用户名: 密码: 验证码:
光响应性超分子材料的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
超分子化学是“超越分子概念的化学”,是研究多个分子之间通过非共价键的弱相互作用力(次级键)经过高层次组装成有序聚集体的一门科学。将功能小分子以非共价键方式构筑到聚合物体系中是一种开发新型功能超分子材料的重要方法。这类超分子材料的制备方法简单,结构易于控制。更重要的是非共价键是弱相互作用力,具有可逆性,可以通过选择不同的功能单元来调控超分子材料的性能。本论文主要内容包含两个方面:一是通过离子组装制备含有偶氮苯光敏超分子材料,研究偶氮苯组装单元结构和材料光学性能之间的关系,利用偶氮苯的光取向驱动荧光分子取向,从而制备各向异性荧光发射材料;二是通过静电纺丝技术制备氢键超分子纤维材料,研究氢键超分子纤维的荧光性能及其作为化学传感器的应用。具体内容如下:
     (1)离子组装制备含不同末端取代基偶氮光敏基团离子复合物及其光致各向异性研究,考察偶氮苯单元结构与复合物光学性能的关系。首先合成了一系列末端含有不同取代基的偶氮苯组装单元,末端取代基的类型有-CN、-CF3、-OCH3和-N(CH3)2。分别将它们与聚丙烯酸钠(PANa)按照电荷比1:1离子组装得到离子复合物PACNAZO、PACFAZO、PAMAZO和PANDAZO。1HNMR、FT-IR和EDS分析结果表明离子复合物按照化学计量比进行离子复合。离子复合物具有长程有序的层状微纳米结构,层间距与末端取代基的类型有关。当末端取代基的Hammett取代常数为正数(σp-R>0,R=-CN、-CF3)时,层间距较大,复合物形成的是侧链部分重叠的堆积结构。当末端取代基的Hammett取代常数为负数(σp-R <0,R=-N(CH3)2、-OCH3)时,复合物形成的是侧链完全重叠的堆积结构。在355nm脉冲激光辐照下,复合物薄膜表现出优异的光取向性能,取向方向垂直激光的偏振方向。PACNAZO、PAMAZO和PANDAZO的面内取向度S值分别高达0.54、0.58和0.59。PACFAZO的面内取向度S只有0.012,这是由PACFAZO薄膜在355nm处的弱吸收和-CF3的低表面能导致。最后探讨了复合物薄膜的光致双折射性能:当使用488nm的连续激光作为泵浦光源时,PANDAZO表现出优异的光致双折射性能,在辐照40min后,双折射(Δn)达到饱和值0.354,关闭泵浦光后,Δn值继续上升至0.365,不再变化,其他三种离子复合物薄膜没有检测到明显的双折射信号;当使用405nm的连续激光作为泵浦光源时,PANDAZO仍表现高的光致双折射特性,并且响应速度增加,Δn值达到饱和值的时间从原来的40min缩短到7min,PACNAZO和PAMAZO也产生了一定的双折射,双折射值分别为0.039和0.054。研究结果表明激光波长越接近偶氮离子复合物的最大紫外吸收波长,光致各向异性越明显,响应速度越快,这为今后设计新型光响应性材料提供了理论指导。
     (2)离子共组装制备含偶氮苯和二苯乙烯双功能离子复合物及其各向异性荧光发射性能的研究。基于利用取向单元的光取向驱动荧光单元取向来制备各向异性荧光发射材料的理念,我们通过离子组装制备了一类既含有偶氮苯光取向单元又含有二苯乙烯荧光单元的液晶离子复合物。首先合成了偶氮苯单元MAZO和二苯乙烯单元Nstil,然后以不同摩尔比(m: n)离子共组装在聚丙烯酸钠(PANa)主链上得到离子复合物PMmNn。通过1H NMR、FT-IR和UV-vis等表征手段,确认了离子复合物由两个组装单元共组装得到,离子复合物中MAZO单元和Nstil单元以起始投料比与PANa按正负电荷比1:1进行组装。采用了TGA、DSC、POM、SAXS和WXRD等测试手段研究离子液晶复合物的热稳定性、相态和微观结构。PMmNn的热稳定性高达165°C,在一定的温度范围内呈现近晶相液晶性质。PMmNn具有长程有序的层状微结构,层间距d值随荧光分子含量的增加而增加。离子复合物中二苯乙烯单元的荧光未被偶氮苯淬灭。在线性偏振激光(355nm)辐照下,复合物薄膜中偶氮苯单元发生取向,同时驱动二苯乙烯单元取向,取向方向都垂直激光的偏振方向。PMmNn取向薄膜具有各向异性荧光发射性质,荧光二向色性Rex高达4.6。离子复合物薄膜的面内取向度S,荧光强度I和荧光二向色性Rex都随二苯乙烯单元含量的降低而增加。
     (3)静电纺丝制备含有二苯乙烯的氢键复合物荧光纳米纤维。首先合成了一端是硝基,一端是羟基的二苯乙烯(ST)作为氢键给体,氢键受体为聚苯乙烯共聚4-乙烯基吡啶(PS-co-P4VP)。将它们的DMF溶液进行静电纺丝制备了超分子荧光纳米纤维PSVP(ST)x。从工作电压、工作距离、PS-co-P4VP的浓度和ST的浓度对PSVP(ST)x静电纺丝条件进行优化,确定最优静电纺丝条件:工作电压为15kV,工作距离为20cm,环境温度为40°C,PS-co-P4VP的浓度为120mg mL-1。通过反射红外光谱确认PS-co-P4VP的吡啶基团与ST单元的羟基之间氢键的形成,氢键促进ST单元在溶液中的荧光。超分子纤维具有强的荧光发射性质,最大荧光发射峰位于629nm,相对于在溶液中的荧光,荧光发射峰发生红移。超分子纤维的荧光强度随着ST分子含量的降低而升高。采用荧光显微镜直接观察单根超分子纤维的荧光,并获取了荧光照片,用绿光激发时,纤维发出强的橙红色光。最后用带有平行电极的凹槽收集装置制备了单轴取向性良好的荧光纳米纤维。
     (4)静电纺丝制备聚联二炔的超分子纤维及其化学传感的应用。首先制备包含不同含量聚联二炔(PDA)单体的静电纺丝超分子纤维,再通过光引发聚合得到包含PDA的超分子纤维PSVP(PDA)x。PDA单体在静电纺丝过程中自组装成分子级别的有序结构,在紫外光辐照下可发生聚合,超分子纤维的颜色从原来的白色转变成蓝色。PDA含量越高,超分子纤维的颜色越深,当纤维中PDA单体与聚合物基质中吡啶基团的摩尔比达到0.12时,这种颜色变化十分显著。聚合过程中,PDA中羧基与聚合物基质中吡啶基团间的氢键未受影响,纤维形貌未发生变化。蓝相超分子纤维可用作温度传感器,当温度升高,超分子纤维颜色从蓝色逐渐转变为红色,温度不同,颜色不同。使用反射UV-vis光谱分析了颜色响应(CR)值与温度之间的关系,CR值在80°C时达到饱和。最后考察了超分子纤维作为有机胺液体特别是有机胺蒸汽传感器的应用,超分子纤维可作为高灵敏性,高选择性的有机胺蒸汽颜色传感器,对有机胺蒸汽的检测限低至100ppb。传感器对有机溶剂蒸汽,酸性气体和环境湿度都不具有颜色响应性。传感器蓝色到红色的颜色响应性质可直接通过裸眼观测,不需要借助实验仪器。因此这类颜色传感器具有良好的应用前景,尤其在缺乏大型检测设备的偏远地区。
