用户名: 密码: 验证码:
镉、铜分别胁迫虾夷扇贝的毒性作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
虾夷扇贝(Mizuhopecten yessoensis)是我国北方重要的海水养殖贝类。随着近年来经济的高速发展,逐渐严重的海洋污染给虾夷扇贝养殖业造成了巨大的损失,尤其是生物毒素和持久有机污染物等蓄积引发的食品安全问题,严重制约了产业的健康可持续发展。但是,由于基因组信息资源的缺乏,对于各类海洋污染物,尤其是重金属对虾夷扇贝毒性作用机制的深入研究相对比较匮乏。本研究利用生物化学、分子生物学及生物信息学技术,分别研究了重金属镉(Cd)、铜(Cu)在虾夷扇贝鳃、消化腺组织内的蓄积规律;镉、铜对虾夷扇贝鳃、消化腺组织内SOD、CAT、GPx酶活性的影响;成体虾夷扇贝的全转录组测序及在镉、铜分别胁迫条件下,虾夷扇贝鳃、消化腺组织基因差异表达谱等。主要结果如下:
     1.研究了镉在虾夷扇贝鳃和消化腺两组织的累积规律,结果表明累积量与胁迫的剂量呈现出线性相关性,同时随着胁迫时间的延长,蓄积量表现出曲线变化规律。两组织中最大Cd蓄积分别出现在10d,0.20mg/L胁迫组(鳃,134.20μg/g)和14d,0.10mg/L胁迫组(消化腺,109.20μg/g)。鳃组织中镉的蓄积量要高于消化腺组织,其相对为虾夷扇贝镉的主要富集组织。
     2.研究了铜在虾夷扇贝鳃、消化腺两组织中的累积规律,结果表明,0.025mg/L胁迫组在鳃中最高累积出现在14d(347.55μg/g),0.05mg/L、0.10mg/L胁迫组最高累积均出现在6d,分别为340.72μg/g和302.30μg/g。除0.025mg/L胁迫组外,整体随时间呈曲线变化关系。消化腺组织中,0.10mg/L胁迫组铜累积随时间呈线性关系,最高累积出现在14(d60.88μg/g),而0.025mg/L与0.05mg/L组随暴露时间的延长均表现出曲线变化关系。分析表明,鳃是虾夷扇贝铜的主要蓄积部位。消化腺组织对铜的累积不存在浓度依赖性关系,对高铜胁迫累积反应较为敏感。
     3.研究了镉胁迫对虾夷扇贝两组织的主要抗氧化酶活性的影响。结果表明镉胁迫下鳃、消化腺组织内SOD、CAT、GPx活性基本呈现峰值分布。两组织中,0.10mg/L、0.20mg/L胁迫组SOD活性均在胁迫1d时达到最大值,而0.05mg/L胁迫组峰值均出现在3d。对CAT活性研究表明,鳃组织各胁迫浓度组变化趋势与SOD一致,而消化腺组织则随胁迫浓度增加,最高活性分别出现在10d、6d和1d。对GPx活性研究表明,鳃组织中随胁迫浓度升高,活性最高值分别出现在6d、3d和1d,消化腺组织则分别在3d和1d达到最高。SOD是镉胁迫下虾夷扇贝鳃组织内的主要抗氧化酶,而CAT是消化腺组织在镉胁迫条件下的主要抗氧化酶。
     4.研究了不同铜胁迫浓度对虾夷扇贝两种组织的主要抗氧化酶SOD、CAT和GPx活性的影响。结果显示,鳃组织各抗氧化酶在胁迫期内均被显著性抑制。消化腺组织中,除0.05mg/L胁迫组对GPx酶活性24h时显著抑制外,0.025mg/L、0.05mg/L胁迫浓度在24h内均可诱导抗氧化酶显著表达,但随胁迫期的延长逐渐降低。0.10mg/L胁迫组各酶活性在胁迫期内显著性抑制。与镉对虾夷扇贝的毒性相比,铜的毒性作用更强,对虾夷扇贝抗氧化防御系统的破坏性更大。
     5.通过RNA-Seq技术,对成体虾夷扇贝鳃、消化腺、性腺、闭壳肌、外套膜、肾脏及内脏团组织混合样本进行了全转录组分析,共产生194,839条非冗余读段,其中14,240条读段获得了明确功能注释。同时基于GO分析获得了721个与刺激反应(response to stimulus)相关的转录本。通过KEGG分析,获得了251个包含在13个免疫通路中的转录本。
     6.对虾夷扇贝镉胁迫条件下的鳃、消化腺组织进行差异表达基因研究。鳃组织中共确认了7,556个显著性差异表达基因,其中,3,673个基因上调,3,883个基因下调。消化腺组织中共发现3,002个差异表达基因,其中,上调基因1,627个,下调基因1,375个。通过代谢通路富集性分析确认了大量与环境胁迫相关的差异表达基因。
     7.对虾夷扇贝铜胁迫条件下的鳃、消化腺组织差异表达基因进行研究。鳃组织中共确认3,459个显著性差异表达基因,其中,1,312个基因上调,2,237个基因下调。消化腺组织中共确认1,718个差异表达基因,其中,上调基因841个,下调基因877个。通过GO富集性分析,发现了大量铜胁迫条件下与化学物质刺激反应相关的差异表达转录本。通过KEGG富集性分析,确认了许多虾夷扇贝在受到铜胁迫时免疫系统相关基因的表达变化情况。
     本研究初步了解了镉、铜对虾夷扇贝的分子毒性作用机制,将为进一步深入研究海洋污染物对虾夷扇贝的毒性作用机理奠定一定的理论基础。同时,虾夷扇贝的全转录组测序数据极大程度的丰富虾夷扇贝序列数据库,筛选得到的敏感差异表达基因可作为候选基因,构建虾夷扇贝养殖预警预报体系平台,以期为我国虾夷扇贝的健康、安全养殖提供一定的科学依据。
Japanese scallop (Mizuhopecten yessoensis) has been cultured on a large-scale inChina for many years. However, serious marine pollution in recent years has resultedin considerable loss to this industry, especially the safety problems caused by heavymetal and POPs, etc. Moreover, due to the lack of genomic resources, limited relatedresearch about the toxicology mechanism caused by the marine pollutions has beencarried out on this species. In this study, the bioaccumulation in gill or digestive glandfollowing Cd or Cu exposure was investigated. Also, the responses of the antioxidantdefense system including SOD, CAT and GPx were studied. In order to betterannotation the transcripts, the transcriptome of adult M.yessoensis were investigatedbased on RNA-Seq technology. Then the different expressed genes (DEGs) weredetected in gill and digestive gland following Cd or Cu exposure. The detail resultswere as follows:
     1. The Cd concentration in gill or digestive gland of M.yessoensis displayed alinear relationship with the exposure doses and had a curvilinear change with timeextension. The maximum Cd concentration presented at10d (0.20mg/L,134.20μg/g)in gill and14d (0.1mg/L,109.2μg/g) in digestive gland, respectively. Theconcentration of Cd in gill was larger than that in digestive gland and suggested thatgill might be the main accumulation tissue of Cd in M.yessoensis.
