用户名: 密码: 验证码:
非均相Fenton氧化技术处理造纸废水的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非均相Fenton氧化技术具有H2O2利用率高、pH值适用范围广和催化剂可再生等优势,已成为Fenton技术改进和发展的重要方向,同时该技术也为造纸废水的深度处理提供了一条新的有效途径。本文以活化海泡石为载体,制备了Fe/Mn/海泡石非均相催化剂。采用UV/H2O2/催化剂组成的非均相Fenton体系对制浆废水进行了深度处理。将非均相Fenton技术与混凝和好氧处理工艺进行有机耦合,对造纸法烟草薄片废水进行了处理。
     海泡石的活化研究表明,酸活化和热活化是有效的活化方法,硝酸是优良的活化剂,海泡石通过硝酸活化,显著增加了比表面积,改善了内部孔道的结构和分布,增强了吸附能力。研究发现,在海泡石酸活化过程中,脱镁率与比表面积具有很强的关联性,可以作为衡量酸活化效果的一个重要依据。当脱镁率为59%左右时,海泡石的比表面积达到最大,吸附能力最强。酸活化海泡石再进行热活化可以显著改善海泡石的性能。实验得出优化的海泡石活化条件是:硝酸浓度2.0mol/L,酸活化温度40℃,酸活化时间120min,固液比1:20,焙烧温度300℃,焙烧时间3h。活化后海泡石的比表面积为活化前的3.4倍,吸附能力为活化前的2.66倍。
     以活化海泡石为载体,采用共沉淀法制备了Fe/Mn/海泡石非均相催化剂,采用XRD、SEM、XRF、BET等手段对催化剂进行了分析表征,结果表明,负载后,海泡石中铁和锰的含量大幅增加,海泡石的结晶度有所下降,铁和锰以单分散形式均匀存在于海泡石的表面和孔道内,负载后的海泡石仍然具有较大的比表面积和孔容积,这一性质保证了催化剂可以提供给更多的活性点,使其具有较高的催化活性。
     以对氯苯酚为模型污染物,对Fe/Mn/海泡石催化剂的催化性能进行了研究,结果表明,催化剂在pH3.0~9.0的范围内都具有较高的催化活性。催化剂连续重复使用5次,催化活性没有明显变化,并且铁的溶出量低于0.4mg/L,锰的溶出量低于0.2mg/L,具有良好的稳定性和重复使用性。非均相Fenton反应的机理研究表明,反应是在紫外光的作用下,催化剂中的Fe(Ⅲ)转变为Fe(Ⅱ),并形成了二者之间的循环,同时产生了羟基自由基,是真正的非均相反应。
     采用非均相Fenton氧化技术对生化处理后的制浆废水进行深度处理,结果表明该技术对制浆废水具有很好的处理效果。当初始pH为3.0、过氧化氢用量为2.5mL/L、催化剂用量为1500mg/L、反应温度为30℃、反应时间为150min时,废水COD从380mg/L被降解至65mg/L左右。当初始pH为5.0、反应时间为180min,其他条件不变时,废水的COD可以降解至70mg/L以下,甚至当pH为7时,非均相Fenton体系依然具有较高的催化活性。催化剂连续使用4次,催化活性没有明显变化,金属离子的溶出量较低。
     为消除H2O2对废水COD测定结果的影响,建立了一种双波长光谱法快速测定COD的方法,得到了吸光度与COD之间的相关性方程:C OD173.57(A272A546)8.5577。通过与标准测试方法的比较,表明双波长光谱法具有较高的测量精密度和准确性,可以用于废水COD的快速测定。不但避免了H2O2对测量结果的干扰,而且缩短了测量时间,提高了工作效率。
     采用混凝+好氧处理+非均相Fenton技术的流程处理造纸法烟草薄片废水,通过响应面法对混凝和非均相Fenton工艺条件进行了优化,减少了化学品的消耗,降低了处理成本,处理后废水的COD约为63.5mg/L,色度为无色。该处理工艺为造纸法烟草薄片废水的达标排放提供了有效的途径。
     制浆废水和造纸法烟草薄片废水的GC-MS分析表明,经非均相Fenton氧化技术处理后,废水中的有机物种类大大减少,芳香族化合物、有机卤化物等高毒性物质被完全去除,大部分有机物被完全矿化或者被降解为低分子量的有机酸。
Heterogeneous Fenton oxidation process with high utilization of H2O2, a wide range ofpH and catalysts reuse, has become an important improvement and development direction ofFenton technical, and provides an effective way for papermaking wastewater treatment. Inthis paper, Fe/Mn/sepiolite heterogeneous catalyst was prepared based on activated sepioliteas the carrier. Heterogeneous photo-Fenton process using Fe/Mn/sepiolite as catalyst wasstudied to degrade pulping wastewater, and a coupled coagulation-heterogeneous Fenton pro-cess was applied for the treatment of papermaking-reconstituted tobacco slice wastewater.
     Natural sepiolite was activated by acid and thermal pre-treatment to improve its perfor-mance. The results indicated that specific surface area of sepiolite was markedly increased,the structure and distribution of pores were improved, and the adsorption capacity was en-hanced by nitric acid activation. It was found that during the acid treatment there was a strongcorrelation between magnesium removal and specific surface area of sepiolite, and magnesi-um removal could be as the basis to evaluate the effect of acid activation. When magnesiumremoval was about59%, the maximum of specific surface area and the maximum of adsorp-tion capacity were obtained. The performance of sepiolite was further improved by ther-mal activation after acid activation. The optimized conditions of sepiolite activation were ni-tric acid concentration2.0mol/L, acid activation temperature40℃, acid activation time120min, solid-liquid ratio of1:20, calcination temperature300℃, and calcination time3h. Thespecific surface area of activated sepiolite was3.4times of natural sepiolite, the adsorptioncapacity of activated sepiolite was2.66times of natural sepiolite.
     Fe/Mn/sepiolite heterogeneous catalyst was prepared by coprecipitation method. Severalmethods such as XRD, SEM, XRF and BET were applied to investigate the characteristics ofsepiolite. It was also observed that the contents of iron and manganese increased significantly,the crystallinity of sepiolite degree decreased, iron and manganese present in the surface andpore of sepiolite in the form of monodisperse, specific surface area and pore volume were stilllarge.