Supramolecular chemistry, defined as “chemistry beyond the molecule”, was studied on theassembled entities of higher complexity that resulted from the association of two or more moleculesheld together through the non-covalent-bond (secondary bond). It is an important method to explorenovel functional supramolecular complexes by constructing functional small molecules to the polymersby non-covalent-bond interactions. This method is simple and the structure of supramolecular complexis easy to control. More importantly, the weak interactions and reversibility of non-covalent bondsendow the supramolecular materials with some special properties. This dissertation mainly consists oftwo parts: The first part focuses on the photosensitive ionic complexes including azobenzene by theionic self-assembly technique. The relationship between the azobenzene structure and materialproperties was discussed. Anisotropic fluorescence emission materials were prepared by thecooperative orientation of fluorescent molecules during the orientation process of azobenzene. Thesecond part researches on the hydrogen-bond supramolecular electrospun fibers, including fluorescentelectrospun fibers and colorimetric response electrospun fibers. The detailed contents are shown asfollows:
     (1) A series of photoresponding ionic complexes was prepared by the ionic self-assembly (ISA) ofsodium polyacrylate (PANa) and azobenzene chromophores (RAZO) bearing different terminal groups(-CN,-OMe,-N(CH3)2, and-CF3), which are designated as PACNAZO, PAMAZO, PANDAZO, andPACFAZO, respectively.1H NMR, IR and EDS show that the ionic self-assembly of PANa and RAZOis according to the stoichiometric1:1charge ratio. The ionic complexes are stable up to165°C。 Thelamellar microstructures of the complexes are confirmed by X-ray diffraction. By comparing the Braggspacing “d” of the complexes with the calculated lengths of the side chains, two kinds of layeredarchitectures are proposed. The ionic complexes with an electron-donating terminal substituent (σp-R <0) form an interdigitated lamellar structure with full overlap of the side chains, while the complexeswith an electron-withdrawing terminal substituent (σp-R>0) form an interdigitated packing structurewith partial overlap of the side chains. The PARAZO films can be oriented under the irradiation with 355nm linear pulsed laser. The orientation direction is perpendicular to the laser polarization. Thein-plane orientation order parameter (S) of PANDAZO film is up to0.59. For the weak absorption at355nm, the photoinduced orientation of PACFAZO film is not obvious. Finally, the photoinducedbirefringence properties of the complex films are investigated. The PANDAZO film shows extremelyhigh birefringence (n=0.365) by using488nm continuous laser as the pump light. The other ioniccomplexes have no obvious photoinduced birefringence for the weak absorption at488nm. Therefore,a continuous laser with short wavelength (405nm) is used as the pump light. The complex films ofPACNAZO and PAMAZO produce certain birefringence. The results show that the wavelength of thepump light is closely related to the orientation behavior of the ionic complexes containing azobenzene.This provides a theoretical guidance to design novel photosensitive materials.