     2. The maximum accumulation of copper (0.025mg/L,0.05mg/L,0.10mg/L) ingill occurred at14d (347.55μg/g),6d (340.72μg/g) and6d (302.30μg/g) respectively.With the time extension, accumulation of copper has a curvilinear relationship except0.10mg/L group. However, concentration of copper in0.10mg/L group of digestivegland presented liner changes with exposure time and the peak occurred at14d(60.88μg/g). The corresponding changes in0.025mg/L and0.05mg/L were curvilinear and even be decreased. Gill was the main accumulation tissue of Cu in M.yessoensis.
     3. SOD, CAT and GPx activities in gill or digestive gland respond to cadmiumexposure displayed curvilinear relationship with time extension. The SOD activity in0.10mg/L and0.20mg/L groups of both tissues reached to the peak at24h and that of0.05mg/L group both reached at72h. CAT activity in gill following Cd exposurepresented the same tendency with SOD activity. However, the peak value of CAT indigestive gland occurred at10d,6d and1d with doses increasing. GPx activity in gillfollowing Cd exposure presented the peak at6d,3d and1d with doses increasing and3d and1d in digestive gland. SOD might be the main antioxidant enzyme in gill ofM.yessoensis and CAT was the main antioxidant enzyme in digestive gland.
     4. SOD, CAT and GPx activities were significantly suppressed in gill followingcopper exposure. However, in digestive gland,0.025mg/L and0.05mg/L groups couldinduce the express of antioxidant enzymes in24h except GPx in0.05mg/L group. Theactivities of all the three enzymes in0.10mg/L group were suppressed during all theexperiment.
     5. Transcriptome of adult M. yessoensis (adductor muscle, digestive gland, gill,gonad (male and female), kidney, visceral mass and mantle) was analyzed byRNA-Seq. Totally194,839clean reads were produced and14,240clean reads wereclearly annotated in database. Totally721transcripts were founded in the GO term of‘response to stimulus’ and251transcripts were detected involved in13immunesystem pathways.
     6. Based on RNA-Seq (Quantification), totally7,556different expressed geneswere identified in gill following Cd exposure. Among them,3,673transcripts wereup-regulated and3,883were down-regulated. In digestive gland, a total of3,002DEGs were detected, with1,627up-regulated genes and1,375down-regulated genes.Also, amount of DEGs related with environment stress were founded by KEGGenrichment analysis.
     7. A total of3,459DEGs were detected in gill following copper exposure, with1,312genes up-regulated and2,237down-regulated. In digestive gland, totally1,718 DEGs were identified. Among them841genes were up-regulated and877genes weredown-regulated. At the same time, amount of DEGs related to ‘response to chemicalstimulus’ was detected by GO enrichment analysis. Also, the expressed level of genesinvolved in immune system was analyzed by KEGG.
     This thesis investigated the toxic mechanism of M.yessoensis respond tocadmium or copper and would be helpful for researching the toxicology of marinepollutants. Also, transcriptome of M. yessoensis would great enrich the sequencesresources in public database. These sensitive expressed genes could be used aspotential candidate genes for constructing early warning system and platform duringthe healthy aquaculture of Japanese scallop.
引文
1.李文姬,谭克非,日本解决虾夷扇贝大规模死亡的启示.水产科学,2009,28(10):609-612.
    2. Liu W., He C., Li W., Zhou Z., Gao X. and Fu L., Discovery of host defencegenes in the Japanese scallop Mizuhopecten yessoensis Jay by expressedsequence tag analysis of kidney tissue. Aquac Res,2010,41:1602-1613.
    3.李文姬,薛真福,持续发展虾夷扇贝的健康增养殖.水产科学,2005,24(9):49-51.
    4.张明明,赵文,我国虾夷扇贝死亡原因的探讨及控制对策.中国水产,2008(2):65-66.
    5. Haynes D. and Johnson J.E., Organochlorine, heavy metal and polyaromatichydrocarbon pollutant concentrations in the Great Barrier Reef (Australia)environment: a review. Marine Pollution Bulletin,2000,41(7-12):267-278.
    6. Damiens G., His E., Gnassia-Barelli M., Quiniou F. and Romeo M., Evaluation ofbiomarkers in oyster larvae in natural and polluted conditions. ComparativeBiochemistry and Physiology C-Toxicology&Pharmacology,2004,138(2):121-128.
    7. Zhang Y., Song J., Yuan H., Xu Y., He Z. and Duan L., Biomarker responses inthe bivalve (Chlamys farreri) to exposure of the environmentally relevantconcentrations of lead, mercury, copper. Environ Toxicol Phar,2010,30(1):19-25.
    8.孙云明,刘会峦,海洋中的主要化学污染及其危害.化学教育,2001,22(7):1-4.
    9. Hunter H., Agricultural contaminants in aquatic environments--a review. Bulletin.Department of Primary Industries(Queensland),1992, Brisbane.
    10. Waldichuk M., Biological availability of metal to marine organisms. MarinePollution Bulletin,1985,16(1):7-11.
    11. Fagotti A., Di Rosa I., Simoncelli F., Pipe R.K., Panara F. and Pascolini R., Theeffects of copper on actin and fibronectin organization in Mytilusgalloprovincialls haemocytes. Developmental&Comparative Immunology,1996,20(6):383-391.
