. Total. Environ.,2008,405,301-309.
    [62]苏怀龙.哈尔滨地下水高氯酸盐背景调查及其光催化还原工艺研究.哈尔滨工业大学,硕士学位论文,2011
    [63]Shi, Y.; Zhang, P.; Wang, Y.; Shi, J.; Cai, Y.; Mou, S.; Jiang, G. Perchlorate in sewage sludge rice, bottled water and milk collected from different areas in China. Environ. Int., 2007,33,955-962.
    [64]US EPA. Interim drinking water health advisory for perchlorate.2008, http://www.epa.gov/safewater/contaminants/unregulated/pdfs/healthadvisoryperchlorateint erim.pdf
    [65]Blount, B. C.; Alwis, K. U.; Jain, R. B.; Solomon, B. L.; Morrow, J. C.; Jackson, W. A. Perchlorate, nitrate, and iodide intake through tap water. Environ. Sci. Technol.,2010,44, 9564-9570.
    [66]Snyder, S. A.; Vanderford, B. J.; Rexing, D. J. Trace analysis of bromated, chlorate, iodate, and perchlorate in natural and bottled waters. Environ. Sci. Technol.,2005,39,4586-4593.
    [67]Asami, M.; Kosaka, K.; Yoshida, N. Occurrence of chlorate and perchlorate in bottled beverages in Japan. J. Health. Sci.,2009,55,549-553.
    [68]Guruge, K. S.; Wu, Q.; Kannan, K. Occurrence and exposure assessment of perchlorate, iodide and nitrate ions from dairy milk and water in Japan and Sri Lanka. J. Environ. Monitor.,2011,13,2312-2320.
    [69]Kamoshita, M.; Kosaka, K.; Asami, M.; Matsuoka, Y. Analytical method for perchlorate in water by liquid chromatography-mass spectrometry using an ion exchange column. Anal. Sci., 2009,25,453-456.
    [70]Her, N.; Jeong, H.; Kim, J.; Yoon, Y. Occurrence of perchlorate in drinking water and seawater in South Korea. Arch. Environ. Cotam. Toxicol.,2011,61,166-172.
    [71]McLaughlin, C. L.; Blake, S.; Hall, T.; Harman, M.; Kanda, R.; Hunt, J.; Rumsby, P. C. Perchlorate in raw and drinking water sources in England and Wales. Water Environ. J.,2011, 25,456-465.
    [72]Sungur, S.; Sangiin, M. K. Ion chromatographic determination of perchlorate in foods consumed in Hatay region. Food Chem.,2011,126,326-331.
    [73]Iannece, P.; Motta, O.; Tedesco, R.; Carotenuto, M.; Proto, A. Determination of perchlorate in bottled water from Italy. Water 2013,5,767-779.
    [74]Dyke, J. V.; Ito, K.; Obitsu, T.; Hisamatsu, Y.; Dasgupta, P. K.; Blount, B. C. Perchlorate in dairy milk. Comparison of Japan versus the United States. Environ. Sci. Technol.,2007,41, 88-92.
    [75]Chen, L.; Chen, H.; Shen, M.; Zhou, Z.; Ma, A. Analysis of perchlorate in milk powder and milk by hydrophilic interaction chromatography combined with tandem mass spectrometry. J. Agric. Food Chem.,2010,58,3736-3740.
    [76]Sungur, S.; Atan, M. M. Determination of nitrate, nitrite and perchlorate anions in meat, milk and their products consumed in Hatay region in Turkey. Food Addit. Contam. B,2013,6, 6-10.
    [77]方齐乐,陈宝梁.新型环境污染物高氯酸盐的环境化学行为、食品安全及健康风险.科学通报,2013,58.2626-2642.
    [78]Krynitsky, A. J.; Niemann. R. A.; Nortrup, D. A. Determination of perchlorate anion in foods by ion chromatography-tandem mass spectrometry. Anal. Chem.,2004,76,5518-5522.
    [79]Krynitsky, A. J.; Niemann, R. A.; Williams, A, D.; Hopper, M. L. Streamlined sample preparation procedure for determination of perchlorate anion in foods by ion chromatography-tandem mass spectrometry. Anal. Chim. Acta.,2006,567,94-99.
    [80]Wang, Z.; Forsyth, D.; Lau, B. P-Y.; Pelletier, L.; Bronson, R.; Gaertner, D. Estimated dietary exposure of Canadians to perchlorate through the consumption of fruits and vegetables available in Ottawa markets. J. Agric. Food Chem.,2009,57,9250-9255.
    [81]史亚利.离子色谱与API 2000 (IC/MS/MS)联用分析食品和饮料中的高氯酸盐.环境化学,2006,25,117-120.
    [82]Ye, L.; You, H.; Yao, J.; Kang, X.; Tang, L. Seasonal variation and factors influencing perchlorate in water, soil and corns in Northeastern China. Chemosphere,2013,90, 2493-2498.
    [83]Kim. D-H.; Yoon, Y.; Baek, K.; Han, J.; Her, N. Occurrence of perchlorate in rice from different areas in the Republic of Korea. Environ. Sci. Pollut. Res.,2014,21,1251-1257.
    [84]Snyder, S. A.; Pleus, R. C.; Vanderford, B. J.; Holady, J. C. Perchlorate and chlorate in dietary supplements and flavor enhancing ingredients. Anal. Chim. Acta.,2006,567,26-32.
    [85]Reichert, L. J. M.; de Rooy, H. A. M. Treatment of amiodarone induced hyperthyroidism with potassium perchlorate and methimazole during amiodarone treatment. Brit. Med. J., 1989,298,1547-1548.
    [86]Rasul, A.; Ding, C.; Li, X.; Khan, M.; Yi, F.; Ali, M.; Ma, T. Dracorhodin perchlorate inhibits PI3K/Akt and NF-κB activation, up-regulates the expression of p53, and enhances apoptosis. Apoptosis,2012,17,1104-1119.
    [87]Freire, E.; Polla, G.; Baggio, R. Aripiprazole salts. Ⅱ. Aripiprazole perchlorate. Acta. Cryst., 2012, C68,0235-0239.
    [88]李义海.高氯酸盐在牛饲养中的应用.粮食与饲料工业,1997,12,27.
    [89]Huber, D. R.; Blount, B. C.; Mage, D. T.; Letkiewicz, F. J.; Kumar, A.; Allen, R. H. Estimating perchlorate exposure from food and tap water based on US biomonitoring and occurrence data. J. Expo. Sci. Env. Epid.,2011,21,395-407.
    [90]Murray, C. W.; Egan, S. K.; Kim, H.; Beru, N.; Bolger, P. M. US food and drug administration's total diet study:dietary intake of perchlorate and iodine. J. Expo. Sci. Env. Epid.,2008,18,571-580.
    [91]Borjan, M.; Marcella, S.; Blount, B.; Greenberg, M.; Zhang, J.; Murphy, E.; Valentin-Blasini, L.; Robson, M. Perchlorate exposure in lactating women in an urban community in New Jersey. Sci. Total. Environ.,2011,409,460-464.
    [92]Oldi, J. F.; Kannan, K. Analysis of perchlorate in human saliva by liquid chromatography-tandem mass spectrometry. Environ. Sci. Technol,2009,43,142-147.
    [93]Zhang, T.; Wu, Q.; Sun, H. W.; Rao, J.; Kannan, K. Perchlorate and iodide in whole blood samples from infants, children, and adults in Nanchang, China. Environ. Sci. Technol.,2010, 44,6947-6953.