     (2) Based on the design of the materials which contain a photoinduced orientation unit and thefluorescent unit, a series of fluorescent ionic complexes (PMmNn) are prepared based on ionicself-assembly of azobenzene unit (MAZO) and stilbene unit (Nstil) with sodium polyacrylate (PANa)according to the1:1charge ratio, in which the ratio of Nstil unit to MAZO unit is m: n.1H NMR, IRand UV-vis spectra confirm that the ionic complexes are composed of MAZO unit, Nstil unit andPANa main chain, which also confirm that the MAZO unit and Nstil unit attached to PANa backboneaccording to the initial calculated proportion. The ionic complexes exhibit high thermal stability andsmectic liquid crystalline behavior. The long-range lamellar microstructures are also confirmed bysmall angle X-ray scattering (SAXS). And layer spacing (d) of the complexes increases with theincrease of the content of the fluorescent unit. Both the MAZO unit and Nstil unit are oriented underthe irradiation with linear polarization pulsed laser. And the orientation direction is perpendicular to thelaser polarization. Polarized UV-vis spectra of the oriented PMmNn films indicate that the orientationof fluorescent unit is driven by azobenzene unit. The oriented PMmNn films exhibit anisotropicfluorescence emission. The fluorescent dichroic Rexis up to4.6. Moreover, the in-plane orderparameter S, fluorescent intensity I and dichroic Rexof the PMmNn films increase with the decreasingthe content of Nstil unit in the films.
     (3) The fluorescent supramolecular electrospun fibers PSVP(ST)xcontaining stilbene are prepared by electrospinning from the DMF solution of stilbene unit (ST) and polystyrene-co-poly(4-vinylpyridine)(PS-co-P4VP), where stilbene unit with hydroxy group is the hydrogen-bond donor while thehydrogen-bond acceptor is PS-co-P4VP. The electrospun conditions are optimized from workingvoltage, working distance, the concentration of PS-co-P4VP and ST. Working voltage is15kV.Working distance is20cm. The electrospun temperature is40°C. The concentration of PS-co-P4VP is120mg mL-1. The hydrogen bond between the ST unit and PS-co-P4VP is confirmed by attenuatedtotal reflectance (ATR) FT-IR spectra. The supramolecular complexes show strong fluorescenceemission in DMF solution or their electrospun fibers. The hydrogen bond between the ST unit andPS-co-P4VP accelerate fluorescence emission of ST molecule in DMF solution. The fluorescence ofthe electrospun fibers is also investigated. The red shift is observed in the fiber with respect to that inDMF solution due to the dimer emission in the electrospun fibers. Furthermore, the fluorescenceintensity of the electrospun fibers increases with decreasing the content of ST in the fibers. At last, theuniaxially oriented PSVP (ST)0.04fluorescent fiber is prepared by using an aluminium U-shaped groovewith gap of1cm as receptor.