    12.崔毅,陈碧鹃,宋云利等,胶州湾海水,海洋生物体中重金属含量的研究.应用生态学报,1997,8(6):650-654.
    13.叶思源,原晓军,丁喜桂,刘强,宫少军,胶州湾水生系统中Pb, Zn的分布特征及其在生物体中的浓缩.海洋与湖沼,2009,40(4):400-406.
    14. Rainbow P.S., Biomonitoring of heavy metal availability in the marineenvironment. Marine Pollution Bulletin,1995,31(4):183-192.
    15.张丽岩,宋欣,高玮玮,潘鹤婷,潘宝平, Cd2+对青蛤(Cyclina sinensis)的毒性及蓄积过程的研究.海洋与湖沼,2010,41(3):418-421.
    16.王军,翟毓秀,宁劲松,蒋增杰,谭志军,尚德荣,赵艳芳,养殖虾夷扇贝不同组织中重金属含量的分布.海洋科学,2009(008):44-47.
    17. Bel'cheva N., Silina A., Slin'ko E. and Chelomin V., Seasonal Variability in thelevels of Fe, Zn, Cu, Mn, and Cd in the hepatopancreas of the Japanese ScallopMizuhopecten yessoensis. Russian Journal of Marine Biology,2002,28(6):398-404.
    18. Moore M.N., Allen J.I., McVeigh A. and Shaw J., Lysosomal and autophagicreactions as predictive indicators of environmental impact in aquatic animals.Autophagy,2006,2(3):217-220.
    19. Chelomin V. and Belcheva N., The effect of heavy metals on processes of lipidperoxidation in microsomal membranes from the hepatopancreas of the bivalvemollusc mizuhopecten yessoensis. Comp Biochem Phys C,1992,103(2):419-422.
    20. Jones K.C. and De Voogt P., Persistent organic pollutants (POPs): state of thescience. Environmental Pollution,1999,100(1):209-221.
    21. Fu J., Mai B., Sheng G., Zhang G., Wang X., Peng P.a., Xiao X., Ran R., Cheng F.and Peng X., Persistent organic pollutants in environment of the Pearl River Delta,China: an overview. Chemosphere,2003,52(9):1411-1422.
    22. Goldberg E.D., The mussel watch--a first step in global marine monitoring.Marine Pollution Bulletin,1975,6(7):111.
    23. Johansson I., Héas-Moisan K., Guiot N., Munschy C. and Tronczyński J.,Polybrominated diphenyl ethers (PBDEs) in mussels from selected French coastalsites:1981–2003. Chemosphere,2006,64(2):296-305.
    24.陈荣,石油烃污染对僧帽牡蛎的氧化胁迫.博士.厦门大学环境科学研究中心:厦门大学;2001.
    25.王清,几种重金属和有机污染物对文蛤Meretrxi meretrxi生态毒理效应的研究.博士.中国科学院:2010.
    26. Cajaraville M.P. and Ortiz-Zarragoitia M., Specificity of the peroxisomeproliferation response in mussels exposed to environmental pollutants. AquaticToxicology,2006,78(Supplement1):S117-S123.
    27. Mimura J., Ema M., Sogawa K. and Fujii-Kuriyama Y., Identification of a novelmechanism of regulation of Ah (dioxin) receptor function. Genes&development,1999,13(1):20-25.
    28.聂芳红,刘连平,陈进军,林红英,杨蓉,谢英明,二嗯英类化合物对斑马鱼CYP1A毒理作用的研究新进展.广东海洋大学学报,2007,27(3):123-128.
    29. Stohs S. and Bagchi D., Mechanisms in the toxicity of metal ions. Free radicalbiology&medicine,1995,18(2):321-336.
    30. Yanyu W., Qixing Z. and Junliang T., An approach to the enactment ofsoil-environmental standards (Hg, Cd, Pb and As) in China. Chin J Appl Ecol,1991,2(4):334-339.
    31. Kairong W., Cadmium pollution in agricultural soils and strategies forimprovement. Agro-environmental Protection,1997,16(6):274-278.
    32. Chan P.C., Peller O.G. and Kesner L., Copper (II)-catalyzed lipid peroxidation inliposomes and erythrocyte membranes. Lipids,1982,17(5):331-337.
    33. Bogdanova A.Y., Gassmann M. and Nikinmaa M., Copper ion redox state iscritical for its effects on ion transport pathways and methaemoglobin formation introut erythrocytes. Chemico-biological interactions,2002,139(1):43-59.
    34. Gwo dziński K., Structural changes in erythrocyte components induced bycopper and mercury. Radiation Physics and Chemistry,1995,45(6):877-882.
    35.励建荣,李学鹏,王丽,段青源,贝类对重金属的吸收转运与累积规律研究进展.水产科学,2007,26(1):51-55.
    36. Simkiss K. and Taylor M., Transport of metals across membranes, vol.3.Chichester: John Wiley and Sons;1995:2-44.
    37.李建明,环境污染物在生物体内的浓缩,积累和放大.生物学教学,2002,27(3):38-38.
    38. Choi H.J., Ji J., Chung K.H. and Ahn I.Y., Cadmium bioaccumulation anddetoxification in the gill and digestive gland of the Antarctic bivalve Laternulaelliptica. Comp Biochem Phys C,2007,145(2):227-235.
    39. Evtushenko Z., Lukyanova O. and Belcheva N., Cadmium bioaccumulation inorgans of the scallop Mizuhopecten yessoensis. Mar Biol,1990,104(2):247-250.
    40. Riisg rd H., Bj rnestad E. and M hlenberg F., Accumulation of cadmium in themussel Mytilus edulis: kinetics and importance of uptake via food and sea water.Mar Biol,1987,96(3):349-353.
    41. Sokolova I.M., Ringwood A.H. and Johnson C., Tissue-specific accumulation ofcadmium in subcellular compartments of eastern oysters Crassostrea virginicaGmelin (Bivalvia: Ostreidae). Aquat Toxicol,2005,74(3):218-228.