    [94]Kirk, A. B.; Martinelango, P. K.; Tian, K.; Dutta, A.; Smith, E. E.; Dasgupta, P. K. Perchlorate and iodide in dairy and breast milk. Environ. Sci. Technol.,2005,39,2011-2017.
    [95]Wolff, J. Perchlorate and the thyroid gland. Pharmacol. Rev.,1998,50,89-105.
    [96]National Research Council (NRC). Health Implications of Perchlorate Ingestion. National Academies Press, Washington, D. C.2005
    [97]Hershman, J. M. Perchlorate and thyroid function:What are the environmental issues? Thyroid,2005,15,427-431.
    [98]Charnley, G. Perchlorate:Overview of risks and regulation. Food Chem. Toxicol.,2008,46, 2307-2315.
    [99]Pearce, E. N.; Braverman, L. E. Environmental pollutants and the thyroid. Best Pract. Res. Cl. En.,2009,23,801-813.
    [100]Attanasio, R.; Scinicariello, F.; Blount, B. C.; Valentin-Blasini, L.; Rogers, K. A.; Nguyen, D. C.; Murray, H. E. Pendrin mediates uptake of perchlorate in a mammalian in vitro system. Chemosphere,2011,84,1484-1488.
    [101]Li, W.; Zha, J.; Yang, L.; Li, Z.; Wang, Z. Regulation of iodothyronine deiodinases and sodium iodide symporter mRNA expression by perchlorate in larvae and adult Chinese rare minnow (Gobiocypris rarus). Mar. Pollut. Bull,2011,63,350-355.
    [102]Zimmermann, M. B. Iodine deficiency. Endocr. Rev.,2009,30,376-408.
    [103]Bernhardt, R. R.; von Hippel, F. A.; Cresko, W. A. Perchlorate induces hermaphroditism in Ihreespine sticklebacks. Environ. Toxicol. Chem.,2006,25,2087-2096.
    [104]Park, J-W.; Rinchard, J.; Liu, F.; Anderson, T. A.; Kendall, R. J.; Theodorakis, C. W. The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish. Ecotox. Environ. Safe.,2006,63,343-352.
    [105]Greer, M. A.; Goodman, G.; Pleus, R. C.; Greer, S. E. Health effects assessment for environmental perchlorate contamination:the dose response for inhibition of thyroidal radioiodine uptake in humans. Environ. Health. Persp.,2002,10,927-937.
    [106]Tikkanen, M. W. Development of a drinking water regulation for perchlorate in California. Anal. Chim. Acta.,2006,567,20-25.
    [107]Gu, B.; Ku, Y-K.; Brown, G. M. Sorption and desorption of perchlorate and U(VI) by strong-base anion-exchange resins. Environ. Sci. Technol,2005,39,901-907.
    [108]Gu, B.; Brown, G. M.; Chiang, C-C. Treatment of perchlorate-contaminated groundwater using highly selective, regenerable ion-exchange technologies. Environ. Sci. Technol.,2007, 41,6277-6282.
    [109]Xiong, Z.; Zhao, D.; Harper, W, F. Sorption and desorption of perchlorate with various classes of ion exchangers:a comparative study. Ind. Eng. Chem. Res.,2007,46,9213-9222.
    [110]Chen, D. P.; Yu, C.; Chang, C-Y.; Wan, Y.; Frechet, J. M. J.; Goddard, W. A.; Diallo, M. S. Branched polymeric media:perchlorate-selective resins from hyperbranched polyethyleneimine. Environ. Sci. Technol.,2012,46,10718-10726.
    [111]Lee, B.; Lee, S. D.; Choo, K-H. The removal of perchlorate using amine-functionalized mesoporous anion-exchange resins with different number of ligands. Korean J. Chem. Eng., 2013,30,898-905.
    [112]Xiong, Z.; Dimick, P.; Zhao, D.; Kney, A.; Tavakoli, J. Removal of perchlorate from contaminated water using a regenerable polymeric ligand exchanger. Sep. Sci. Technol., 2006,41,2555-2574.
    [113]Lin, Y.; Cui, X.; Bontha, J. Electrically controlled anion exchange based on polypyrrole and carbon nanotubes nanocomposite for perchlorate removal. Environ. Sci. Technol.,2006,40, 4004-4009.
    [114]Zhang, S.; Shao, Y.; Liu, J.; Aksay, I. A.; Lin, Y. Graphene-polypyrrole nanocomposite as a highly efficient and low cost electrically switched ion exchange for removing ClO4- from wastewater. ACS Appl. Mater. Inter.,2011,3,3633-3637.
    [115]Gao, M.; Yang, Y.; Diao, M.; Wang, S.; Wang, X.; Zhang, G.; Zhang, G. Exceptional ion-exchange selectivity for perchlorate based on polyaniline films. Electrochim. Acta., 2011,56,7644-7650.
    [116]Pakzadeh, B.; Batista, J. Impacts of cocontaminants on the performances of perchlorate and nitrate specialty ion-exchange resins. Ind. Eng. Chem. Res.,2011,50,7484-7493.
    [117]Tripp, A. R.; Clifford, D. A. Ion exchange for the remediation of perchlorate-contaminated drinking water. J. Am. Water Works Ass.,2006,98,105-114.
    [118]Gu, B.; Brown, G. M.; Maya, L.; Lance, M. J.; Moyer, B. A. Regeneration of perchlorate(ClO4-)-loaded anion exchange resins by a novel tetrachloroferrate (FeCl4-) displacement technique. Environ. Sci. Technol.,2001,35,3363-3368.
    [119]Sharbatmaleki, M.; Batista, J. R. Multi-cycle bioregeneration of spent perchlorate-containing macroporous selective anion-exchange resin. Water Res.,2012,46,21-32.
    [120]Ricardo, A. R.; Carvalho, G.; Velizarov, S.; Crespo, J. G.; Reis, M. A. M. Kinetics of nitrate and perchlorate removal and biofilm stratification in an ion exchange membrane bioreactor. Water Res.,2012,46,4556-4568.
    [121]Patel, A.; Zuo, G.; Lehman, S. G.; Badruzzaman, M.; Clifford, D. A.; Roberts, D. J. Fluidized bed reactor for the biological treatment of ion-exchange brine containing perchlorate and nitrate. Water Res.,2008,42,4291-4298.
    [122]Duke, F. R.; Quinney, P. R. The kinetics of the reduction of perchlorate ion by Ti(Ⅲ) in dilute solution. J. Am. Chem. Soc.,1954,76,3800-3803.
    [123]King, W. R.; Garner, C. S.; Kinetics of the oxidation of vanadium (Ⅱ) and vanadium (Ⅲ) ions by perchlorate.J. Phys. Chem.,1954,58,29-33.
    [124]Kallen, T. W.; Earley, J. E. Reduction of perchlorate ion by aquoruthenium (Ⅱ). Inorg. Chem.,1971,10,1152-1155.
    [125]Moore, A. M.; De Leon, C. H.; Young, T. M. Rate and extent of aqueous perchlorate removal by iron surfaces. Environ. Sci. Technol,2003,37,3189-3198.
    [126]Gu, B.; Dong, W.; Brown, G. M.; Cole, D. R. Complete degradation of perchlorate in ferric chloride and hydrochloric acid under controlled temperature and pressure. Environ. Sci. Technol.,2003,37,2291-2295.
    [127]Oh, S-Y.; Chiu, P. C.; Kim, B. J.; Cha, D. K. Enhanced reduction of perchlorate by elemental iron at elevated temperatures.J. Hazard. Mater.,2006, B129,304-307.