     (4) A series of polydiacetylene acid (PDA)-embedded supramolecular electrospun fibers areprepared and applied as colorimetric sensor of detection of temperature, organic amines and theirvapors. The PSVP(DA)xsupramolecular electrospun fiber is first prepared by electrospinning the DMFsolution of10,12-pentacosadiynoic acid (DA) and polystyrene-co-poly(4-vinylprydine)(PS-co-P4VP)(“x” in the abbreviation represented the molar ratio of DA molecular to the pyridyl group inPS-co-P4VP). The uniform-dimeter and continuous fibers are obtained when the concentration ofPS-co-P4VP is100mg mL-1. The hydrogen bond between the carboxyl groups of DA monomers andthe pyridyl groups in PS-co-P4VP is confirmed by ATR FT-IR spectra. The self-assembly of DAmonomers occurs during the evaporation of solvent in the process of electrospinning for the attractiveforce between the DA monomers (i.e. hydrophobic interaction and π-π stacking interaction). Theassembled DA monomers in fibres are further polymerized to form PDA with alternating ene-yne mainchain under the254nm UV light irradiation. The color of the fiber mats charges from white to blue.The blue color of the fibre mat becomes deeper gradually with the content of DA monomer increasing. After UV-irradiation and following annealing at90°C, no change in the morphology of the electrospunfibres is found though the color of fibre mats presented white-blue-red transition. The hydrogen bondsbetween PDA and PS-co-P4VP are not destroyed after these treatments. The colorimetric response ofthe electrospun fibers to temperature is first investigated. Take PSVP(PDA)0.12as an example, the colorchange from blue-purple-red is observed while heating the fiber mats from room temperature to90°C.Colorimetric response (CR) value is used to evaluate the degree of converting from the blue phase intored phase, which can be calculated by UV-vis spectra. The relationship between CR value and thetemperature is discussed. The colorimetric response of the supramolecular fiber mats to organic amineor their vapors is also investigated. The color change from blue to red is observed when the fiber matsexposed to100ppb concentration organic amine vapors. The selectivity of the colorimetric sensor isinvestigated. No color change is observed while exposure to common organic solvents and acidic gases.These results indicate that the PDA-embedded supramolecular fiber mats are high sensitive andselective sensors for the detection of temperature, organic amine and their vapors by simple colortransition.
引文
1. Barrett, C., Natansohn, A., Rochon, P., Cis-trans thermal isomerization rates of bound and dopedazobenzenes in a series of polymers, Chem. Mater.1995,7,899-903.
    2. Guan, Y., Zakrevskyy, Y., Stumpe, J., Antonietti, M., Faul, C. F. J., Perylenediimide-surfactantcomplexes: thermotropic liquid-crystalline materials via ionic self-assembly, Chem. Commun.2003,894-895.
    3. Zakrevskyy, Y., Faul, C. F. J., Guan, Y., Stumpe, J., Alignment of a Perylene-Based Ionic Self-AssemblyComplex in Thermotropic and Lyotropic Liquid-Crystalline Phases, Adv. Funct. Mater.2004,14,835-841.
    4. Faul, C. F. J., Antonietti, M., Facile Synthesis of Optically Functional, Highly Organized Nanostructures:Dye–Surfactant Complexes, Chem. Eur. J.2002,8,2764-2768.
    5. Guan, Y., Antonietti, M., Faul, Ionic Self-Assembly of Dye Surfactant Complexes: Influence of TailLengths and Dye Architecture on the Phase Morphology, Langmuir2002,18,5939-5945.
    6. Zakrevskyy, Y., Stumpe, J., Faul, C. F. J., A supramolecular approach to optically anisotropic materials:Photosensitive ionic self-assembly complexes, Adv. Mater.2006,18,2133-2136.
    7. Zakrevskyy, Y., Stumpe, J., Smarsly, B., Faul, C. F. J., Photoinduction of optical anisotropy in anazobenzene-containing ionic self-assembly liquid-crystalline material, Phys. Rev. E: Stat. Phys., Plasmas,Fluids,2007,75,031703.