    42.季相山,赵燕,丁雷,陈松林,王雪鹏,岳永生,海湾扇贝对海水中镉的富集规律研究.水产学报,2006,6:801-805.
    43.王丽丽,夏斌,陈碧鹃,李传慧,唐学玺,虾夷扇贝对镉的蓄积和排放规律.海洋环境科学,2012,31(002):159-162.
    44. Jing G., Li Y., Xie L. and Zhang R., Metal accumulation and enzyme activities ingills and digestive gland of pearl oyster (Pinctada fucata) exposed to copper.Comp Biochem Phys C,2006,144(2):184-190.
    45. Lopes T.M., Barcarolli I.F., De Oliveira C.B., De Souza M.M. and Bianchini A.,Mechanisms of copper accumulation in isolated mantle cells of the marine clamMesodesma mactroides. Environ Toxicol Chem,2011,30(7):1586-1592.
    46. Roméo M. and Gnassia-Barelli M., Metal distribution in different tissues and insubcellular fractions of the Mediterranean clam Ruditapes decussatus treated withcadmium, copper, or zinc. Comparative Biochemistry and Physiology Part C:Comparative Pharmacology and Toxicology,1995,111(3):457-463.
    47.王凡,赵元凤,吕景才,刘长发,铜在栉孔扇贝组织蓄积,分配,排放的研究.水利渔业,2007,27(3):84-87.
    48. Fowler B.A., Monitoring of human populations for early markers of cadmiumtoxicity: a review. Toxicology and Applied Pharmacology,2009,238(3):294-300.
    49. Bertin G. and Averbeck D., Cadmium: cellular effects, modifications ofbiomolecules, modulation of DNA repair and genotoxic consequences (a review).Biochimie,2006,88(11):1549-1559.
    50. Lambeth J.D., NOX enzymes and the biology of reactive oxygen. NatureReviews Immunology,2004,4(3):181-189.
    51. Martinez-Alvarez R.M., Morales A.E. and Sanz A., Antioxidant defenses in fish:biotic and abiotic factors. Rev Fish Biol Fisher,2005,15(1):75-88.
    52. Ching E.W.K., Siu W.H.L., Lam P.K.S., Xu L., Zhang Y., Richardson B.J. and WuR.S.S., DNA adduct formation and DNA strand breaks in green-lipped mussels(Perna viridis) exposed to benzo [a] pyrene: dose-and time-dependentrelationships. Mar Pollut Bull,2001,42(7):603-610.
    53. Shugart L.R., DNA damage as a biomarker of exposure. Ecotoxicology,2000,9(5):329-340.
    54.王晓宇,杨红生,王清,重金属污染胁迫对双壳贝类生态毒理效应研究进展.海洋科学,2009(010):112-118.
    55. Pan L., Liu N., Zhang H., Wang J. and Miao J., Effects of heavy metal ions (Cu2+,Pb2+and Cd2+) on DNA damage of the gills, hemocytes and hepatopancreas ofmarine crab, Charybdis japonica. Journal of Ocean University of China (EnglishEdition),2011,10(2):177-184.
    56. Verlecar X., Jena K. and Chainy G., Modulation of antioxidant defences indigestive gland of Perna viridis (L.), on mercury exposures. Chemosphere,2008,71(10):1977-1985.
    57. Casalino E., Sblano C. and Landriscina C., Enzyme activity alteration bycadmium administration to rats: the possibility of iron involvement in lipidperoxidation. Archives of biochemistry and biophysics,1997,346(2):171-179.
    58. Gao L., Laude K. and Cai H., Mitochondrial pathophysiology, reactive oxygenspecies, and cardiovascular diseases. Veterinary Clinics of North America: SmallAnimal Practice,2008,38(1):137-155.
    59. Li Y. and Trush M., Oxidation of hydroquinone by copper: chemical mechanismand biological effects. Archives of biochemistry and biophysics,1993,300(1):346.
    60. Li Y. and Trush M.A., DNA damage resulting from the oxidation of hydroquinoneby copper: role for a Cu (II)/Cu (I) redox cycle and reactive oxygen generation.Carcinogenesis,1993,14(7):1303-1311.
    61. Company R., Serafim A., Bebianno M., Cosson R., Shillito B. and Fiala-MédioniA., Effect of cadmium, copper and mercury on antioxidant enzyme activities andlipid peroxidation in the gills of the hydrothermal vent mussel Bathymodiolusazoricus. Mar Environ Res,2004,58(2):377-381.
    62. Viarengo A., Canesi L., Pertica M., Poli G., Moore M. and Orunesu M., Heavymetal effects on lipid peroxidation in the tissues of Mytilus Gallopro Vincialislam. Comp Biochem Phys C,1990,97(1):37-42.
    63. Pruski A.M. and Dixon D.R., Effects of cadmium on nuclear integrity and DNArepair efficiency in the gill cells of Mytilus edulis L. Aquat Toxicol,2002,57(3):127-137.
    64. Cuypers A., Plusquin M., Remans T., Jozefczak M., Keunen E., Gielen H.,Opdenakker K., Nair A.R., Munters E. and Artois T.J., Cadmium stress: anoxidative challenge. Biometals,2010,23(5):927-940.
    65. Gabbianelli R., Lupidi G., Villarini M. and Falcioni G., DNA damage induced bycopper on erythrocytes of gilthead sea bream Sparus aurata and molluskScapharca inaequivalvis. Arch Environ Con Tox,2003,45(3):350-356.
    66. Orbea A., Dariush Fahimi H. and Cajaraville M.P., Immunolocalization of fourantioxidant enzymes in digestive glands of mollusks and crustaceans and fishliver. Histochemistry and Cell Biology,2000,114(5):393-404.
    67. Cajaraville M.P., Bebianno M.J., Blasco J., Porte C., Sarasquete C. and ViarengoA., The use of biomarkers to assess the impact of pollution in coastalenvironments of the Iberian Peninsula: a practical approach. The Science of TheTotal Environment,2000,247(2-3):295-311.
    68. Bebianno M., Nott J. and Langston W., Cadmium metabolism in the clamRuditapes decussata: the role of metallothioneins. Aquatic toxicology,1993,27(3):315-333.