     The catalytic performances Fe/Mn/sepiolite catalyst were studied by p-chlorophenoldegration. The results showed that the catalytic activity of catalyst was very high in the pHrange of3.0-9.0, the catalytic activity did not change obviously when catalyst was reusedcontinuously5times, and the elution amount of Fe was below0.4mg/L, the elution amountof Mn was below0.2mg/L. Mechanism studies of heterogeneous Fenton reaction showed thathydroxyl free radicals were generated during the circulation was formed between Fe(III) and Fe(II) under the action of UV, so it was is a real heterogeneous reaction.
     Heterogeneous photo-Fenton process was applied to treat pulping wastewater after aero-bic treatment. The results showed that heterogeneous Fenton process was a effective way foradvanced treatment of pulping wastewater. Under experimental conditions of initial pH3.0,H2O2dosage2.5mL/L, catalyst dosage1500mg/L, temperature30℃, and reaction time150min, COD was degraded from about380mg/L to about65mg/L. When initial pH was5.0,reaction time wad180min, other things were equal, COD was degraded to below70mg/L,even when the pH was7.0, the catalytic activity was still high. The catalytic activity did notchange obviously when catalyst was reused continuously4times, and the elution amounts ofFe and Mn were very low.
     A method for COD rapid determination by the dual-wavelength spectroscopic methodwas established to eliminate the influence of H2O2for COD determination. The correlationequation between the absorbance and COD was COD173.57(A272A546)8.5577.Compared with the standard testing method, the precision and accuracy of the equation wasreliable. The method can be used for the rapid determination of COD in wastewater.
     A coupled coagulation-heterogeneous Fenton process was applied for the treatment ofpapermaking-reconstituted tobacco slice wastewater. The process conditions were optimizedby response surface method. Under the optimized conditions, COD was degraded to about63.5mg/L, decoloration was nearly100%. It could be concluded that this technology wassuccessful for the treatment of papermaking-reconstituted tobacco slice wastewater.
     GC-MS analysises of pulping wastewater and papermaking-reconstituted tobacco slicewastewater showed that organic compounds was greatly reduced, aromatics and organic chlo-ride were completely removed, most organic compounds were completely mineralized or de-graded into small molecular organic acids.
引文
[1]陈克复.我国制浆造纸科学发展中需要解决的问题[J].中华纸业,2009,30(23):3
    [2]陈克复.纸浆清洁漂白技术[J].中华纸业,2009,30(14):6-10
    [3]万金泉.当代制浆造纸废水深度处理技术与实践[J].中华纸业,2011,32(3):18-23
    [4] Thompson G., Swain J., Kay M., et al. The treatment of pulp and paper mill effluent: areview [J]. Bioresour Technol.,2001,77(3):275-286
    [5]武书彬.造纸工业水污染控制与治理技术[M].北京:化学工业出版社,2001:1-50
    [6] Balcioglu A.I., Ferhan C.. Treatability of kraft pulp bleaching wastewater by biochemicaland photocatalytic oxidation [J]. Water Sci Technol,1999,40(1):281-288
    [7] Rintala J.A., Puhakka J.A.. Anaerobic treatment in pulp and paper mill waste management:a review [J]. Bioresour Technol.,1994,47:1-18
    [8] Vlyssides A.G., Economides D.G.. Characterization of wastes from a newspaper washdeinking process [J]. Fresenius Environ Bull,1997,6:734-739
    [9] Bajpai P., Bajpai P.K.. Biological colour removal of pulp and paper mill wastewaters [J]. JBiotechnol,1994,33:211-220
    [10] Oeller H.J., Daniel I., Weinberger G.. Reduction in residual COD in biologically treatedpaper mill effluents by means of combined Ozone and Ozone/UV reactor stages [J].Water Sci Technol,1997,35(2–3):269-276
    [11] Owens J.W., Swanson S.M., Birkholz D.A.. Environmental monitoring of bleached kraftpulp mill chlorophenolic compounds in a Northern Canadian River system [J].Chemosphere,1994,29(1):89-109
    [12] Wagner M., Nicell J.A.. Treatment of a foul condensate from kraft pulping withhorseradish peroxidase and hydrogen peroxide [J]. Water Sci Technol,2001,35(2):485-495
    [13] Mohamed M., Matayun M., Lim T.S.. Chlorinated organics in tropical hardwood kraftpulp and paper mill effluents and their elimination in an activated sludge treatmentsystem [J]. Pertanika,1989,2(3):387-394
    [14] Springer A.M.. Industrial environmental control: pulp and paper industry [M]. Atlanta,Georgia: TAPPI Press,2000.
    [15] Tardif O., Hall E.R.. Alternatives for treating recirculated newsprint whitewater at hightemperatures [J]. Water Sci Technol,1997,35(2–3):57-65
    [16] Singh R.S., Marwaha S.S., Khanna P.K.. Characteristics of pulp and paper mill effluents[J]. J Ind Pollut Control,1996,12(2):163-172
    [17] Srinivasan D, Unwin J.P.. Pulp and paper effluent management [J]. Water Environ Res,1995,67(4):531
    [18] Srivastava S.K., Bembi R., Singh A.K., S et al. Physicochemical studies on thecharacteristics and disposal problems of small and large pulp and paper mill effluents [J].Indian J Environ Prot,1990,10(6):438-442
    [19] Jahren S.J., Rintala J., Odegaard H.. Evaluation of internal thermophilic biotreatment as astrategy in TMP mill closure [J]. Tappi J,1999,82(8):141-149
    [20] Jahren S.J., Rintala J.A, Odegaard H.. Aerobic moving bed biofilm reactor treatingthermomechanical pulping whitewater under thermophilic conditions [J]. Water Research,2002,36:1067-1075
    [21] Jemaa N., Thompson R., Paleologou M. et al. Non-process elements in the kraft recoverycycle, Part II: control and removal options [J]. Pulp and Paper Canada,2000,101(2):41-46
    [22] Johnsen K., Tana J., Lehtinen K.J., et al. Experimental field exposure of brown trout toriver receiving effluent from an integrated newsprint mill [J]. Ecotoxicology andEnvironmental Safety,1998,40:184-193
    [23] Cecen F., Urban W., Haberl R.. Biological and advanced treatment of sulfate pulpbleaching effluents [J]. Water Sci. Technol.,1992,26:435-444
    [24] Saunamaki R.. Activated sludge plants in Finland [J]. Water Sci. Technol.,1997,35:235-242