    [128]Xiong, Z.; Zhao, D.; Pan, G. Rapid and complete destruction of perchlorate in water and ion-exchange brine using stabilized zero-valent iron nanoparticles. Water Res.,2007,41, 3497-3505.
    [129]Huang, H.; Sorial, G. A. Perchlorate remediation in aquatic systems by zero valent iron. Environ. Eng. Sci.,2006,24,917-926.
    [130]Mahmudov, R.; Shu, Y.; Rykov, S.; Chen, J.; Huang, C. P. The reduction of perchlorate by hydrogenation catalysts. Appl. Catal. B-Environ.,2008,81,78-87.
    [131]Hurley, K. D.; Shapley, J. R. Efficient heterogeneous catalytic reduction of perchlorate in water. Environ. Sci. Technol,2007,41,2044-2049.
    [132]Hurley, K. D.; Zhang, Y.; Shapley, J. R. Ligand-enhanced reduction of perchlorate in water with heterogeneous Re-Pd/C catalysts.J. Am. Chem. Soc.,2009,131,14172-14173.
    [133]Choe, J. K.; Shapley, J. R.; Strathmann, T. J.; Werth, C. J. Influence of rhenium speciation on the stability and activity of Re/Pd perchlorate reduction. Environ. Sci. Technol.,2010,44, 4716-4721.
    [134]Liu, J.; Choe, J. K.; Sasnow, Z.; Werth, C. J.; Strathmann, T. J. Application of a Re-Pd bimetallic catalyst for treatment of perchlorate in waste ion-exchange regenerant brine. Water Res.,2013,47,91-101.
    [135]Ye, L.; Wang, S.; You, H.; Yao, J.; Kang, X. Photocatalytic reduction of perchlorate in aqueous solutions in UV/Cu-TiO2/SiO2 system. Chem. Eng. J.,2013,226, A3A-AA3.
    [136]Lang, G. G.; Horanyi, G. Some interesting aspects of the catalytic and electrocatalytic reduction of perchlorate ions.J. Electroanal. Chem.,2003,552,197-211.
    [137]Lang, G. G.; Sas, N. S.; Ujvari, M.; Horanyi, G. The kinetics of the electrochemical reduction of perchlorate ions on rhodium. Electrochim. Acta.,2008,53,7436-7444.
    [138]Wasberg, M.; Horanyi, G. The reduction of ClO4- ions on Rh electrodes. J.Electroanal. Chem.,1995,385,63-70.
    [139]Almeida, C. M. V. B.; Giannetti, B. F.; Rabockai, T. Electrochemical study of perchlorate reduction at tin electrodes. J. Electroanal Chem.,1997,422,185-189.
    [140]Rusanova, M. Y.; Polaskova, P.; Muzikar, M.; Fawcett, W. R. Electrochemical reduction of perchlorate ions on platinum-activated nickel. Electrochim. Acta.,2006,51,3097-3101.
    [141]Wang, D. M.; Lin, H. Y.; Shah, S. I.; Ni, C. Y.; Huang, C. P. Indirect electrochemical reduction of perchlorate and nitrate in dilute aqueous solutions at the Ti-water interface. Sep. Purif. Technol.,2009,67,127-134.
    [142]Lee, C.; Batchelor, B.; Park, S. H.; Han, D. S.; Abdel-Wahab, A.; Kramer, T. A. Reduction of perchlorate using zero-valent titanium (ZVT) anode:Kinetic models.J. Colloid Interf. Sci.,2012,385,122-129.
    [143]Yoon, Y.; Amy, G.; Yoon, J. Effect of pH and conductivity on hindered diffusion of perchlorate ions during transport through negatively charged nanofiltration and ultrafiltration membranes. Desalination.2005,177,217-227.
    [144]Yoon, J.; Yoon, Y.; Amy, G.; Cho, J.; Foss, D.; Kim, T-H. Use of surfactant modified ultrafiltration for perchlorate(ClO4-) removal. Water Res.,2003,37,2001-2012.
    [145]Yoon, J.; Amy, G.; Chung, J.; Sohn, J.; Yoon, Y. Removal of toxic ions (chromate, arsenate, and perchlorate) using reverse osmosis, nanofiltration, and ultrafiltration membranes. Chemosphere,2009,77,228-235.
    [146]Yoon, Y.; Amy, G.; Cho, J.; Her, N.; Pellegrino, J. Transport of perchlorate (ClO4-) through NF and UF membranes. Desalination,2002,147,11-17.
    [147]Lee, S.; Quyet, N.; Lee, E.; Kim, S.; Lee, S.; Jung, Y. D.; Choi, S. H.; Cho, J. Efficient removals of tris(2-chloroethyl) phosphate (TCEP) and perchlorate using NF membrane filtrations. Desalination,2008,221,234-237.
    [148]Huq, H. P.; Yang, J-S.; Yang, J-W. Removal of perchlorate from groundwater by the polyelectolyte-enhanced ultrafiltration process. Desalination,2007,204,335-343.
    [149]Xie, Y.; Li, S.; Wu, K.; Wang, J.; Liu, G. A hybrid adsorption/ultrafiltration process for perchlorate removal. J. Membrane Sci.,2011,366,237-244.
    [150]Roach, J. D.; Tush, D. Equilibrium dialysis and ultrafiltration investigations of perchlorate removal from aqueous solution using poly(diallyldimethylammonium) chloride. Water Res., 2008,42,1204-1210.
    [151]Roach, J. D.; Lane, R. F.; Hussain, Y. Comparative study of the uses of poly(4-vinylpyridine) and poly(diallyldimethylammonium) chloride for the removal of perchlorate from aqueous solution by polyelectrolyte-enhanced ultrafiltration. Water Res., 2011,45,1387-1393.
    [152]Roquebert, V.; Booth, S.; Cushing, R. S.; Crozes, G.; Hansen, E. Electrodialysis reversal (EDR) and ion exchange as polishing treatment for perchlorate treatment. Desalination, 2000,131,285-291.
    [153]Wang, D. M.; Huang, C. P. Electrodialytically assisted catalytic reduction (EDACR) of perchlorate in dilute aqueous solutions. Sep. Purif. Technol.,2008,59,333-341.
    [154]Seyfferth, A. L.; Henderson, M. K.; Parker, D. R. Effects of common soil anions and pH on the uptake and accumulation of perchlorate in lettuce. Plant Soil,2008,302,139-148.
    [155]Nzengung, V. A.; Wang, C. H.; Harvey, G. Plant-mediated transformation of perchlorate into chloride. Environ. Sci. Technol.,1999,33,1470-1478.
    [156]Ha, W.; Suarez, D. L.; Lesch, S. M. Perchlorate uptake in spinach as related to perchlorate, nitrate, and chloride concentrations in irrigation water. Environ. Sci. Technol.,2011,45, 9363-9371.
    [157]Ha, W.; Suarez, D. L.; Lesch, S. M. Predicting perchlorate uptake in greenhouse lettuce from perchlorate, nitrate, and chloride irrigation water concentrations. J. Environ. Qual., 2013,42,208-218.
    [158]Grantz, D. A.; Burkey, K. O.; Jackson, W. A.; Vu, H-B.; McGrath, M. T.; Harvey, G. Perchlorate content of plant foliage reflects a wide range of species-dependent accumulation but not ozone-induced biosynthesis. Environ. Pollut.,2014,184,690-696.
    [159]Nzengung, V. A.; Wang, C.; Harvey, G.; Mccutcheon, S.; Wolfe, L. Phytoremediation of Perchlorate Contaminated Water:Laboratory Studies. Battelle Press, Columbus 1999.