    69. Baraj B., Niencheski F., Fillmann G. and De Martinez Gaspar Martins C.,Assessing the effects of Cu, Cd, and exposure period on metallothioneinproduction in gills of the Brazilian brown mussel Perna perna by using factorialdesign. Environ Monit Assess:1-8.
    70. Géret F., Jouan A., Turpin V., Bebianno M.J. and Cosson R.P., Influence of metalexposure on metallothionein synthesis and lipid peroxidation in two bivalvemollusks: the oyster (Crassostrea gigas) and the mussel (Mytilus edulis). AquatLiving Resour,2002,15(1):61-66.
    71. Geffard A., Amiard-Triquet C. and Amiard J.-C., Do seasonal changes affectmetallothionein induction by metals in mussels, Mytilus edulis? Ecotoxicologyand environmental safety,2005,61(2):209-220.
    72. Geret F., Serafim A. and Bebianno M.J., Antioxidant enzyme activities,metallothioneins and lipid peroxidation as biomarkers in Ruditapes decussatus?Ecotoxicology,2003,12(5):417-426.
    73.姚翠鸾,王维娜,王安利,水生动物体内超氧化物歧化酶的研究进展.海洋科学,2003,27(10):18-21.
    74. Drevet J.R., The antioxidant glutathione peroxidase family and spermatozoa: acomplex story. Molecular and cellular endocrinology,2006,250(1):70-79.
    75. Habig W.H., Pabst M.J. and Jakoby W.B., Glutathione S-transferases. J BiolChem,1974,249(22):7130.
    76. CHEN J., YAN B., GAO H., MA H., JU B. and YANG W., Influences ofCadmium, Copper and Petroleum Hydrocarbons on Activity of GlutathioneS-transferase in Marine Clam (Scapharca subcrenata). Fisheries Sci,2012,3:005.
    77. Company R., Serafim A., Cosson R., Camus L., Shillito B., Fiala-Médioni A. andBebianno M.J., The effect of cadmium on antioxidant responses and thesusceptibility to oxidative stress in the hydrothermal vent mussel Bathymodiolusazoricus. Mar Biol,2006,148(4):817-825.
    78. Geret F., Serafim A., Barreira L. and Jo o Bebianno M., Response of antioxidantsystems to copper in the gills of the clam Ruditapes decussatus. Mar Environ Res,2002,54(3):413-417.
    79. Rajendran K., Zhang J., Liu S., Kucuktas H., Wang X., Liu H., Sha Z., Terhune J.,Peatman E. and Liu Z., Pathogen recognition receptors in channel catfish: I.Identification, phylogeny and expression of NOD-like receptors. Developmental&Comparative Immunology,2012,37(1):77-86.
    80. Isani G., Monari M., Andreani G., Fabbri M. and Carpene E., Effect of copperexposure on the antioxidant enzymes in bivalve mollusc Scapharca inaequivalvis.Vet Res Commun,2003,27:691-693.
    81. Iwanaga S. and Lee B.L., Recent advances in the innate immunity of invertebrateanimals. Journal of Biochemistry and Molecular Biology,2005,38(2):128.
    82. Hine P., The inter-relationships of bivalve haemocytes. Fish&ShellfishImmunology,1999,9(5):367-385.
    83. Coles J.A., Farley S.R. and Pipe R.K., Alteration of the immune response of thecommon marine mussel Mytilus edulis resulting from exposure to cadmium.Diseases of Aquatic Organisms,1995,22(1):59-65.
    84. Saurabh S. and Sahoo P., Lysozyme: an important defence molecule of fish innateimmune system. Aquaculture Research,2008,39(3):223-239.
    85. Yu X.-Q. and Kanost M.R., Manduca sexta lipopolysaccharide-specificimmulectin-2protects larvae from bacterial infection. Developmental&Comparative Immunology,2003,27(3):189-196.
    86. Savan R., Endo M. and Sakai M., Characterization of a new C-type lectin fromcommon carp Cyprinus carpio. Molecular immunology,2004,41(9):891-899.
    87. Yu X.-Q., Gan H. and R Kanost M., Immulectin, an inducible C-type lectin froman insect, Manduca sexta, stimulates activation of plasma prophenol oxidase.Insect biochemistry and molecular biology,1999,29(7):585-597.
    88. Suzuki T., Takagi T., Furukohri T., Kawamura K. and Nakauchi M., Acalcium-dependent galactose-binding lectin from the tunicate Polyandrocarpamisakiensis. Isolation, characterization, and amino acid sequence. Journal ofBiological Chemistry,1990,265(3):1274-1281.
    89. Luo T., Yang H., Li F., Zhang X. and Xu X., Purification, characterization andcDNA cloning of a novel lipopolysaccharide-binding lectin from the shrimpPenaeus monodon. Developmental&Comparative Immunology,2006,30(7):607-617.
    90. Mitta G., Vandenbulcke F. and Roch P., Original involvement of antimicrobialpeptides in mussel innate immunity. FEBS letters,2000,486(3):185-190.
    91. Chu F.-L.E., Humoral defense factors in marine bivalves. Am Fish Soc Spec Publ,1988,18:178-188.
    92. Sokolova I., Evans S. and Hughes F., Cadmium-induced apoptosis in oysterhemocytes involves disturbance of cellular energy balance but no mitochondrialpermeability transition. Journal of experimental biology,2004,207(19):3369-3380.
    93. Pipe R., Coles J., Carissan F. and Ramanathan K., Copper inducedimmunomodulation in the marine mussel, Mytilus edulis. Aquatic Toxicology,1999,46(1):43-54.
    94. Wang W., Mai K., Zhang W., Ai Q., Yao C., Li H. and Liufu Z., Effects of dietarycopper on survival, growth and immune response of juvenile abalone, Haliotisdiscus hannai Ino. Aquaculture,2009,297(1):122-127.
    95. Sanger F., Nicklen S. and Coulson A.R., DNA sequencing with chain-terminatinginhibitors. Proceedings of the National Academy of Sciences,1977,74(12):5463-5467.
    96. Maxam A.M. and Gilbert W., A new method for sequencing DNA. Proceedings ofthe National Academy of Sciences,1977,74(2):560-564.