    [25] Horan N.J., Chen W.. The treatment of high strength pulp and paper mill e.uent forwastewater re-use1) The use of modelling to optimise e.uent quality from the existingwastewater treatment plant [J]. Environ. Technol.,1998,19:153-162
    [26] Sanneskog O., Reeves R.. Hallsta paper mill selects a new philosophy for upgrading theirwaste water treatment plant [C]. Proceedings of the1991Environmental Conference,Can. Pulp Paper Assoc., Canada,1991
    [27]贺延龄.废水的厌氧生物处理[M].北京:中国轻工业出版社,1998
    [28] Kato M.T., Field J.A., Kerebezerm R., et al. Treatlnent of low strength solublewastewater in UASB reactors [J]. Journal of Fermentation and Bioengineering,1994,77(6):679-685
    [29] Jahren S.J., Rintala J.A., Odegaard H. Evaluation of internal thermophilic biotreatmentas a strategy in TMP mill closure [J]. Tappi J.,1999,82(8):141-149
    [30]贺延龄.废水厌氧处理技术的新进展[J].纸和造纸,2001,(6):45-48
    [31] Lettinga G., Field J.A., Alvarez R.S., et al. Future perspectives for the anaerobictreatment of forest industry wastewaters [J]. Water Sci. Technol.,1991,24:91-102
    [32] Hamm U., Bobek B., Goyysching, L.. Anaerobic treatment of waste-water fromwastepaper converting paper-mills [J]. Papier,1991,45:55-63
    [33]苏振华.厌氧处理在制浆造纸废水处理中的应用[J].国际造纸,2008,27(3):35-38
    [34] Schnell A.,Hall E.R.,Skog S.. Anaerobic and aerobic treatability of high-yield sulphatespent liquor [J]. Water Pollut Res J Can,1992,27(3):601-620
    [35] Perez M., Romero L.I., Sales D.. Comparative performance of high rate anaerobicthermophilic technologies treating industrial wastewater [J]. Water Res,1998,2(3):559-564
    [36] Chen W., Horan N.J.. The treatment of a high strength pulp and paper mill effluent forwastewater re-use (II) biological sulphate removal from effluent with a lowCOD/sulphate ratio [J]. Environ Technol,1998,19:163-171
    [37] Knudsen L., Pedersen J.A., Munck J.. Advanced treatment of paper mill effluents by atwo-stage activated sludge process [J]. Water Sci Technol,1994,30(3):173-181
    [38] Shere S.M., Daly P.G. High rate biological treatment of TMP effluent [J].Pulp Pap Can,1982,83:61-66
    [39] Chandra R.. Microbial decolourisation of pulp mill effluent in presence of nitrogen andphosphorous by activated sludge process [J]. J Environ Biol,2001,22(1):23-27
    [40] Franta J.R., Wilderer P.A.. Biological treatment of papermill wastewater by sequencingbatch reactor technology to reduce residual organics [J]. Water Sci Technol,1997,35(1):129-136
    [41] Berube P.R., Kahmark K.A.. Pulp and paper mill effluents [J]. Water Environ Res.,2001,73(5):1-36
    [42] Ginkel G.C.V., Virtapohja J., Steyaert J.A.G., et al. Treatment of EDTA-containing pulpand paper will wastewaters in activated sludge plants [J]. Tappi J,1999,82(2):138-142
    [43] Larisch B.C., Duff J.B.. Effect of DTPA and EDTA on activated sludge reactors treatingbleached kraft mill effluent [J]. Tappi J,2000,83(6):54
    [44] Andreasan K., Agertved J., Petersen J.O., et al. Improvement of sludge settleability inactivated sludge plants treating effluent from pulp and paper industries [J]. Water SciTechnol,1999,40(11–12):215-221
    [45] Pokhrel D., Viraraghavan T.. Treatment of pulp and paper mill wastewater—a review [J].Science of the Total Environment,2004,333:37-58
    [46]徐孝丰.混凝法深度处理制浆造纸废水[J].中华纸业,2011,32(3):54-56
    [47]刘明有,吴敦葵.高效脱色剂与絮凝剂复配深度处理造纸废水[J].纸和造纸,2010,29(4):48-51
    [48]曹春昱.我国主要纤维原料制浆废水污染负荷研究分析[J].中国造纸,2009,28(2):73-77
    [49] Catalkaya E.C., Kargi F.. Color, TOC and AOX removals from pulp mill effluent byadvanced oxidation processes: A comparative study [J]. Journal of Hazardous Materials,2007, B139:244-253
    [50] Amat A.M., Arques A., Miranda M.A., et al. Use of ozone and/or UV in the treatment ofeffluents from board paper industry [J]. Chemosphere,2005,60:1111-1117
    [51] Dogruel S., Germirli-Babuna F., Kabda I., et al. Effect of stream segregation onozonation for the removal of significant COD fractions from textile wastewater [J]. JChem Technol Biotechnol,2002,78:6-14
    [52] Goel M., Chovelon J.M., Ferronato C., et al. The remediation of wastewater containing4-chlorophenol using integrated photocatalytic and biological treatment [J]. J PhotochemPhotobiol B,2010,98:1-6
    [53] Kajitvichyanukul P., Suntronvipart N.. Evaluation of biodegradability and oxidationdegree of hospital wastewater using photo-Fenton process as the pre-treatment method[J]. J Hazard Mater,2006,138:384-391
    [54] Antonopoulou M., Evgenidou E., Lambropoulou D., et al. A review on advancedoxidation processes for the removal of taste and odor compounds from aqueous media[J]. Water Research,2014,99:1-18
    [55] Chen C., Wu P., Chung Y.. Coupled biological and photo-Fenton pretreatment system forthe removal of di-(2-ethylhexyl) phthalate (DEHP) from water [J]. BioresourceTechnology,2009,100:4531-4534
    [56] Virkutyte J., Rokhina E., Jegatheesan V.. Optimisation of Electro-Fenton denitrificationof a model wastewater using a response surface methodology [J]. BioresourceTechnology,2010,101:1440-1446
    [57] Zorpas A.A., Costa C.N.. Combination of Fenton oxidation and composting for thetreatment of the olive solid residue and the olive mile wastewater from the olive oilindustry in Cyprus [J]. Bioresource Technology,2010,101:7984-7987
    [58] Oh J.K., Lee Y.W., Park K.W.. Improved photo-catalytic activity of single-crystallineTiO2nanowires surrounded by Pt cube nanoparticles [J]. Journal of Industrial andEngineering Chemistry,2013,19(4):1391-1394
    [59] Park T.J., Lim J.S., Lee Y.W.. Catalytic supercritical water oxidation of wastewater fromterephthalic acid manufacturing process [J]. The Journal of supercritical fluids,2003,26(3):201-213
    [60] Baoquan J.C.H.. Electric catalytic oxidation treatment of phenol in wastewater [J].Techniques and Equipment for Environmental Pollution Control,2006,12:25
    [61] Zhu W., Bin Y., Li Z., et al. Application of catalytic wet air oxidation for the treatment ofH-acid manufacturing process wastewater [J]. Water Research,2002,36(8):1947-1954