    8. Lv, C., Xu, G., Chen, X., Ionic Self-assembled Fluorescent Organic Nanosticks, Chem. Lett.2012,41,1201-1203.
    9. Zhao, M., Zhao, Y., Zheng, L., Dai, C., Construction of Supramolecular Self-Assembled Microfibers withFluorescent Properties through a Modified Ionic Self-Assembly (ISA) Strategy, Chem. Eur. J.2013,19,1076-1081.
    10. Zhang, Q., Bazuin, C. G., Barrett, C. J., Simple spacer-free dye-polyelectrolyte ionic complex:Side-chain liquid crystal order with high and stable photoinduced Birefringence, Chem. Mater.2008,20,29-31.
    11. Xiao, S., Lu, X., Lu, Q., Photosensitive polymer from ionic self-assembly of azobenzene dye andpoly(ionic liquid) and its alignment characteristic toward liquid crystal molecules, Macromolecules2007,40,7944-7950.
    12. Seiji Ujiie, K. I., Thermal properties and orientational behavior of a liquid-crystalline ion complexpolymer, Macromolecules1992,25,3174-3178.
    13. Zhang, Q., Bazuin, C. G., Liquid Crystallinity and Other Properties in Complexes of CationicAzo-Containing Surfactomesogens with Poly(styrenesulfonate), Macromolecules2009,42,4775-4786.
    14. Zhang, Q., Wang, X., Barrett, C. J., Bazuin, C. G., Spacer-Free Ionic Dye-Polyelectrolyte Complexes:Influence of Molecular Structure on Liquid Crystal Order and Photoinduced Motion, Chem. Mater.2009,21,3216-3227.
    15. Zhang, Q. A., Bazuin, C. G., Solvent Manipulation of Liquid Crystal Order and Other Properties inAzo-Containing Surfactomesogen/Poly(styrene sulfonate) Complexes, Macromol. Chem. Phys.2010,211,1071-1082.
    16. Wang, X., Zhang, K., Zhu, M., Yu, H., Zhou, Z., Chen, Y., Hsiao, B. S., Continuous polymer nanofiberyarns prepared by self-bundling electrospinning method, Polymer2008,49,2755-2761.
    17. Ahmed, R., Priimagi, A., Faul, C. F. J., Manners, I., Redox-Active, Organometallic Surface-ReliefGratings from Azobenzene-Containing Polyferrocenylsilane Block Copolymers, Adv. Mater.2012,24,926-931.
    18. Xiao, S. F., Lu, X. M., Lu, Q. H., Su, B., Photosensitive liquid-crystalline supramolecules self-assembledfrom ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy, Macromolecules2008,41,3884-3892.
    19. Kulikovska, O., Goldenberg, L. M., Kulikovsky, L., Stumpe, J., Smart ionic sol-gel-based azobenzenematerials for optical generation of microstructures, Chem. Mater.2008,20,3528-3534.
    20. Kulikovska, O., Goldenberg, L. M., Stumpe, J., Supramolecular Azobenzene-Based Materials forOptical Generation of Microstructures, Chem. Mater.2007,19,3343-3348.
    21. Marcos, M., Alcala, R., Barbera, J., Romero, P., Sanchez, C., Serrano, J. L., Photosensitive IonicNematic Liquid Crystalline Complexes Based on Dendrimers and Hyperbranched Polymers and aCyanoazobenzene Carboxylic Acid, Chem. Mater.2008,20,5209-5217.
    22. Chen, X. M., Lu, X. M., Cui, K., Cui, W., Wu, J., Lu, Q. H., Precipitation supramolecular complex forphotoinduced anisotropic material with dual mesogenic units, Polymer2011,52,3243-3250.
    23. Lu, X., Xiao, S., Chen, X., Lu, Q., A photosensitive fluorinated ionic complex with tunable surfacewetting properties: mesostructure and photosensitivity, Polym. Chem.2011,2,2528-2535.
    24. Hernandez-Ainsa, S., Alcala, R., Barbera, J., Marcos, M., Sanchez, C., Serrano, J. L., IonicPhotoresponsive Azo-Codendrimer with Room Temperature Mesomorphism and High Photoinduced OpticalAnisotropy, Macromolecules2010,43,2660-2663.
    25. Hernandez-Ainsa, S., Alcala, R., Barbera, J., Marcos, M., Sanchez, C., Serrano, J. L., Ionicazo-codendrimers: Influence of the acids contents in the liquid crystalline properties and the photoinducedoptical anisotropy, Eur. Polym. J.2011,47,311-318.