    97. Smith L.M., Fung S., Hunkapiller M.W., Hunkapiller T.J. and Hood L.E., Thesynthesis of oligonucleotides containing an aliphatic amino group a′t the5terminus: synthesis of fluorescent DNA primers for use in DNA sequenceanalysis. Nucleic Acids Res,1985,13(7):2399-2412.
    98. Ronaghi M., Uhlén M. and Nyrén P., A sequencing method based on real-timepyrophosphate. Science (New York, NY),1998,281(5375):363,365.
    99. Ju J., Kim D.H., Bi L., Meng Q., Bai X., Li Z., Li X., Marma M.S., Shi S. andWu J., Four-color DNA sequencing by synthesis using cleavable fluorescentnucleotide reversible terminators. Proceedings of the National Academy ofSciences,2006,103(52):19635-19640.
    100.Mardis E.R., The impact of next-generation sequencing technology on genetics.Trends Genet,2008,24(3):133.
    101.Dressman D., Yan H., Traverso G., Kinzler K.W. and Vogelstein B., Transformingsingle DNA molecules into fluorescent magnetic particles for detection andenumeration of genetic variations. Proceedings of the National Academy ofSciences,2003,100(15):8817-8822.
    102.孙海汐,王秀杰, DNA测序技术发展及其展望. e-Science技术,2009,6:24-26.
    103.Eid J., Fehr A., Gray J., Luong K., Lyle J., Otto G., Peluso P., Rank D., BaybayanP. and Bettman B., Real-time DNA sequencing from single polymerase molecules.Science,2009,323(5910):133-138.
    104.Harris T.D., Buzby P.R., Babcock H., Beer E., Bowers J., Braslavsky I., CauseyM., Colonell J., DiMeo J. and Efcavitch J.W., Single-molecule DNA sequencingof a viral genome. Science,2008,320(5872):106-109.
    105.Stoddart D., Heron A.J., Mikhailova E., Maglia G. and Bayley H.,Single-nucleotide discrimination in immobilized DNA oligonucleotides with abiological nanopore. Proceedings of the National Academy of Sciences,2009,106(19):7702-7707.
    106.Wang Z., Gerstein M. and Snyder M., RNA-Seq: a revolutionary tool fortranscriptomics. Nat Rev Genet,2009,10(1):57-63.
    107.史硕博,陈涛,赵学明,转录组平台技术及其在代谢工程中的应用.生物工程学报,2010,26(9):1187-1198.
    108.Velculescu V.E., Zhang L., Vogelstein B. and Kinzler K.W., Serial analysis ofgene expression. Science-AAAS-Weekly Paper Edition,1995,270(5235):484-486.
    109.Brenner S., Johnson M., Bridgham J., Golda G., Lloyd D.H., Johnson D., Luo S.,McCurdy S., Foy M. and Ewan M., Gene expression analysis by massivelyparallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol,2000,18(6):630-634.
    110.祁云霞,刘永斌,荣威恒,转录组研究新技术: RNA-Seq及其应用.HEREDITAS (Beijing),2011,33(11):1191-1202.
    111.王曦,汪小我,王立坤,冯智星,张学工,新一代高通量RNA测序数据的处理与分析.生物化学与生物物理进展,2010,37(8):834-846.
    112.Mortazavi A., Williams B.A., McCue K., Schaeffer L. and Wold B., Mapping andquantifying mammalian transcriptomes by RNA-Seq. Nature Methods,2008,5(7):621-628.
    113.Nagalakshmi U., Wang Z., Waern K., Shou C., Raha D., Gerstein M. and SnyderM., The transcriptional landscape of the yeast genome defined by RNAsequencing. Science,2008,320(5881):1344.
    114.Bettencourt R., Pinheiro M., Egas C., Gomes P., Afonso M., Shank T. and SantosR., High-throughput sequencing and analysis of the gill tissue transcriptome fromthe deep-sea hydrothermal vent mussel Bathymodiolus azoricus. BMC Genomics,2010,11(1):559.
    115.Chen S., Yang P., Jiang F., Wei Y., Ma Z. and Kang L., De novo analysis oftranscriptome dynamics in the migratory locust during the development of phasetraits. PLoS One,2010,5(12):e15633.
    116.Clark M.S., Thorne M.A.S., Vieira F.A., Cardoso J.C.R., Power D.M. and PeckL.S., Insights into shell deposition in the Antarctic bivalve Laternula elliptica:gene discovery in the mantle transcriptome using454pyrosequencing. BMCGenomics,2010,11(1):362.
    117.Wang X.W., Luan J.B., Li J.M., Bao Y.Y., Zhang C.X. and Liu S.S., De novocharacterization of a whitefly transcriptome and analysis of its gene expressionduring development. BMC Genomics,2010,11(1):400.
    118.Xiang L., He D., Dong W., Zhang Y. and Shao J., Deep sequencing-basedtranscriptome profiling analysis of bacteria-challenged Lateolabrax japonicusreveals insight into the immune-relevant genes in marine fish. BMC Genomics,2010,11(1):472.
    119.Zhang L., Hou R., Su H., Hu X., Wang S. and Bao Z., Network Analysis ofOyster Transcriptome Revealed a Cascade of Cellular Responses duringRecovery after Heat Shock. PloS one,2012,7(4):e35484.
    120.Philipp E.E.R., Kraemer L., Melzner F., Poustka A.J., Thieme S., Findeisen U.,Schreiber S. and Rosenstiel P., Massively parallel RNA sequencing identifies acomplex immune gene repertoire in the lophotrochozoan Mytilus edulis. PloS one,2012,7(3):e33091.
    121.Moreira R., Balseiro P., Planas J.V., Fuste B., Beltran S., Novoa B. and FiguerasA., Transcriptomics of In Vitro Immune-Stimulated Hemocytes from the ManilaClam Ruditapes philippinarum Using High-Throughput Sequencing. PloS one,2012,7(4):e35009.
    122.Peakall D. and Burger J., Methodologies for assessing exposure to metals:speciation, bioavailability of metals, and ecological host factors. Ecotox EnvironSafe,2003,56(1):110-121.