    [160]Yu, L.; Canas, J. E.; Cobb, G. P.;Jackson, W. A.; Anderson, T. A. Uptake of perchlorate in terrestrial plants. Ecotox. Environmen. Safe.,2004,58,44-49.
    [161]Tan, K.; Anderson, T. A.; Jones, M. W.; Smith, P. N.; Jackson, W. A. Accumulation of perchlorate in aquatic and terrestrial plants at a field scale. J. Environ. Qual.2004,33, 1638-1646.
    [162]Susarla, S.; Bacchus, S. T.; Harvey, G.; McCutcheon, S. C. Phytotransformations of perchlorate contaminated waters. Environmen. Technol.,2000,21,1055-1065.
    [163]Aken, B.; Schnoor, J. L. Evidence of perchlorate (ClO4-) reduction in plant tissues (poplar tree) using radio-labeled 36 ClO4-. Environ. Sci. Technol.,2002,36,2783-2788.
    [164]Bhaskaran, K.; Nadaraja, A. V.; Tumbath, S.; Shah, L. B.; Veetil, P. G. P. Phytoremediation of perchlorate by free floating macrophytes. J. Hazard. Mater.,2013,260,901-906.
    [165]Urbansky, E. T. Perchlorate in the Environment. New York:Kluwer Academic/Plenum Publisher,2000.
    [166]Nzengung, V. A.; Penning, H.; O'Niell, W. Mechanistic changes during phytoremediation of perchlorate under different root-zone conditions. Int. J. Phytoremediat.,2004.6,63-83.
    [167]Yifru, D. D.; Nzengung, V. A. Organic carbon biostimulates rapid rhizodegradation of perchlorate. Environ. Toxicol. Chem.,2008,27,2419-2426.
    [168]Logan, B. E. A review of chlorate-and perchlorate-respiring microorganisms. Bioremediat. J.,1998,2,69-79.
    [169]Bender, K. S.; O'Connor, S. M.; Chakraborty, R.; Coates, J. D.; Achenbach, L. A. Sequencing and rranscriptional analysis of the chlorite dismutase gene of Dechloromonas agitata and its use as a metabolic probe. Appl. Environ. Microbiol.,2002,68,4820-4826.
    [170]Rikken, G. B.; Kroon, A. G. M.; van Ginkel, C. G. Transformation of (per)chlorate into chloride by a newly isolated bacterium:reduction and dismutation. Appl. Microbiol. Biotechnol.1996,45,420-426.
    [171]Thrash, J. C.; Van Trump, J. I.; Weber, K. A.; Miller, E.; Achenbach, L. A.; Coates, J. D. Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol., 2007,41,1740-1746.
    [172]Thrash, J. C.; Pollock, J.; Torok, T.; Coates, J. D. Description of the novel perchlorate-reducing bacteria Dechlorobacter hydrogenophilus gen. nov., sp nov. and Propionivibrio militaris, sp nov. Appl. Microbiol. Biotechnol.,2010,86,335-343.
    [173]Shete, A.; Mukhopadhyaya, P. N.; Acharya, A.; Aich, B. A.; Joshi, S.; Ghole, V. S. Aerobic reduction of perchlorate by bacteria isolated in Kerala, South India. J. Appl. Genet.2008,49, 425-431.
    [174]Anupama, V. N.; Prajeesh, P. V. G.; Krishnakumar, B. Perchlorate reduction by an isolated Serratia marcescens strain under high salt and extreme pH. FEMS Microbiol. Lett.,2013, 229,117-121.
    [175]方齐乐,陈宝梁.高氯酸盐污染土壤及地下水的植物-微生物修复研究进展.环境科学学报,2011,31,1569-1579.
    [176]Nerenberg, R. Breathing perchlorate. Science,2013,340,38-39.
    [177]Balk, M.; van Gelder, T.; Weelink, S. A.; Stams, A. J. M. (Per)chlorate reduction by the thermophilic bacterium Moorella perchloratireducens sp. nov., isolated from underground gas storage. Appl. Environ. Microbiol.,2008,74,403-409.
    [178]Kengen, S. W. M.; Rikken, G. B.; Hagen, W. R.; van Ginkel, C. G.; Stams, A. J. M. Purification and characterization of (per)chlorate reductase from the chlorate-respiring strain GR-1. J. Bacteriol,1999,181,6706-6711.
    [179]O'Connor, S. M.; Coates, J. D. Universal immunoprobe for (per)chlorate-reducing bacteria. Appl. Environ. Microbiol,2002,68,3108-3113.
    [180]Hutchison, J. M.; Poust, S. K.; Kumar, M.; Cropek, D. M.; MacAllister, I. E.; Arnett, C. M.; Zilles, J. L. Perchlorate reduction using free and encapsulated Azospira oryzae enzymes. Environ. Sci. Technol.,2013,47,9934-9941.
    [181]Bruce, R. A.; Achenbach, L. A.; Coates, J. D. Reduction of (per)chlorate by a novel organism isolated from paper mill waste. Environ. Microbiol.,1999,1,319-329.
    [182]Okeke, B. C.; Giblin, T.; Frankenberger, W. T. Reduction of perchlorate and nitrate by salt tolerant bacteria. Environ. Pollut.,2002,118,357-363.
    [183]Shrout, J. D.; Scheetz, T. E.; Casavant, T. L.; Parkin, G. F. Isolation and characterization of autotrophic, hydrogen-utilizing, perchlorate-reducing bacteria. Appl. Microbiol. Biotechnol., 2005,67,261-268.
    [184]Ju, X.; Field, J. A.; Sierra-Alvarez, R.; Salazar, M.; Bentley, H.; Bentley, R. Chemolithotrophic perchlorate reduction linked to the oxidation of elemental sulfur. Biotechnol. Bioeng.,2007,96,1073-1082.
    [185]Ju, X.; Sierra-Alvarez, R.; Field, J. A.; Byrnes, D. J.; Bentley, H.; Bentley, R. Microbial perchlorate reduction with elemental sulfur and other inorganic electron donors. Chemosphere,2008,71,114-122.
    [186]Miller, J. P.; Logan, B. E. Sustained perchlorate degradation in an autotrophic, gas-phase, packed-bed bioreactor. Environ. Sci. Technol.,2000,34,3018-3022.
    [187]Butler, C. S.;Clauwaert, P.; Green, S. J.; Verstraete, W.; Nerenberg, R. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ. Sci. Technol.,2010,44,4685-4691.
    [188]Xiao, Y.; Roberts, D. J. Kinetics analysis of a salt-tolerant perchlorate-reducing bacterium: effects of sodium, magnesium, and nitrate. Environ. Sci. Technol.,2013,47,8666-8673.
    [189]Park, C.; Marchand, E. A. Modelling salinity inhibition effects during biodegradation of perchlorate. J. Appl. Microbiol,2006,101,222-233.
    [190]Dugan, N. R.; Williams, D. J.; Meyer, M.; Schneider, R. R.; Speth, T. F.; Metz, D. H. The impact of temperature on the performance of anaerobic biological treatment of perchlorate in drinking water. Water Res.,2009,43,1867-1878.
    [191]Shrout, J. D.; Parkin, G. F. Influence of electron donor, oxygen, and redox potential on bacterial perchlorate degradation. Water Res.,2006,40,1191-1199.
    [192]Sahu, A. K.; Conneely, T.; Nusslein, K. R.; Ergas, S. J. Biological perchlorate reduction in packed bed reactors using elemental sulfur. Environ. Sci. Technol,2009,43,4466-4471.