    26. Priimagi, A., Vapaavuori, J., Rodriguez, F. J., Faul, C. F. J., Heino, M. T., Ikkala, O., Kauranen, M.,Kaivola, M., Hydrogen-Bonded Polymer Azobenzene Complexes: Enhanced Photoinduced Birefringencewith High Temporal Stability through Interplay of Intermolecular Interactions, Chem. Mater.2008,20,6358-6363.
    27. Uchida, E., Kawatsuki, N., Photoinduced Orientation in Photoreactive Hydrogen-Bonding LiquidCrystalline Polymers and Liquid Crystal Alignment on the Resultant Films, Macromolecules2006,39,9357-9364.
    28. Würthner, F., Bauer, C., Stepanenko, V., Yagai, S., A Black Perylene Bisimide Super Gelator with anUnexpected J-Type Absorption Band, Adv. Mater.2008,20,1695-1698.
    29. Li, X.-Q., Stepanenko, V., Chen, Z., Prins, P., Siebbeles, L. D. A., Wurthner, F., Functional organogelsfrom highly efficient organogelator based on perylene bisimide semiconductor, Chem. Commun.2006,0,3871-3873.
    30. Park, T., Todd, E. M., Nakashima, S., Zimmerman, S. C., A Quadruply Hydrogen BondedHeterocomplex Displaying High-Fidelity Recognition, J. Am. Chem. Soc.2005,127,18133-18142.
    31. Kawakami, T., Kato, T., Use of Intermolecular Hydrogen Bonding between Imidazolyl Moieties andCarboxylic Acids for the Supramolecular Self-Association of Liquid-Crystalline Side-Chain Polymers andNetworks, Macromolecules1998,31,4475-4479.
    32. Wu, S., Duan, S., Lei, Z., Su, W., Zhang, Z., Wang, K., Zhang, Q., Supramolecular bisazopolymersexhibiting enhanced photoinduced birefringence and enhanced stability of birefringence forfour-dimensional optical recording, J. Mater. Chem.2010,20,5202-5209.
    33. Koskela, J. E., Vapaavuori, J., Hautala, J., Priimagi, A., Faul, C. F. J., Kaivola, M., Ras, R. H. A.,Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range inSupramolecular Polymer-Bisazobenzene Complexes, J. Phys. Chem. C2012,116,2363-2370.
    34. Li, D., Wang, Y., Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially AlignedArrays, Nano Lett.2003,3,1167-1171.
    35. Huang, Z.-M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers byelectrospinning and their applications in nanocomposites, Compos. Sci. Technol.2003,63,2223-2253.
    36. Li, D., Wang, Y., Xia, Y., Electrospinning Nanofibers as Uniaxially Aligned Arrays and Layer-by-LayerStacked Films, Adv. Mater.2004,16,361-366.
    37. Lee, S.-W., Belcher, A. M., Virus-Based Fabrication of Micro-and Nanofibers Using Electrospinning,Nano Lett.2004,4,387-390.
    38. Powell, H. M., Supp, D. M., Boyce, S. T., Influence of electrospun collagen on wound contraction ofengineered skin substitutes, Biomaterials2008,29,834-843.
    39. Kim, H.-W., Kim, H.-E., Nanofiber generation of hydroxyapatite and fluor-hydroxyapatite bioceramics,Journal of Biomedical Materials Research Part B: Applied Biomaterials2006,77B,323-328.
    40. Sundarrajan, S., Venkatesan, A., Ramakrishna, S., Fabrication of Nanostructured Self-DetoxifyingNanofiber Membranes that Contain Active Polymeric Functional Groups, Macromol. Rapid Commun.2009,30,1769-1774.
    41. Uyar, T., Havelund, R., Hacaloglu, J., Besenbacher, F., Kingshott, P., Functional ElectrospunPolystyrene Nanofibers Incorporating-, β-, and γ-Cyclodextrins: Comparison of Molecular FilterPerformance, ACS Nano2010,4,5121-5130.
    42. Ma, Z., Kotaki, M., Ramakrishna, S., Electrospun cellulose nanofiber as affinity membrane, Journal ofMembrane Science2005,265,115-123.
    43. Wang, X., Kim, Y.-G., Drew, C., Ku, B.-C., Kumar, J., Samuelson, L. A., Electrostatic Assembly ofConjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors, Nano Letters2004,4,331-334.