    [62] Ning P., Bart H.J., Jiang Y., et al. Treatment of organic pollutants in coke plantwastewater by the method of ultrasonic irradiation, catalytic oxidation and activatedsludge [J]. Separation and Purification Technology,2005,41(2):133-139
    [63] Pena M., Coca M., Gonzalez G., et al. Chemical oxidation of wastewater from molassesfermentation with ozone [J]. Chemosphere,2003,51(9):893-900
    [64] Yeber M.C., Rodrlguez J., Freer J., et al. Advanced oxidation of a pulp mill bleachingwastewater [J]. Chemosphere,1999,39(10):679-1688
    [65] Pérez M., Torrades F., Peral J., et al. Multivariate approach to photocatalytic degradationof a cellulose bleaching effluent [J]. Appl Catal B Environ,2001,33:89-96
    [66] Pérez M., Torrades F., Peral J., et al. Treatment of bleaching Kraft mill effluents andpolychlorinated phenolic compounds with ozonation [J]. Chem Technol Biotechnol.2002,77:891-897
    [67] Pérez M., Torrades F., Peral J., et al. Removal of organic contaminants in paper pulptreatment effluents under Fenton and photo-Fenton conditions [J]. Appl Catal B Environ,2002,36:63-74
    [68] Pérez M., Torrades F., Peral J., et al. Removal of organic contaminants in paper pulpeffluents by AOPs: an economic study [J]. Chem Technol Biotechnol,2002,77:525-532
    [69] Lin S.H., Lo C.C.. Fenton process for treatment of desizing wastewater [J]. Waterresearch,1997,31(8):2050-2056
    [70] Chen C., Xie B., Ren Y., et al. The mechanisms of affecting factors in treatingwastewater by Fenton reagent [J]. Chinese Journal of Environmental Science,2000,21(3):93-96
    [71] Lin S.H., Leu H.G.. Operating characteristics and kinetic studies of surfactant wastewatertreatment by Fenton oxidation [J]. Water Research,1999,33(7):1735-1741
    [72] Lee H., Shoda M.. Removal of COD and color from livestock wastewater by the Fentonmethod [J]. Journal of Hazardous Materials,2008,153(3):1314-1319
    [73] Stasinakis A.S.. Use of selected advanced oxidation processes (AOPs) for wastewatertreatment—a mini review [J]. Global NEST Journal,2008,10(3):376-385
    [74] Chamarro E., Marco A., Esplugas S.. Use of Fenton reagent to improve organic chemicalbiodegradability [J]. Water research.2001,35(4):1047-1051
    [75] Barros A.L., Pizzolato T.M., Carissimi E., et al. Decolorizing dye wastewater from theagate industry with Fenton oxidation process [J]. Minerals Engineering,2006,19(1):87-90
    [76] Kang S.F., Liao C.H., Po S.T.. Decolorization of textile wastewater by photo-Fentonoxidation technology [J]. Chemosphere,2000,41(8):1287-1294
    [77] Sirtori C., Zapata A., Oller I., et al. Decontamination industrial pharmaceuticalwastewater by combining solar photo-Fenton and biological treatment [J]. Waterresearch,2009,43(3):661-668
    [78] Will I.B.S., Moraes J.E.F., Teixeira A., et al. Photo-Fenton degradation of wastewatercontaining organic compounds in solar reactors [J]. Separation and PurificationTechnology,2004,34(1):51-57
    [79] Kavitha V., Palanivelu K.. The role of ferrous ion in Fenton and photo-Fenton processesfor the degradation of phenol [J]. Chemosphere,2004,55(9):1235-1243
    [80] Kurt U., Apaydin O., Gonullu M.T.. Reduction of COD in wastewater from an organizedtannery industrial region by Electro-Fenton process [J]. Journal of Hazardous Materials,2007,143(1):33-40
    [81] Yang Y., Wang P., Shi S., et al. Microwave enhanced Fenton-like process for thetreatment of high concentration pharmaceutical wastewater [J]. Journal of Hazardousmaterials,2009,168(1):238-245
    [82] Wang C.T., Hu J.L., Chou W.L., et al. Removal of color from real dyeing wastewater byElectro-Fenton technology using a three-dimensional graphite cathode [J]. Journal ofhazardous materials,2008,152(2):601-606
    [83] Zhang H., Zhang D., Zhou J.. Removal of COD from landfill leachate by electro-Fentonmethod [J]. Journal of Hazardous Materials,2006,135(1):106-111
    [84] Rosales E., Pazos M., Longo M.A., et al. Electro-Fenton decoloration of dyes in acontinuous reactor: a promising technology in colored wastewater treatment [J].Chemical Engineering Journal,2009,155(1):62-67
    [85] Brillas E., Sires I., Oturan M.A.. Electro-Fenton process and related electrochemicaltechnologies based on Fenton’s reaction chemistry [J]. Chemical Reviews,2009,109(12):6570-6631
    [86] Chang P., Huang Y., Hsueh C., et al. Treatment of non-biodegradable wastewater byelectro-Fenton method [J]. Water Science&Technology,2004,49(4):213-218
    [87] Wang C.T., Chou W.L, Chung M.H, et al. COD removal from real dyeing wastewater byelectro-Fenton technology using an activated carbon fiber cathode [J]. Desalination,2010,253(1):129-134
    [88] Arslan-Alaton I., Gurses F.. Photo-Fenton-like and photo-fenton-like oxidation ofProcaine Penicillin G formulation effluentc [J]. Journal of photochemistry andphotobiology A: Chemistry,2004,165(1):165-175
    [89] Arslan-Alaton I., Tureli G., Olmez-Hanci T.. Treatment of azo dye productionwastewaters using Photo-Fenton-like advanced oxidation processes: Optimization byresponse surface methodology [J]. Journal of photochemistry and Photobiology A:Chemistry,2009,202(2):142-153
    [90] Fan H.J., Huang S.T., Chung W.H., et al. Degradation pathways of crystal violet byFenton and Fenton-like systems: Condition optimization and intermediate separation andidentification [J]. Journal of Hazardous Materials,2009,171(1):1032-1044
    [91] Ramirez J.H., Maldonado-Hódar F.J., Pérez-Cadenas A.F., et al. Azo-dye Orange IIdegradation by heterogeneous Fenton-like reaction using carbon-Fe catalysts [J]. AppliedCatalysis B: Environmental,2007,75(3):312-323
    [92] Duarte F., Maldonado-Hódar F.J., Madeira L.M.. Influence of the characteristics ofcarbon materials on their behaviour as heterogeneous Fenton catalysts for the eliminationof the azo dye Orange II from aqueous solutions [J]. Applied Catalysis B: Environmental,2011,103(1):109-115