    [193]Xiao, Y.; Roberts, D. J.; Zuo, G.; Badruzzaman, M.; Lehman, G. S. Characterization of microbial populations in pilot-scale fluidized-bed reactors treating perchlorate-and nitrate-laden brine. Water Res.,2010,44,4029-4036.
    [194]Zhao, H-P.; van Ginkel, S.; Tang, Y.; Kang, D-W.; Rittmann, B.; Krajmalnik-Brown, R. Interactions between perchlorate and nitrate reductions in the biofilm of a hydrogen-based membrane biofilm reactor. Environ. Sci. Technol,2011,45,10155-10162.
    [195]Zhao, H-P.; Ontiveros-Valencia, A.; Tang, Y.; Kim, B-O.; Ilhan, Z. E.; Krajmalnik-Brown, R.; Rittmann, B. Using a two-stage hydrogen-based membrane biofilm reactor (MBfR) to achieve complete perchlorate reduction in the presence of nitrate and sulfate. Environ. Sci. Technol.,2013,47,1565-1572.
    [196]Tang, Y.; Zhao, H.; Marcus, A. K.; Krajmalnik-Brown, R.; Rittmann, B. E. A steady-state biofilm model for simultaneous reduction of nitrate and perchlorate, Part 1:Model development and numerical solution. Environ. Sci. Technol.,2012,46,1598-1607.
    [197]Xu, J.; Gao, N.; Tang, Y.; Deng, Y.; Sui, M. Perchlorate removal using granular activated carbon supported iron compounds:Synthesis, characterization and reactivity. J. Environ. Sci.,2010,22,1807-1813.
    [198]Xu, J.; Gao, N.; Deng, Y.; Xia, S. Nanoscale iron hydroxide doped granular activated carbon (Fe-GAC) as a sorbent for perchlorate in water. Chem. Eng. J.,2013,222,520-526.
    [199]Chen, W.; Cannon, F. S.; Rangel-Mendez, J. R. Ammonia-tailoring of GAC to enhance perchlorate removal. I:Characterization of NH3 thermally tailored GACs. Carbon 2005,43, 573-580.
    [200]Chen, W.; Cannon, F. S. Thermal reactivation of ammonia-tailored granular activated carbon exhausted with perchlorate. Carbon,2005,43,2742-2749.
    [201]Parette, R.; Cannon, F. S.; Weeks, K. Removing low ppb level perchlorate, RDX, and HMX from groundwater with cetyltrimethylammonium chloride (CTAC) pre-loaded activated carbon. Water Res.,2005,39,4683-4692.
    [202]Jang, M.; Cannon, F. S.; Parette, R. B.; Yoon, S.; Chen, W. Combined hydrous ferric oxide and quaternary ammonium surfactant tailoring of granular activated carbon for concurrent arsenate and perchlorate removal. Water Res.,2009,43,3133-3143.
    [203]Patterson, J. P.; Parette, R.; Cannon, F. S. Oxidation of intermediate sulfur species (thiosulfate) by free chlorine to increase the bed life of tailored granular-activated carbon removing perchlorate. Environ. Eng. Sci.,2010,27,835-843.
    [204]Parette, R.; Cannon, F. S. The removal of perchlorate from groundwater by activated carbon tailored with cationic surfactants. Water Res.,2005,39,4020-4028.
    [205]Patterson, J.; Parette, R.; Cannon, F. S.; Lutes, C.; Henderson, T. Competition of anions with perchlorate for exchange sites on cationic surfactant-tailored GAC. Environ. Eng. Sci., 2011,28,249-256.
    [206]Lin, S-Y.; Chen, W.; Cheng, M-T.; Li, Q. Investigation of factors that affect cationic surfactant loading on activated carbon and perchlorate adsorption. Colloid. Surface A,2013, 434,236-242.
    [207]Hou, P.; Cannon, F. S.; Brown, N. R.; Byrne, T.; Gu, X.; Delgado, C. N. Granular activated carbon anchored with quaternary ammonium/epoxide-forming compounds to enhance perchlorate removal from groundwater. Carbon,2013,53,197-207.
    [208]Hou, P.; Cannon, F. S.; Nieto-Delgado, C.; Brown, N. R.; Gu, X. Effect of preparation protocol on anchoring quaternary ammonium/epoxide-forming compound into granular activated carbon for perchlorate adsorption:Enhancement by Response Surface Methodology. Chem. Eng. J.,2013,223,309-317.
    [209]谢燕华,李适宇,王飞,刘广立.质子化交联壳聚糖对手中高氯酸根的吸附特性研究.环境科学,2009,30,2580-2585.
    [210]Tan, X.; Gao, B.; Xu, X.:Wang, Y.; Ling, J.; Yue, Q.; Li, Q. Perchlorate uptake by wheat straw based adsorbent from aqueous solution and its subsequent biological regeneration. Chem. Eng. J.,2012,211-212,37-45.
    [211]Baidas, S.; Gao, B.; Meng, X. Perchlorate removal by quaternary amine modified reed. J. Hazard. Mater.,2011,189,54-61.
    [212]Xu, X.; Gao, B.; Tan, X.; Zhang, X.; Yue, D. T.; Yue, Q. Uptake of perchlorate from aqueous solutions by amine-crosslinked cotton stalk. Carbohyd. Polym.,2013,98,132-138.
    [213]Lou, J. C.; Hsu, Y. S.; Hsu, K. L.; Chou, M. S.; Han, J. Y. Comparing the removal of perchlorate when, using single-walled carbon nanotubes (SWCNTs) or granular activated carbon:Adsorption kinetics and thermodynamics. J. Environ. Heal. A,2014,49,503-513.
    [214]Lakshmi, J.; Vasudevan, S. Graphene-a promising material for removal of perchlorate (ClO4-) from water. Environ. Sci. Pollut. Res.,2013,20,5114-5124.
    [215]Xie, Y.; Li, S.; Liu, G.; Wang, J.; Wu, K. Equilibrium, kinetic and thermodynamic studies on perchlorate adsorption by cross-linked quaternary chitosan. Chem. Eng. J.,2012,192, 269-275.
    [216]彭银仙,吴春笃,蔡翠云,陈军.改性桑枝粉及沸石对水中高氯酸盐的吸附研究.环境工程学报,2011,5,1497-1501.
    [217]Kumar, E.; Bhatnagar, A.; Choi, J-A.; Kumar, U.; Min, B.; Kim, Y.; Song, H.; Paeng, K. J.; Jung, Y. M.; Abou-Shanab, R. A. I.; Jeon, B-H. Perchlorate removal from aqueous solution by granular ferric hydroxide (GFH). Chem. Eng. J.,2010,159,84-90.
    [218]Lien, H-L.; Yu, C. C.; Lee, Y-C. Perchlorate removal by acidified zero-valent aluminum and aluminum hydroxide. Chemosphere,2010,80,888-893.
    [219]Lin, Y.; Fang, Q.; Chen, B. Perchlorate uptake and molecular mechanisms by magnesium/aluminum carbonate layered double hydroxides and the calcined layered double hydroxides. Chem. Eng. J.,2014,237,38-46.
    [220]Kim, T-H.; Jang, M.; Park, J. K. Bifunctionalized mesoporous molecular sieve for perchlorate removal. Micropor. Mesopor. Mater.,2008,108,22-28.
    [221]Seliem, M. K.; Komarneni, S.; Parette, R.; Katsuki, H.; Cannon, F. S.; Shahien, M. G.; Khalil, A. A.; El-Gaid, I. M. A. Perchlorate uptake by organosilicas, organo-clay minerals and composites of rice husk with MCM-48. Appl. Clay Sci.,2011,53,621-626.