    123.Engel D.W. and Fowler B., Copper and cadmium induced changes in themetabolism and structure of molluscan gill tissue. Marine Pollution: FunctionalResponses, Vernberg, W. B., A. Calabrese, F. P. Thurberg and F. J. Vernberg, Eds.,Academic Press, New York, p239-256,1979.9Fig,26Ref.,1979.
    124.Zaroogian G., Crassostrea virginica as an indicator of cadmium pollution. MarBiol,1980,58(4):275-284.
    125.Prakash N.T. and Rao K.S.J., Modulations in antioxidant enzymes in differenttissues of marine bivalve Perna viridis during heavy metal exposure. Mol CellBiochem,1995,146(2):107-113.
    126.Falconer C., Davies I. and Topping G., Cadmium in edible crabs (Cancer pagurusL.)from Scottish coastal waters. Sci Total Environ,1986,54:173-183.
    127.Depledge M., Forbes T. and Forbes V., Evaluation of cadmium, copper, zinc, andiron concentrations and tissue distributions in the benthic crab, Dorippegranulata (De Haan,1841) from Tolo Harbour, Hong Kong. Environ Pollut,1993,81(1):15-19.
    128.Regoli F., Trace metals and antioxidant enzymes in gills and digestive gland ofthe Mediterranean mussel Mytilus galloprovincialis. Arch Environ Con Tox,1998,34(1):48-63.
    129.Stagg R. and Shuttleworth T., The accumulation of copper in Platichthys flesus L.and its effects on plasma electrolyte concentrations. Journal of Fish Biology,2006,20(4):491-500.
    130.Laurent P. and Dunel S., Morphology of gill epithelia in fish. American Journal ofPhysiology-Regulatory, Integrative and Comparative Physiology,1980,238(3):R147-R159.
    131.Escobedo-Fregoso C., Mendez-Rodriguez L., Monsalvo-Spencer P.,Llera-Herrera R., Zenteno-Savin T. and Acosta-Vargas B., Assessment ofMetallothioneins in Tissues of the Clam Megapitaria squalida as Biomarkers forEnvironmental Cadmium Pollution From Areas Enriched in Phosphorite. ArchEnviron Con Tox,2010:1-9.
    132.Marklund S. and Marklund G., Involvement of the superoxide anion radical in theautoxidation of pyrogallol and a convenient assay for superoxide dismutase. Eur JBiochem,1974,47(3):469-474.
    133.Lowry O.H., Rosebrough N.J., Farr A.L. and Randall R.J., Protein measurementwith the Folin phenol reagent. J Biol Chem,1951,193(1):265-275.
    134.Greenwald R.A., Handbook of Methods for Oxygen Radical Research: CRCpress, Boca Raton, FL.;1985.
    135.Xia Y. and Zhu L., Measurement method of glutathione peroxidase activity inblood and tissue. Hygi. Res,1987,16(4):29-33.
    136.Pan L. and Zhang H., Metallothionein, antioxidant enzymes and DNA strandbreaks as biomarkers of Cd exposure in a marine crab, Charybdis japonica.Comp Biochem Phys C,2006,144(1):67-75.
    137.Lemaire P. and Livingstone D., Pro-oxidant/antioxidant processes and organicxenobiotic interactions in marine organisms, in particular the flounder Platichthysflesus and the mussel Mytilus edulis. Trends Comp. Biochem. Physiol,1993,1:1119-1150.
    138.Chandran R., Sivakumar A., Mohandass S. and Aruchami M., Effect of cadmiumand zinc on antioxidant enzyme activity in the gastropod, Achatina fulica. CompBiochem Phys C,2005,140(3):422-426.
    139.Doyotte A., Cossu C., Jacquin M.C., Babut M. and Vasseur P., Antioxidantenzymes, glutathione and lipid peroxidation as relevant biomarkers ofexperimental or field exposure in the gills and the digestive gland of thefreshwater bivalve Unio tumidus. Aquat Toxicol,1997,39(2):93-110.
    140.Li S.M., Hu D.Y. and Tang.C.S., Biological effect of metallothionein ForeignMed.Sci.(Sec. Pathophysiol. Clin. Med.),1996,16:36-38.
    141.Cossu C., Doyotte A., Jacquin M., Babut M., Exinger A. and Vasseur P.,Glutathione reductase, selenium-dependent glutathione peroxidase, glutathionelevels, and lipid peroxidation in freshwater bivalves, Unio tumidus, as biomarkersof aquatic contamination in field studies. Ecotox Environ Safe,1997,38(2):122.
    142.Asagba S.O., Eriyamremu G.E. and Igberaese M.E., Bioaccumulation ofcadmium and its biochemical effect on selected tissues of the catfish (Clariasgariepinus). Fish Physiol Biochem,2008,34(1):61-69.
    143.Akberali H.B. and Black J.E., Behavioural responses of the bivalve Scrobiculariaplana (da Costa) subjected to short-term copper (Cu II) concentrations. MarineEnvironmental Research,1980,4(2):97-107.
    144.Ng P., Wei C.L., Sung W.K., Chiu K.P., Lipovich L., Ang C.C., Gupta S., ShahabA., Ridwan A. and Wong C.H., Gene identification signature (GIS) analysis fortranscriptome characterization and genome annotation. Nature methods,2005,2(2):105-111.
    145.Zerbino D.R. and Birney E., Velvet: algorithms for de novo short read assemblyusing de Bruijn graphs. Genome Res,2008,18(5):821-829.
    146.Schulz M.H., Zerbino D.R., Vingron M. and Birney E., Oases: Robust de novoRNA-seq assembly across the dynamic range of expression levels. Bioinformatics,2012:1-7.
    147.Stajich J.E., Block D., Boulez K., Brenner S.E., Chervitz S.A., Dagdigian C.,Fuellen G., Gilbert J.G.R., Korf I. and Lapp H., The Bioperl toolkit: Perl modulesfor the life sciences. Genome Res,2002,12(10):1611-1618.
    148.Cheng Z.Z., Xue C.H., Zhu S., Zhou F.F., Xuefeng B.L., Liu G.P. and Chen L.B.,GoPipe: streamlined gene ontology annotation for batch anonymous sequenceswith statistics. Prog Biochem Biophys,2005,32(2):187-191.