    [93] Luo W., Zhu L., Wang N., et al. Efficient removal of organic pollutants with magneticnanoscaled BiFeO3as a reusable heterogeneous Fenton-like catalyst [J]. Environmentalscience&technology,2010,44(5):1786-1791
    [94] Navalon S., Alvaro M., Garcia H.. Heterogeneous Fenton catalysts based on clays, silicasand zeolites [J]. Applied Catalysis B: Environmental,2010,99(1):1-26
    [95] Tekba M., Yatmaz H.C., Bekta N.. Heterogeneous photo-Fenton oxidation of reactiveazo dye solutions using iron exchanged zeolite as a catalyst [J]. Microporous andMesoporous Materials,2008,115(3):594-602
    [96] Lim H., Lee J., Jin S., et al. Highly active heterogeneous Fenton catalyst using iron oxidenanoparticles immobilized in alumina coated mesoporous silica [J]. Chemicalcommunications,2006(4):463-465
    [97] Ku i H., Koprivanac N., Selanec I.. Fe-exchanged zeolite as the effective heterogeneousFenton-type catalyst for the organic pollutant minimization: UV irradiation assistance [J].Chemosphere,2006,65(1):65-73
    [98] Zhang H., Fu H., Zhang D.. Degradation of CI Acid Orange7by ultrasound enhancedheterogeneous Fenton-like process [J]. Journal of hazardous materials,2009,172(2):654-660
    [99] Papi S., Vujevi D., Koprivanac N., et al. Decolourization and mineralization ofcommercial reactive dyes by using homogeneous and heterogeneous Fenton andUV/Fenton processes [J]. Journal of hazardous materials,2009,164(2):1137-1145
    [100] Karthikeyan S., Titus A., Gnanamani A., et al. Treatment of textile wastewater byhomogeneous and heterogeneous Fenton oxidation processes [J]. Desalination,2011,281:438-445
    [101] Dükkanc M., Gündüz G., Y lmaz S., et al. Heterogeneous Fenton-like degradation ofRhodamine6G in water using CuFeZSM-5zeolite catalyst prepared by hydrothermalsynthesis [J]. Journal of hazardous materials,2010,181(1):343-350
    [102] Fernandez J., Bandara J., Kiwi J., et al. Efficient photo-assisted Fenton catalysismediated by Fe ions on Nafion membranes active in the abatement of non-biodegradableazo-dye [J]. Chem. Commun.,1998(14):1493-1494
    [103] Sabhi S., Kiwi J.. Degradation of2,4-dichlorophenol by immobilized iron catalysts [J].Water Research,2001,35(8):1994-2002
    [104] Gumy D., Fernandez-Iba ez P., Malato S., et al. Supported Fe/C and Fe/Nafion/Ccatalysts for the photo-Fenton degradation of Orange II under solar irradiation [J].Catalysis Today,2005,101(3):375-382
    [105] Parra S., Guasaquillo I., Enea O., et al. Abatement of an azo dye on structuredC-Nafion/Fe-ion surfaces by photo-Fenton reactions leading to carboxylate intermediateswith a remarkable biodegradability increase of the treated solution [J]. The Journal ofPhysical Chemistry B,2003,107(29):7026-7035
    [106] Dhananjeyan M.R., Kiwi J., Albers P., et al. Photo-Assisted Immobilized FentonDegradation up to pH8of Azo Dye Orange II Mediated by Fe3+/Nafion/Glass Fibers [J].Helvetica Chimica Acta,2001,84(11):3433-3445
    [107] Lv X, Xu Y, Lv K, et al. Photo-assisted degradation of anionic and cationic dyes overiron (III)-loaded resin in the presence of hydrogen peroxide [J]. Journal ofPhotochemistry and Photobiology A: Chemistry,2005,173(2):121-127
    [108] Cheng M., Ma W., Li J., et al. Visible-light-assisted degradation of dye pollutants overFe (III)-loaded resin in the presence of H2O2at neutral pH values [J]. Environmentalscience&technology,2004,38(5):1569-1575
    [109]张瑛洁,马军,赵吉,等.树脂负载高价铁催化H2O2降解橙黄Ⅳ[J].哈尔滨工业大学学报,2010,4:017
    [110] Fajerwerg K., Debellefontaine H.. Wet oxidation of phenol by hydrogen peroxide usingheterogeneous catalysis Fe-ZSM-5: a promising catalyst [J]. Applied Catalysis B:Environmental,1996,10(4):229-235
    [111]何莼,徐科峰,奚红霞,等.均相和非均相Fenton型催化剂催化氧化含酚废水[J].华南理工大学学报(自然科学版),2003,31(5):51-54
    [112] Tekba M., Yatmaz H.C, Bekta N.. Heterogeneous photo-Fenton oxidation of reactiveazo dye solutions using iron exchanged zeolite as a catalyst [J]. Microporous andMesoporous Materials,2008,115(3):594-602
    [113] Kasiri M.B., Aleboyeh H., Aleboyeh A.. Degradation of Acid Blue74using Fe-ZSM5zeolite as a heterogeneous photo-Fenton catalyst [J]. Applied Catalysis B: Environmental,2008,84(1):9-15
    [114] Martínez F., Calleja G., Melero J.A., et al. Heterogeneous photo-Fenton degradation ofphenolic aqueous solutions over iron-containing SBA-15catalyst [J]. Applied CatalysisB: Environmental,2005,60(3):181-190
    [115] Chen Q., Wu P., Li Y., et al. Heterogeneous photo-Fenton photodegradation of reactivebrilliant orange X-GN over iron-pillared montmorillonite under visible irradiation [J].Journal of hazardous materials,2009,168(2):901-908
    [116] Daud N.K., Ahmad M.A., Hameed B.H.. Decolorization of Acid Red1dye solution byFenton-like process using Fe–Montmorillonite K10catalyst [J]. Chemical EngineeringJournal,2010,165(1):111-116
    [117] Galeano L.A., Vicente M.á., Gil A.. Treatment of municipal leachate of landfill byFenton-like heterogeneous catalytic wet peroxide oxidation using an Al/Fe-pillaredmontmorillonite as active catalyst [J]. Chemical Engineering Journal,2011,178:146-153
    [118] Feng J., Hu X., Yue P.L.. Novel bentonite clay-based Fe-nanocomposite as aheterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II[J]. Environmental science&technology,2004,38(1):269-275
    [119] Chen J., Zhu L.. Heterogeneous UV-Fenton catalytic degradation of dyestuff in waterwith hydroxyl-Fe pillared bentonite [J]. Catalysis Today,2007,126(3):463-470
    [120] Ramirez J.H., Costa C.A., Madeira L.M., et al. Fenton-like oxidation of Orange IIsolutions using heterogeneous catalysts based on saponite clay [J]. Applied Catalysis B:Environmental,2007,71(1):44-56
    [121] Tabet D., Saidi M., Houari M., et al. Fe-pillared clay as a Fenton-type heterogeneouscatalyst for cinnamic acid degradation [J]. Journal of environmental management,2006,80(4):342-346
    [122] Hartmann M., Kullmann S., Keller H.. Wastewater treatment with heterogeneousFenton-type catalysts based on porous materials [J]. Journal of Materials Chemistry,2010,20(41):9002-9017.