    [222]Seliem, M. K.; Komarneni, S.; Byrne, T.; Cannon, F. S.; Shahien, M. G.; Khalil, A. A.; El-Gaid, I. M. A. Removal of perchlorate by synthetic organosilicas and organoclay: Kinetics and isotherm studies. Appl. Clay Sci.,2013,71,21-26.
    [223]Seliem, M. K.; Komarneni, S.; Parette, R.; Katsuki, H.; Cannon, F. S.; Shahien, M. G.; Khalil, A. A.; El-Gaid, I. M. A. Composites of MCM-41 silica with rice husk:hydrothermal synthesis, characterization and application for perchlorate separation. Mater. Res. Innov., 2010,14,351-354.
    [224]Komarneni, S.; Aref, A. R.; Hong, S.; Noh, Y. D.; Cannon, F. S.; Wang, Y. Organoclays of high-charge synthetic clays and alumina pillared natural clays:Perchlorate uptake. Appl. Clay Sci.,2013,80-81,340-345.
    [225]Chitrakar, R.; Makita, Y.; Hirotsu, T.; Sonoda, A. Montmorillonite modified with hexadecylpyridinium chloride as highly efficient anion exchanger for perchlorate ion. Chem. Eng. J.,2012,191,141-146.
    [226]Yang, Z.; Xiao, O.; Chen, B.; Zhang, L.; Zhang, H.; Niu, X.; Zhou, S. Perchlorate adsorption from aqueous solution on inorganic-pillared bentonites. Chem. Eng. J.,2013, 223,31-39.
    [227]卢宁,高乃云,黄鑫.水中高氯酸根的颗粒活性炭吸附过程及影响因素分析.环境科学,2008,29,1572-1577.
    [228]Ji, G-L.; Kong, X-L. Adsorption of chloride, nitrate and perchlorate by variable charge soils. Pedosphere,1992,2,317-326.
    [229]Handa, D.; Okada, K.; Nakajima, H.; Arakaki, T. Perchlorate ion in aerosols collected at Cape Hedo, Okinawa, Japan. Earozoru Kenkyu,2010,25,269-273.
    [230]Liu, Y.; Mou, S. Determination of trace levels of haloacetic acids and perchlorate in drinking water by ion chromatography with direct injection.J. Chromatogr. A,2003,997, 225-235.
    [231]Scheytt, T. J.; Freywald, J.; Ptacek, C. J. Study of selected soil, ground, and surface water samples on perchlorate in Germany:First Results. Grundwasser-Zeitschrift der Fachsektioin Hydrogeologie.2011,16,37-43.
    [232]Backus, S. M.; Klawuun, P.; Brown, S.; D'sa, I.; Sharp, S.; Surette, C.; Williams, D. J. Determination of perchlorate in selected surface waters in the Great Lakes Basin by HPLC/MS/MS. Chemosphere,2005,61,834-843.
    [233]Kang, N.; Anderson, T. A.; Rao, B.; Jackson, W. A. Characteristics of perchlorate formation via photodissociation of aqueous chlorite. Environ. Chem.,2009,6,53-59.
    [234]Woolf, D.; Amonette, J. E.; Street-Perrott, F. A.; Lehmann, J.; Joseph, S. Sustainable biochar to mitigate global climate change. Nat. Commun.,2010,1,1-9.
    [235]Ippolito, J. A.; Laird, D. A.; Busscher, W. J. Environmental benefits of biochar. J. Environ. Qual,2012,41,961-912.
    [236]Manya, J. J. Pyrolysis for biochar purposes:a review to establish current knowledge gaps and research needs. Environ. Sci. Technol.,2012,46,7939-7954.
    [237]Babel, S.; Kurniawan, T. A. Cr (VI) removal from synthetic wastewater using coconut shell charcoal and commercial activated carbon modified with oxidizing agents and/or chitosan. Chemosphere,2004,54,951-967.
    [238]Chen, B.; Zhou, D.; Zhu, L. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environ. Sci. Technol.,2008.42,5137-5143.
    [239]Uchimiya, M.; Lima, I. M.; Klasson, K. T.; Chang, S.; Wartelle, L. H.; Rodgers, J. E. Immobilization of heavy metal ions (CuⅡ, CdⅡ, NiⅡ, and PbⅡ) by broiler litter-derived biochars in water and soil. J. Agr. Food Chem.,2010,58,5538-5544.
    [240]Ni, J.; Pignatello, J. J.; Xing, B. Adsorption of aromatic carboxylate ions to black carbon (biochar) is accompanied by proton exchange with water. Environ. Sci. Technol.,2011,45, 9240-9248.
    [241]Chen, B.; Chen, Z.; Lv, S. A novel magnetic biochar efficiently sorbs organic pollutants and phosphate. Bioresource Technol.,2011,102,716-723.
    [242]Oh, T-K.; Choi, B.; Shinogi, Y.; Chikushi, J. Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water Air Soil Poll.,2012,223, 3729-3738.
    [243]Yao, Y.; Gao, B.; Zhang, M.; Inyang, M.; Zimmerman, A. R. Effect of biochar amendment on sorption and leaching of nitrate, ammonium, and phosphate in a sandy soil. Chemosphere, 2012,89,1467-1471.
    [244]Deveci, H.; Kar, Y. Adsorption of hexavalent chromium from aqueous solutions by bio-chars obtained during biomass pyrolysis. J. Ind. Eng. Chem.,2013,19,190-196.
    [245]Silber, A.; Levkovitch, I.; Graber, E. R. pH-Dependent mineral release and surface properties of cornstraw biochar:agronomic implications. Environ. Sci. Technol.,2010,44, 9318-9323.
    [246]Inyang, M.; Gao, B.; Ding, W.; Pullammanappallil, P.; Zimmerman, A. R.; Cao, X. Enhanced lead sorption by biochar derived from anaerobically digested sugarcane bagasse. Sep. Sci. Technol.,2011,46,1950-1956.
    [247]Labbe, N.; Harper, D.; Rials, T. Chemical structure of wood charcoal by infrared spectroscopy and multivariate analysis. J. Agr. Food Chem.,2006,54,3492-3497.
    [248]Cantrell, K. B.; Hunt, P. G.; Uchimiya, M.; Novak, J. M.; Ro, K. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technol.,2012,107,419-428.
    [249]Chen, Z.; Chen, B.; Chiou, C. T. Fast and slow rates of naphthalene sorption to biochars produced at different temperatures. Environ. Sci. Technol,2012,46,11104-11111.
    [250]Mizuta, K.; Matsumoto, T.; Hatate, Y.; Nishihara, K.; Nakanishi, T. Removal of nitrate-nitrogen from drinking water using bamboo powder charcoal. Bioresource Technol., 2004,95,255-257.
    [251]Fram, M. S.; Belitz, K. Probability of detecting perchlorate under natural conditions in deep groundwater in California and the southwestern United States. Environ. Sci. Technol.,2011, 45,1271-1277.
    [252]Harvey, O. R.; Herbert. B. E.; Kuo, L-J.; Louchouarn, P. Generalized two-dimensional perturbation correlation infrared spectroscopy reveal mechanisms for the development of surface charge and recalcitrance in plant-derived biochars. Environ. Sci. Technol.,2012,46, 10641-10650.
    [253]Wang, X.; Sato, T.; Xing, B. Competitive sorption of pyrene on wood chars. Environ. Sci. Technol.,2006.40,3267-3272.