    149.Kanehisa M., Goto S., Furumichi M., Tanabe M. and Hirakawa M., KEGG forrepresentation and analysis of molecular networks involving diseases and drugs.Nucleic Acids Res,2010,38(suppl1):D355-D360.
    150.Hou R., Bao Z., Wang S., Su H., Li Y., Du H., Hu J. and Hu X., TranscriptomeSequencing and De Novo Analysis for Yesso Scallop (Patinopecten yessoensis)Using454GS FLX. PloS one,2011,6(6):e21560.
    151.Zorita I., Apraiz I., Ortiz-Zarragoitia M., Orbea A., Cancio I., Soto M.,Marigómez I. and Cajaraville M.P., Assessment of biological effects ofenvironmental pollution along the NW Mediterranean Sea using mussels assentinel organisms. Environmental Pollution,2007,148(1):236-250.
    152.Wepener V., van Vuren J.H.J., Chatiza F.P., Mbizi Z., Slabbert L. and Masola B.,Active biomonitoring in freshwater environments: early warning signals frombiomarkers in assessing biological effects of diffuse sources of pollutants. Physicsand Chemistry of the Earth, Parts A/B/C,2005,30(11-16):751-761.
    153.Bucheli T.D. and Fent K., Induction of cytochrome P450as a biomarker forenvironmental contamination in aquatic ecosystems. Crit Rev Env Sci Tec,1995,25(3):201-268.
    154.Regoli F. and Principato G., Glutathione, glutathione-dependent and antioxidantenzymes in mussel, Mytilus galloprovincialis, exposed to metals under field andlaboratory conditions: implications for the use of biochemical biomarkers. AquatToxicol,1995,31(2):143-164.
    155.Gupta S.C., Sharma A., Mishra M., Mishra R.K. and Chowdhuri D.K., Heatshock proteins in toxicology: How close and how far? Life Sci,2010,86(11-12):377-384.
    156.Takeda K. and Akira S., TLR signaling pathways. Seminars in immunology,2004,16:3-9.
    157.Hildebrand J.M., Yi Z., Buchta C.M., Poovassery J., Stunz L.L. and Bishop G.A.,Roles of tumor necrosis factor receptor associated factor3(TRAF3) and TRAF5in immune cell functions. Immunol Rev,2011,244(1):55-74.
    158.Li R., Yu C., Li Y., Lam T.W., Yiu S.M., Kristiansen K. and Wang J., SOAP2: animproved ultrafast tool for short read alignment. Bioinformatics,2009,25(15):1966-1967.
    159.Audic S. and Claverie J.M., The significance of digital gene expression profiles.Genome Res,1997,7(10):986-995.
    160.Livak K.J. and Schmittgen T.D., Analysis of Relative Gene Expression DataUsing Real-Time Quantitative PCR and the2ΔΔCT Method. Methods,2001,25(4):402-408.
    161.Luckenbach T. and Epel D., ABCB-and ABCC-type transporters confermultixenobiotic resistance and form an environment-tissue barrier in bivalve gills.American Journal of Physiology-Regulatory, Integrative and ComparativePhysiology,2008,294(6):R1919-R1929.
    162.Owen J., Hedley B.A., Svendsen C., Wren J., Jonker M.J., Hankard P.K., ListerL.J., Stürzenbaum S.R., Morgan A.J. and Spurgeon D.J., Transcriptome profilingof developmental and xenobiotic responses in a keystone soil animal, theoligochaete annelid Lumbricus rubellus. BMC Genomics,2008,9(1):266.
    163.Milan M., Coppe A., Reinhardt R., Cancela L.M., Leite R.B., Saavedra C., CiofiC., Chelazzi G., Patarnello T. and Bortoluzzi S., Transcriptome sequencing andmicroarray development for the Manila clam, Ruditapes philippinarum: genomictools for environmental monitoring. BMC Genomics,2011,12(1):234.
    164.Flores M.V., Crawford K.C., Pullin L.M., Hall C.J., Crosier K.E. and Crosier P.S.,Dual oxidase in the intestinal epithelium of zebrafish larvae has anti-bacterialproperties. Biochem Bioph Res Co,2010,400(1):164-168.
    165.Inada M., Kihara K., Kono T., Sudhakaran R., Mekata T., Sakai M., Yoshida T.and Itami T., Deciphering of the Dual oxidase (Nox family) gene from kurumashrimp, Marsupenaeus japonicus: full-length cDNA cloning and characterization.Fish Shellfish Immun,2012.
    166.Kumar S., Caspase function in programmed cell death. Cell Death&Differentiation,2006,14(1):32-43.
    167.Jin Z. and El-Deiry W.S., Overview of cell death signaling pathways. Cancerbiology&Therapy,2005,4(2):139-163.
    168.Wang L., Zhi B., Wu W. and Zhang X., Requirement for shrimp caspase inapoptosis against virus infection. Developmental&Comparative Immunology,2008,32(6):706-715.
    169.Risso-de Faverney C., Orsini N., De Sousa G. and Rahmani R.,Cadmium-induced apoptosis through the mitochondrial pathway in rainbow trouthepatocytes: involvement of oxidative stress. Aquat Toxicol,2004,69(3):247-258.
    170.Prozialeck W.C., Edwards J.R., Nebert D.W., Woods J.M., Barchowsky A. andAtchison W.D., The vascular system as a target of metal toxicity. Toxicol Sci,2008,102(2):207-218.
    171.Kersse K., Bertrand M.J.M., Lamkanfi M. and Vandenabeele P., NOD-likereceptors and the innate immune system: coping with danger, damage and death.Cytokine&growth factor reviews,2011.
    172.Sterling K., Roggenbeck B. and Ahearn G., Dual control of cytosolic metals bylysosomal transporters in lobster hepatopancreas. The Journal of ExperimentalBiology,2010,213(5):769-774.
    173.Wang H., Song L., Li C., Zhao J., Zhang H., Ni D. and Xu W., Cloning andcharacterization of a novel C-type lectin from Zhikong scallop Chlamys farreri.Molecular Immunology,2007,44(5):722-731.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700