    [123] Hassan H., Hameed B.H. Fe-clay as effective heterogeneous Fenton catalyst for thedecolorization of Reactive Blue4[J]. Chemical Engineering Journal,2011,171(3):912-918
    [124] Post J.E., Bish D.L., Heaney P.J.. Synchrotron powder X-ray diffraction study of thestructure and dehydration behavior of sepiolite [J]. American Mineralogist,2007,92(1):91-97
    [125] Suárez M., García-Romero E.. Variability of the surface properties of sepiolite [J].Applied clay science,2012,67:72-82
    [126] Do an M., zdemir Y., Alkan M.. Adsorption kinetics and mechanism of cationicmethyl violet and methylene blue dyes onto sepiolite [J]. Dyes and Pigments,2007,75(3):701-713
    [127] Santos S.C.R., Boaventura R.A.R.. Adsorption modelling of textile dyes by sepiolite [J].Applied Clay Science,2008,42(1):137-145
    [128] U urlu M.. Adsorption of a textile dye onto activated sepiolite [J]. Microporous andmesoporous Materials,2009,119(1):276-283
    [129] Anderson J.A., Daza L., Damyanova S., et al. Hydrogenation of styrene overnickel/sepiolite catalysts [J]. Applied Catalysis A: General,1994,113(1):75-88
    [130] Luo L., Songjun L., Zhu Y.. The effects of yttrium on the hydrogenation performanceand surface properties of a ruthenium-supported catalyst [J]. Journal of the SerbianChemical Society,2005,70(12):1419-1425
    [131] Odenbrand C.U., Bahamonde A., Avila P., et al. Kinetic study of the selective reductionof nitric oxide over vanadia-tungsta-titania/sepiolite catalyst [J]. Applied Catalysis B:Environmental,1994,5(1):117-131
    [132] Corrna A., Nieto J.M., Parades N., et al. Oxidative Dehydrogenation of Propane andn-Butane on V-Mg Based Catalysts [J]. Studies in Surface Science and Catalysis,1994,82:113-123
    [133] Dandy A.J., Nadiye-Tabbiruka M.S.. Surface properties of sepiolite from Amboseli,Tanzania, and its catalytic activity for ethanol decomposition [J]. Clays and ClayMinerals,1982,30(5):347-352
    [134] Bahamonde A., Beretta A., Avila P., et al. An Experimental and TheoreticalInvestigation of the Behavior of a Monolithic Ti-VW-Sepiolite Catalyst in the Reductionof NOxwith NH3[J]. Industrial&engineering chemistry research,1996,35(8):2516-2521
    [135] Inoue S., Takatsuka T., Wada Y., et al. A new concept for catalysts of asphalteneconversion [J]. Catalysis today,1998,43(3):225-232
    [136] Damyanova S., Daza L., Fierro J.L.G. Surface and Catalytic Properties ofLanthanum-PromotedNi/Sepiolite Catalysts for Styrene Hydrogenation [J]. Journal ofcatalysis,1996,159(1):150-161
    [137] Tao R., Miao S., Liu Z., et al. Pd nanoparticles immobilized on sepiolite by ionic liquids:efficient catalysts for hydrogenation of alkenes and Heck reactions [J]. Green Chemistry,2009,11(1):96-101
    [138] zcan A., zcan A.S.. Adsorption of Acid Red57from aqueous solutions ontosurfactant-modified sepiolite [J]. Journal of hazardous materials,2005,125(1):252-259
    [139] Eren E., Cubuk O., Ciftci H., et al. Adsorption of basic dye from aqueous solutions bymodified sepiolite: Equilibrium, kinetics and thermodynamics study [J]. Desalination,2010,252(1):88-96
    [140] Bingol D., Tekin N., Alkan M.. Brilliant Yellow dye adsorption onto sepiolite using afull factorial design [J]. Applied Clay Science,2010,50(3):315-321
    [141] Tabak A., Eren E., Afsin B., et al. Determination of adsorptive properties of a TurkishSepiolite for removal of Reactive Blue15anionic dye from aqueous solutions [J].Journal of hazardous materials,2009,161(2):1087-1094
    [142] Miura A., Nakazawa K., Takei T., et al. Acid-, base-, and heat-induced degradationbehavior of Chinese sepiolite [J]. Ceramics International,2012,38:4677-4684
    [143] Rodriguez M., Gonzalez J., Mu oz M.. Influence of the free silica generated during acidactivation of a sepiolite on the adsorbent and textural properties of the resulting solids [J].J. Mater. Chem.,1995,5:127-132
    [144] Aznar A.J., Gutierrez E., Diaz, P., et al. Silica from sepiolite: preparation, texturalproperties, and use as support to catalysts [J]. Microporous Materials,1996,(6):105-114
    [145] Valentin J.L., Lopez-Manchado M.A., Posadas, P., et al. Characterization of thereactivity of a silica derived from acid activation of sepiolite with silane by29Si and13Csolid-state NMR [J]. Journal of Colloid and Interface Science,2006,298:794-804
    [146] González-Pradas E., Socías-Viciana M., Ure a-Amate M.D, et al. Adsorption ofchloridazon from aqueous solution on heat and acid treated sepiolites [J]. Water research,2005,39(9):1849-1857
    [147] Balci S.. Effect of heating and acid pre-treatment on pore size distribution of sepiolite[J]. Clay Minerals,1999,34(4):647-647
    [148] Kilislioglu A., Aras G.. Adsorption of uranium from aqueous solution on heat and acidtreated sepiolites [J]. Applied Radiation and Isotopes,2010,68(10):2016-2019
    [149] Alkan M., elik apa S., Demirba., et al. Removal of reactive blue221and acid blue62anionic dyes from aqueous solutions by sepiolite [J]. Dyes and Pigments,2005,65(3):251-259