    [254]Keiluweit, M.; Nico, P. S.; Johnson, M. G.; Kleber, M. Dynamic molecular structure of plant biomass-derived black carbon (Biochar). Environ. Sci. Technol.,2010,44,1247-1253.
    [255]Teixido, M.; Pignatello, J. J.; Beltran, J. L.; Granados, M.; Peccia, J. Speciation of the ionizable antibiotic sulfamethazine on black carbon (biochar). Environ. Sci. Technol.,2011, 45,10020-10027.
    [256]Kanicky, J. R.; Shah, D. O. Effect of degree, type, and position of unsaturation on the pKa of long-chain fatty acids. J. Colloid. Interf. Sci.,2002,256,201-207.
    [257]Shokri, A.; Abedin, A.; Fattahi, A.; Kass, S. R. Effect of hydrogen bonds on pKa values: importance of networking.J. Am. Chem. Soc.,2012,134,10646-10650.
    [258]Novak, J. M.; Busscher, W. J.; Laird, D. L.; Ahmedna, M.; Watts, D. W.; Niandou, M. A. S. Impact of biochar amendment on fertility of a southeastern coastal plain soil. Soil Sci.,2009, 174,105-112.
    [259]Yuan, J-H.; Xu, R-K.; Zhang, H. The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technol.,2011,102,3488-3497.
    [260]Lee, S. D.; Lee, B.; Choo, K-H. Perchlorate removal in aqueous solutions using periodic mesoporous organosilicas (PMOs) functionalized with quaternary ammonium groups. Korean J. Chem. Eng.,2011,28,1393-1399.
    [261]Cho, H-H.; Wepasnick, K.; Smith, B. A.; Bangash, F. K.; Fairbrother, D. H.; Ball, W. P. Sorption of aqueous Zn[Ⅱ] and Cd[Ⅱ] by multiwall carbon nanotubes:the relative roles of oxygen-containing functional groups and graphenic carbon. Langmuir,2010,26,967-981.
    [262]Chun, Y.; Sheng, G.; Chiou, C. T.; Xing, B. Compositions and sorptive properties of crop residue-derived chars. Environ. Sci. Technol.,2004,38,4649-4655.
    [263]Conte, P.; Marsala, V.; De Pasquale, C.; Bubici, S.; Valagussa, M.; Pozzi, A.; Alonzo, G. Nature of water-biochar interface interactions. GCB Bioenergy,2013,5,116-121.
    [264]Smith, D. W. Ionic hydration enthalpies.J. Chem. Educ.,1977,54,540-542.
    [265]Ji, M.; Odelius, M.; Gaffney, K. J. Large angular jump mechanism observed for hydrogen bond exchange in aqueous perchlorate solution. Science,2010,328,1003-1005.
    [266]Bondarenko, G. V.; Gorbaty, Y. E. Hydrogen bonding in aqueous solution of NaClO4. Mol. Phys.,2011,109,783-788.
    [267]Gilli, G.; Gilli, P. The Nature of the Hydrogen Bond. Outline of a Comprehensive Hydrogen Bond Theory. Oxford University Press. New York.2009.
    [268]Datsyuk, V.; Kalyva, M.; Papagelis, K.; Parthenios, J.; Tasis, D.; Siokou, A.; Kallitsis, I.; Galiotis, C. Chemical oxidation of multiwalled carbon nanotubes. Carbon,2008,46, 833-840.
    [269]Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc.,1958, 80,1339.
    [270]Giusca, C. E.; Tison, Y.; Stolojan, V.; Borowiak-Palen, E.; Silva, S. R. P. Inner-tube chirality determination for double-walled carbon nanotubes by scanning tunneling microscopy. Nano Lett,2007,7,1232-1239.
    [271]Jenkins, H. D. B.; Roobottom, H. K.; Passmore, J.; Glasser, L. Relationships among ionic lattice energies, molecular (formula unit) volumes, and thermochemical radii. Inorg. Chem., 1999,38,3609-3620.
    [272]Ago, H.; Kugler, T.; Cacialli, F.; Salaneck, W. R.; Shaffer, M. S. P.; Windle, A. H.; Friend, R. H. Work functions and surface functional groups of multiwall carbon nanotubes. J. Phys. Chem. B,1999,103,8116-8121.
    [273]Tasis, D.; Tagmatarchis, N.; Georgakilas, V.; Prato, M. Soluble carbon nanotubes. Chem. Eur. J.,2003,9,4000-4008.
    [274]Chandra, V.; Park, J.; Chun, Y.; Lee, J. W.; Hwang, I-C.; Kim, K. S. Water-dispersible magnetite-reduced graphene oxide composites for arsenic removal. ACS Nano,2010,4, 3979-3986.
    [275]Han, S. Y.; Kim, I. Y.; Jo, K. Y.; Hwang, S-J. Solvothermal-assisted hybridization between reduced graphene oxide and lithium metal oxides:a facile route to graphene-based composite materials. J. Phys. Chem. C,2012,116,7269-7279.
    [276]Matranga, C.; Bockrath, B. Hydrogen-bonded and physisorbed CO in single-walled carbon nanotube bundles. J. Phys. Chem. B,2005,109,4853-4864.
    [277]Dreyer, D. R.; Park, S.; Bielawski, C. W.; Rucff, R. S. The chemistry of graphene oxide. Chem. Soc. Rev.,2010,39,228-240.
    [278]Chen, B.; Zhu, L.; Zhu, J. Configurations of the bentonite-sorbed myristylpyridinium cation and their influences on the uptake of organic compounds. Environ. Sci. Technol.,2005,39, 6093-6100.
    [279]Zhu, L.; Zhu, R.; Xu, L.; Ruan, X. Influence of clay charge densities and surfactant loading amount on the microstructure of CTMA-montmorillonite hybrids. Colloid. Surface A,2007, 304,41-48.
    [280]Niriella. D.; Carnahan, R. P. Comparison study of Zeta potential values of bentonite in salt solutions. J. Disper. Sci. Technol.,2006,27,123-131.
    [281]Saka, E. E.; Guler, C. The effects of electrolyte concentration, ion species and pH on the zeta potential and electrokinetic charge density of montmorillonite. Clay Miner.,2006,41, 853-861.
    [282]Tunc, S.; Duman, O. The effect of different molecular weight of poly(ethylene glycol) on the electrokinetic and rheological properties of Na-bentonite suspensions. Colloid. Surface A,2008,317,93-99.
    [283]Oyanedel-Craver, V. A.; Smith, J. A. Effect of quaternary ammonium cation loading and pH on heavy metal sorption to Ca bentonite and two organobentonites. J. Hazard. Mater. B, 2006,237,1102-1114.
    [284]Sarkar, B.; Megharaj, M.; Xi, Y.; Naidu, R. Structural characterisation of Arquad 2HT-75 organobentonites:Surface charge characteristics and environmental application. J. Hazard. Mater.,2011,195,155-161.
    [285]Bate, B.; Bums, S. E. Effect of total organic carbon content and structure on the electrokinetic behavior of organoclay suspensions. J. Colloid Interf. Sci.,2010,343,58-64.
    [286]Xu, S.; Boyd. S. A. Cationic surfactant adsorption by swelling and nonswelling layer silicates. Langmuir,1995,11,2508-2514.
    [287]朱润良,有机膨润土的构-效关系及吸附机制.浙江大学,博士论文,2007
    [288]Venkataraman, N. V.; Vasudevan, S.; Conformation of methylene chains in an intercalated surfactant bilayer. J. Phys. Chem. B,2001,105,1805-1812.