    44. He, X., Arsat, R., Sadek, A. Z., Wlodarski, W., Kalantar-zadeh, K., Li, J., Electrospun PVP fibers andgas sensing properties of PVP/36°YX LiTaO3SAW device, Sensors and Actuators B: Chemical2010,145,674-679.
    45. Yoon, J., Jung, Y. S., Kim, J. M., A Combinatorial Approach for Colorimetric Differentiation of OrganicSolvents Based on Conjugated Polymer-Embedded Electrospun Fibers, Adv. Funct. Mater.2009,19,209-214.
    46. Ma, M., Mao, Y., Gupta, M., Gleason, K. K., Rutledge, G. C., Superhydrophobic Fabrics Produced byElectrospinning and Chemical Vapor Deposition, Macromolecules2005,38,9742-9748.
    47. Lim, H. S., Baek, J. H., Park, K., Shin, H. S., Kim, J., Cho, J. H., Multifunctional Hybrid Fabrics withThermally Stable Superhydrophobicity, Adv. Mater.2010,22,2138-2141.
    48. Tasuku, O., Bin, D., Yuji, S., Seimei, S., Super-hydrophobic surfaces of layer-by-layer structuredfilm-coated electrospun nanofibrous membranes, Nanotechnology2007,18,165607.
    49. Yu, Y., Gu, L., Wang, C., Dhanabalan, A., van Aken, P. A., Maier, J., Encapsulation of Sn@carbonNanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-Based Batteries,Angew. Chem. Int. Ed.2009,48,6485-6489.
    50. Lin, D., Wu, H., Zhang, R., Pan, W., Preparation of ZnS nanofibers via electrospinning, Journal of theAmerican Ceramic Society2007,90,3664-3666.
    51. Song, H., Yu, H., Pan, G., Bai, X., Dong, B., Zhang, X. T., Hark, S. K., Electrospinning Preparation,Structure, and Photoluminescence Properties of YBO3:Eu3+Nanotubes and Nanowires, Chem. Mater.2008,20,4762-4767.
    52. Singer, J. C., Giesa, R., Schmidt, H.-W., Shaping self-assembling small molecules into fibres by meltelectrospinning, Soft Matter2012,8,9972-9976.
    53. Hermida-Merino, D., Belal, M., Greenland, B., Woodward, P., Slark, A., Davis, F., Mitchell, G., Hamley,I., Hayes, W., Electrospun supramolecular polymer fibres, Eur. Polym. J.2012,48,1249-1255.
    54. Ruotsalainen, T., Turku, J., Heikkil, P., Ruokolainen, J., Nyk nen, A., Laitinen, T., Torkkeli, M.,Serimaa, R., ten Brinke, G., Harlin, A., Towards Internal Structuring of Electrospun Fibers by HierarchicalSelf‐Assembly of Polymeric Comb‐Shaped Supramolecules, Adv. Mater.2005,17,1048-1052.
    55. Doshi, J., Reneker, D. H., Electrospinning process and applications of electrospun fibers, Journal ofElectrostatics1995,35,151-160.
    56. Mathew, G., Hong, J. P., Rhee, J. M., Leo, D. J., Nah, C., Preparation and anisotropic mechanicalbehavior of highly-oriented electrospun poly(butylene terephthalate) fibers, Journal of Applied PolymerScience2006,101,2017-2021.
    57. Bazbouz, M. B., Stylios, G. K., Alignment and optimization of nylon6nanofibers by electrospinning,Journal of Applied Polymer Science2008,107,3023-3032.
    58. Yang, D., Lu, B., Zhao, Y., Jiang, X., Fabrication of Aligned Fibrous Arrays by MagneticElectrospinning, Adv. Mater.2007,19,3702-3706.
    59. Katta, P., Alessandro, M., Ramsier, R. D., Chase, G. G., Continuous electrospinning of aligned polymernanofibers onto a wire drum collector, Nano Lett.2004,4,2215-2218.
    60. Pan, H., Li, L., Hu, L., Cui, X., Continuous aligned polymer fibers produced by a modifiedelectrospinning method, Polymer2006,47,4901-4904.
    61. Smit, E., B ttner, U., Sanderson, R. D., Continuous yarns from electrospun fibers, Polymer2005,46,2419-2423.
    62. Teo, W.-E., Gopal, R., Ramaseshan, R., Fujihara, K., Ramakrishna, S., A dynamic liquid support systemfor continuous electrospun yarn fabrication, Polymer2007,48,3400-3405.