    [150] Sabah E., Celik M.S. Adsorption mechanism of quaternary amines by sepiolite [J].Separation science and technology,2002,37(13):3081-3097
    [151] Rodriguez M.A.V, Gonzalez J.D.L, Mu oz M.A.B. Influence of the free silica generatedduring acid activation of a sepiolite on the adsorbent and textural properties of theresulting solids [J]. Journal of Materials Chemistry,1995,5(1):127-132
    [152] Esteban-Cubillo A., Pina-Zapardiel R., Moya J.S., et al. The role of magnesium on thestability of crystalline sepiolite structure [J]. Journal of the European Ceramic Society,2008,28(9):1763-1768
    [153] Wang F., Liang J., Tang Q., et al. Microstructure of sepiolite and its adsorbing propertiesto dodecanol [J]. Trans. Nonferrous Met. Soc. China,2006,16:406-410
    [154] Ruiz-Hitzky E. Molecular access to intracrystalline tunnels of sepiolite [J]. J. Mater.Chem.,2001,11:86-91
    [155] Balci S.. Effect of heating and acid pre-treatment on pore size distribution of sepiolite[J]. Clay Minerals,1999,34:647-655
    [156]徐应明,梁学峰,孙国红,等.酸和热处理对海泡石结构及吸附Pb2+、Cd2+性能的影响[J].环境科学,2010,31(6):1560-1567
    [157] Esteban-Cubillo A, Pina-Zapardiel R, Moya J.S, et al. The role of magnesium on thestability of crystalline sepiolite structure [J]. Journal of the European Ceramic Society,2008,28(9):1763-1768.
    [158] Rytwo G., Nir S., Serban C., et al. Adsorption of monovalent organic cations onsepiolite: experimental results and model calculations [J]. Clays Clay Miner.,1998,46:340-348
    [159] Shariatmadari H., Mermut A.R., Benke M.B.. Sorption of selected cationic and neutralorganic molecules on palygorskite and sepiolite [J]. Clays Clay Miner.,1999,47:44-53
    [160] MadejováJ.. FTIR techniques in clay mineral studies [J]. Vib. Spectrosc.,2003,31:1-10
    [161] Haro M.C.J., Ruiz-Conde A., Perez-Rodriguez J.L.. Stability of n-butylammoniumvermiculite in powder and flake forms [J]. Clays Clay Miner.,1998,46:687-693
    [162] Das D.P., Das J., Parida K.. Physicochemical characterization and adsorption behaviorof calcined Zn/Al hydrotalcite-like compound (HTlc) towards removal of fluoride fromaqueous solution [J]. J. Colloid Interf. Sci.,2003,261:213–220
    [163] Temuujin J., Jadambaa T., Burmaa G., et al. Characterisation of acid activatedmontmorillonite clay from Tuulant (Mongolia)[J]. Ceramics Int.,2004,30:251–255
    [164] zer G k, Safa zcan, Adnan zcan. Adsorption kinetics of naphthalene ontoorgano-sepiolite from aqueous solutions [J]. Desalination,2008,220:96–107
    [165] Serna C., Scoyoc G.E.. Infrared study of sepiolite and palygorskite surfaces [C]. Proc.Int. Clay Conf., Oxford,1978,197-206
    [166] Serratosa J.M.. Surface properties of fibrous clay minerals palygorskite and sepiolite[C]. Proc. Int. Clay Conf., Oxford,1978,99-109
    [167] Sugiura M., Hayashi H., Suzuki T.. Adsorption of ammonia by sepiolite in ambient air[J]. Clay Sci.,1991,8:87-100
    [168] Balc S.. Thermal decomposition of sepiolite and variations in pore structure with andwithout acid pre-treatment [J]. J. Chem. Tech. Biotechnol.,1996,66:72-78
    [169] Kiyohiro T., Otsuka R.. Dehydration mechanism of bound water in sepiolite [J].Thermochim. Acta,1989,147:127-138
    [170] Zhang G., Gao Y., Zhang Y., et al. Fe2O3-pillared rectorite as an efficient and stableFenton-like heterogeneous catalyst for photodegradation of organic contaminants [J].Environmental science&technology,2010,44(16):6384-6389
    [171] Costa R.C., Lelis M.F., Oliveira L.C., et al. Novel active heterogeneous Fenton systembased on Fe3-xMxO4(Fe, Co, Mn, Ni): the role of M2+species on the reactivity towardsH2O2reactions[J]. Journal of hazardous materials,2006,129(1-3):171-178
    [172] Carriazo J.G., Guelou E., Barrault J., et al. Catalytic wet peroxide oxidation of phenolover Al–Cu or Al–Fe modified clays [J]. Applied Clay Science,2003,22(6):303-308
    [173] Herney-Ramirez J., Vicente M.A., Madeira L.M.. Heterogeneous photo-Fentonoxidation with pillared clay-based catalysts for wastewater treatment: A review [J].Applied Catalysis B: Environmental,2010,98(1):10-26
    [174] Cater S.R., Stefan M.I., Bolton J.R, et al. UV/H2O2treatment of methyl tert-butyl etherin contaminated waters [J]. Environmental science&technology,2000,34(4):659-662
    [175] Kurbus T, Le Marechal A.M., Vonc ina D.B.. Comparison of H2O2/UV, H2O2/O3andH2O2/Fe2+processes for the decolorisation of vinylsulphone reactive dyes [J]. Dyes andPigments,2003,58(3):245-252
    [176] Vaillant S., Pouet M.F., Thomas O.. Basic handling of UV spectra for urban waterquality monitoring [J]. Urban Water,2002,4(3):273-281
    [177] Lyngaard-Jensen A.. Trends in monitoring of waste water systems [J]. Talanta,1999,50(4):707-716
    [178] Chevalier L.R., Irwin C.N., Craddock J.N.. Evaluation of InSpectra UV analyzer formeasuring conventional water and wastewater parameters [J]. Advances in EnvironmentResearch,2002,6(3):369-375
    [179] Thomas O., Khorassani H.. TOC versus UV spectrophotometry for wastewater qualitymonitoring [J]. Talanta,1999,50(4):743-749