    [289]Li, Q.; An, X.; Luan, F.; Li, W.; Gong, B.; Cheng, J. Regulating function of methyl group in strength of CH O hydrogen bond:a high-level ab initio study. J. Phys. Chem. A,2008,112, 3985-3990.
    [290]Johnston, C. T.; Khan, B.; Barth, E. F.; Chattopadhyay, S.; Boyd, S. A. Nature of the interlayer environment in an organoclay optimized for the sequestration of dibenzo-p-dioxin. Environ. Sci. Technol.,2012,46,9584-9597.
    [291]Xi, Y.; Mallavarapu, M.; Naidu, R. Preparation, characterization of surfactants modified clay minerals and nitrate adsorption. Appl. Clay Sci.,2010,48,92-96.
    [292]Vujakovic, A. D.; Dakovic, A. S.; Lemic, J. B.; Radosavljevic-Mihajlovic, A. S.; Tomasevic-Canovic, M. R. Adsorption of inorganic anionic contaminants on surfactant modified minerals.J. Serb. Chem. Soc.,2003,68,833-841.
    [293]Li, Z.; Bowman, R. S. Retention of inorganic oxyanions by organo-kaolinite. Water Res., 2001,35,3771-3776.
    [294]Li, Z.; Alessi, D.; Zhang, P.; Bowman, R. S. Organo-illite as a low permeability sorbent to retard migration of anionic contaminants.J. Environ. Eng.,2002,128,583-587.
    [295]Kaufhold, S.; Pohlmann-Lortz, M.; Dohrmann, R.; Nuesch, R. About the possible upgrade of bentonite with respect to iodide retention capacity. Appl.Clay Sci.,2007,35,39-46.
    [296]Kloprogge, J. T.; Wharton, D.; Hickey, L.; Frost, R. L. Infrared and Raman study of interlayer anions CO32-, NO3-, SO42- and ClO4- in Mg-Al-hydrotalcite. Am. Mineral.,2002, 87,623-629.
    [297]Shameema, O.; Ramachandran, C. N.; Sathyamurthy, N. Blue shift in X-H stretching frequency of molecules due to confinement. J. Phys. Chem. A,2006,110,2-4.
    [298]Bieliniska-Waz, D.; Diercksen, G. H. F.; Klobukowski, M. Quantum chemistry of confined systems:structure and vibronic spectra of a confined hydrogen molecule. Chem. Phys. Lett., 2001,349,215-219.
    [299]Hobza, P.; Havlas, Z. Blue-shifting hydrogen bonds. Chem. Rev.,2000,100,4253-4264.
    [300]Desiraju, G. R. The C-H O hydrogen bond:structural implications and supramolecular design. Accounts Chem. Res.,1996,29,441-449.
    [301]Hermansson, K. Blue-shifting hydrogen bonds.J. Phys. Chem. A,2002,106,4695-4702.
    [302]Li, X.; Liu, L.; Schlegel, H. B. On the physical origin of blue-shifted hydrogen bonds. J. Am. Chem. Soc.,2002,124,9639-9647.
    [303]Herrebout, W. A.; Delanoye, S. N.; van der Veken, B. J. Blue-shifting or red-shifting hydrogen bonding? Predictions for haloform complexes with dimethyl ether on the basis of perturbation theory. J. Phys. Chem. A,2004,108,6059-6064.
    [304]Mautner, M. The ionic hydrogen bond. Chem. Rev.,2005,105,213-284.
    [305]Saar, B. G.; O'Donoghue, G. P.; Steeves, A. H.; Thoman Jr., J. W. Evidence for a blue-shifting intramolecular hydrogen bond in the vibrational overtone spectrum of lH-nonafluorobutane. Chem. Phy. Lett,2006,417,159-163.
    [306]Hobza, P. The H-index unambiguously discriminates between hydrogen bonding and improper blue-shifting hydrogen bonding. Phys. Chem. Chem. Phys.,2001,5,2555-2556.
    [307]Reimann, B.; Buchhold, K.; Vaupel, S.; Brutschy, B.; Havlas, Z.; Spirko, V.; Hobza, P. Improper, blue-shifting hydrogen bond between fluorobenzene and fluoroform. J. Phys. Chem. A,2001,105,5560-5566.
    [308]Wang, S-C.; Sahu, P. K.; Lee, S-L. Intermolecular orbital repulsion effect on the blue-shifted hydrogen bond. Chem. Phys. Lett.,2005,406,143-147.
    [309]Joseph, J.; Jemmis, E. D. Red-, blue-, or no-shift in hydrogen bonds:a unified explanation. J. Am. Chem. Soc.,2007,129,4620-4632.
    [310]Pimentel, G. C.; McClellan, A. L. The Hydrogen Bond. San Francisco:W. H. Freeman. 1960.
    [311]Arunan, E.; Desiraju, G. R.; Klein, R. A.; Sadlej, J.; Scheiner, S.; Alkorta, I.; Clary, D. C.; Crabtree, R. H.; Dannenberg, J. J.; Hobza, P.; Kjaergaard, H. G.; Legon, A. C.; Mennucci, B.; Nesbitt, D. Defining the hydrogen bond:An account (IUPAC technical report) J. Pure Appl. Chem.,2011,83,1619-1636.
    [312]Zhang, Y-H.; Chan, C. K. Observations of water monomers in supersaturated NaC104, LiC104, and Mg(C104)2 droplets using Raman spectroscopy. J. Phys. Chem. A,2003,107, 5956-5962.
    [313]Zhang, H.; Zhang, Y-H.; Wang, F. Theoretical understanding on the v1-SO42- band perturbed by the formation of magnesium sulfate ion pairs. J. Compu. Chem.,2009,30, 493-503.
    [314]Spirko, V.; Hobza, P. Theoretical investigations into the blue-shifting hydrogen bond in benzene complexes. ChemPhysChem.,2006,7,640-643.
    [315]Trung, N. T.; Hue, T. T.; Nguyen, M. T. Remarkable blue shifts of C-H and N-H stretching frequencies in the interaction of monosubstituted formaldehyde and thioformaldehyde with nitrosyl hydride. J. Phys. Chem. A,2009,113,3245-3253.
    [316]An, X.; Liu, H.; Li, Q.; Gong, B.; Cheng, J. Influence of substitution, hybridization, and solvent on the properties of C-HO single-electron hydrogen bond in CH3-H2O complex. J. Phys. Chem. A,2008,112,5258-5263.
    [317]Chen, J.; McAllister, M. A.; Lee, J. K.; Houk, K. N. Short, strong hydrogen bonds in the gas phase and in solution:Theoretical exploration of pKa matching and environmental effects on the strengths of hydrogen bonds and their potential roles in enzymatic catalysis. J. Org. Chem.,1998,63,4611-4619.
    [318]Pan, Y.; McAllister, M. A. Characterization of low-barrier hydrogen bonds.6. Cavity polarity effects on the formic acid-formate anion model system. An ab initio and DFT investigation.J. Am. Chem. Soc,1998,120,166-169.
    [319]Beer, P. D.; Gale, P. A. Anion recognition and sensing:the state of the art and future perspectives. Angew. Chem. Int. Ed.,2001,40,486-516.
    [320]Dohan, O.; Portulano, C.; Basquin, C.; Reyna-Neyra, A.; Amzel, L. M.; Carrasco, N. The Na+/I- symporter (NIS) mediates electroneutral active transport of the environmental pollutant perchlorate. P. Natl. Acad. Sci. USA,2007,104,20250-20255.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700