    [180] Bosch O.C., Sanchez R.F.. Recent developments in derivative ultraviolet/visibleabsorption spectrophotometry [J]. Analytica Chimica Acta,2004,518(1):1-24
    [181]应骏,陈国华,黄磊,等.中国近海海水紫外吸收及直接用于测定海水COD [J].中国海洋大学学报,2005,35(2):313-316
    [182]戴朝寿.数理统计[M].北京:高等教育出版社,2009:183
    [183]万峰,孙宏伟,范世福.紫外可见光谱仪色散系统小型化及固态化问题的研究[J].仪器仪表学报,2006,27(11):1437-1440
    [184]赵友全,王慧敏,刘子毓,等.基于紫外光谱法的水质化学需氧量在线检测技术[J].仪器仪表学报,2010,31(9):1927-1932
    [185]叶华俊,项光宏,周新奇,等.基于紫外全谱法的水质COD分析仪及应用研究[J].现代科学仪器,2009,25(3):8-10
    [186]吴慧芳,王世和,孔火良.紫外分光光度法测定印染废水CODCr[J].印染,2007,32(2):37-40
    [187] Costa R.C.C., Lelis M.F.F., Oliveira L.C.A, et al. Remarkable effect of Co and Mn onthe activity of Fe3-xMxO4promoted oxidation of organic contaminants in aqueousmedium with H2O2[J]. Catalysis Communications,2003,4(10):525-529
    [188] Muruganandham M., Swaminathan M.. Photochemical oxidation of reactive azo dyewith UV-H2O2process [J]. Dyes and Pigments,2004,62(3):269-275
    [189] Iurascu B., Siminiceanu I., Vione D., et al. Phenol degradation in water through aheterogeneous photo-Fenton process catalyzed by Fe-treated laponite [J].2009,43(5):1313-1322
    [190]王兆江,李军,王强,等. UV/Fenton氧化技术深度处理漂白废水术[J].华南理工大学学报(自然科学版),2011,39(1):79-84
    [191] Ali M., Sreekrishnan T.R.. Aquatic toxicity from pulp and paper mill effluents: a review[J]. Advances in Environmental Research,2001,5(2):175-196
    [192] Lacorte S., Latorre A., Barceló D., et al. Organic compounds in paper-mill processwaters and effluents [J]. Trends in Analytical Chemistry,2003,22(10):725-737
    [193] Amuda O.S., Amoo I.A., Ajayi O.O.. Performance optimization of coagulant/flocculantin the treatment of wastewater from a beverage industry [J]. Journal of hazardousmaterials,2006,129(1):69-72
    [194] Suarez S., Lema J.M, Omil F.. Pre-treatment of hospital wastewater bycoagulation–flocculation and flotation [J]. Bioresource technology,2009,100(7):2138-2146
    [195] Sadri M.S., Alavi M.M.R., Arami M.. Response surface optimization of acid red119dye from simulated wastewater using Al based waterworks sludge and polyaluminiumchloride as coagulant [J]. Journal of environmental management,2011,92(4):1284-1291
    [196] Mohapatra D.P, Brar S.K, Tyagi R.D, et al. Parameter optimization of ferro-sonicationpre-treatment process for degradation of bisphenol A and biodegradation fromwastewater sludge using response surface model [J]. Journal of hazardous materials,2011,189(1):100-107
    [197] Li X., Ouyang J., Xu Y., et al. Optimization of culture conditions for production of yeastbiomass using bamboo wastewater by response surface methodology [J]. Bioresourcetechnology,2009,100(14):3613-3617
    [198] Wang Y., Chen K., Mo L., et al. Pretreatment of papermaking‐reconstituted tobaccoslice wastewater by coagulation–flocculation [J]. Journal of Applied Polymer Science,2013,130(2):1092-1097
    [199] Wang J.P., Chen Y.Z., Ge X.W., et al. Optimization of coagulation–flocculation processfor a paper-recycling wastewater treatment using response surface methodology [J].Colloids and Surfaces A: Physicochemical and Engineering Aspects,2007,302(1):204-210
    [200] Amuda O.S., Alade A.. Coagulation/flocculation process in the treatment of abattoirwastewater [J]. Desalination,2006,196(1):22-31
    [201] Rodriguez-Nogales J.M., Roura E., Contreras E.. Biosynthesis of ethyl butyrate usingimmobilized lipase: a statistical approach [J]. Process biochemistry,2005,40(1):63-68
    [202] lmez T. The optimization of Cr (VI) reduction and removal by electrocoagulationusing response surface methodology [J]. Journal of Hazardous Materials,2009,162(2):1371-1378
    [203] Fang R., Cheng X., Xu X.. Synthesis of lignin-base cationic flocculant and itsapplication in removing anionic azo-dyes from simulated wastewater [J]. Bioresourcetechnology,2010,101(19):7323-7329
    [204] Yan M., Wang D., Yu J., et al. Enhanced coagulation with polyaluminum chlorides: roleof pH/alkalinity and speciation [J]. Chemosphere,2008,71(9):1665-1673
    [205] Kimberly B.A., Morteza A., Eva I.. Conventional and optimized coagulation for NOMremoval [J]. J AWWA,2000,92:44-58
    [206] Selcuk H., Rizzo L., Nikolaou A.N., et al. DBPs formation and toxicity monitoring indifferent origin water treated by ozone and alum/PAC coagulation [J]. Desalination,2007,210(1):31-43
    [207] Ghafari S., Aziz H.A., Isa M.H., et al. Application of response surface methodology(RSM) to optimize coagulation–flocculation treatment of leachate using poly-aluminumchloride (PAC) and alum [J]. Journal of Hazardous Materials,2009,163(2):650-656
    [208] Childress A.E., Vrijenhoek E.M., Elimelech M., et al. Particulate and THM precursorremoval with ferric chloride [J]. Journal of Environmental Engineering,1999,125(11):1054-1061
    [209]周文敏,傅德黔,孙宗光.水中优先控制污染物名单[J].中国环境监测,1990,6(4):1-3
    [210]侯轶,李友明,郑振山.造纸法烟草薄片废水中污染物的分析[J].华南理工大学学报(自然科学版),2008,36(3):95-98
    [211]莫立焕,周志明,王玉峰.造纸法烟草薄片废水深度处理研究[J].中国造纸,2012(10):37-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700