    63. Teo, W. E., Kotaki, M., Mo, X. M., Ramakrishna, S., Porous tubular structures with controlled fibreorientation using a modified electrospinning method, Nanotechnology2005,16,918.
    64. Wu, Y., Carnell, L. A., Clark, R. L., Control of electrospun mat width through the use of parallelauxiliary electrodes, Polymer2007,48,5653-5661.
    65. Dalton, P. D., Klee, D., M ller, M., Electrospinning with dual collection rings, Polymer2005,46,611-614.
    66. Kakade, M. V., Givens, S., Gardner, K., Lee, K. H., Chase, D. B., Rabolt, J. F., Electric Field InducedOrientation of Polymer Chains in Macroscopically Aligned Electrospun Polymer Nanofibers, J. Am. Chem.Soc.2007,129,2777-2782.
    67. Rafique, J., Yu, J., Fang, G., Wong, K. W., Zheng, Z., Ong, H. C., Lau, W. M., Electrospinning highlyaligned long polymer nanofibers on large scale by using a tip collector, Appl. Phys. Lett.2007,91.
    68. Li, Y., Li, P., Yang, M., Lei, S., Chen, Y., Guo, X., A surface acoustic wave humidity sensor based onelectrosprayed silicon-containing polyelectrolyte, Sensors and Actuators B: Chemical2010,145,516-520.
    69. Xianfeng, W., Bin, D., Jianyong, Y., Moran, W., Fukui, P., A highly sensitive humidity sensor based ona nanofibrous membrane coated quartz crystal microbalance, Nanotechnology2010,21,055502.
    70. Choi, S.-H., Ankonina, G., Youn, D.-Y., Oh, S.-G., Hong, J.-M., Rothschild, A., Kim, I.-D., HollowZnO Nanofibers Fabricated Using Electrospun Polymer Templates and Their Electronic Transport Properties,ACS Nano2009,3,2623-2631.
    71. Shi, W., Lu, W., Jiang, L., The fabrication of photosensitive self-assembly Au nanoparticles embeddedin silica nanofibers by electrospinning, Journal of Colloid and Interface Science2009,340,291-297.
    72. Wang, X., Drew, C., Lee, S.-H., Senecal, K. J., Kumar, J., Samuelson, L. A., Electrospun NanofibrousMembranes for Highly Sensitive Optical Sensors, Nano Lett.2002,2,1273-1275.
    73. Wang, Z.-G., Wang, Y., Xu, H., Li, G., Xu, Z.-K., Carbon Nanotube-Filled Nanofibrous MembranesElectrospun from Poly(acrylonitrile-co-acrylic acid) for Glucose Biosensor, J. Phys. Chem. C2009,113,2955-2960.
    74. Lu, Y., Yang, Y., Sellinger, A., Lu, M., Huang, J., Fan, H., Haddad, R., Lopez, G., Burns, A. R., Sasaki,D. Y., Shelnutt, J., Brinker, C. J., Self-assembly of mesoscopically ordered chromatic polydiacetylene/silicananocomposites, Nature2001,410,913-917.
    75. Cheng, Q., Stevens, R. C., Charge-Induced Chromatic Transition of Amino Acid-DerivatizedPolydiacetylene Liposomes, Langmuir1998,14,1974-1976.
    76. Kolusheva, S., Shahal, T., Jelinek, R., Cation-Selective Color Sensors Composed ofIonophore Phospholipid Polydiacetylene Mixed Vesicles, J. Am. Chem. Soc.2000,122,776-780.
    77. Chance, R. R., Chromism in Polydiacetylene Solutions and Crystals, Macromolecules1980,13,396-398.
    78. Tashiro, K., Nishimura, H., Kobayashi, M., First Success in Direct Analysis of Microscopic DeformationMechanism of Polydiacetylene Single Crystal by the X-ray Imaging-Plate System, Macromolecules1996,29,8188-8196.
    79. Feng, H., Lu, J., Li, J., Tsow, F., Forzani, E., Tao, N., Hybrid Mechanoresponsive Polymer Wires UnderForce Activation, Adv. Mater.2012,1729-1733.
    80. Charych, D. H., Nagy, J. O., Spevak, W., Bednarski, M. D., Direct colorimetric detection of areceptor-ligand interaction by a polymerized bilayer assembly, Science1993,261,585-588.
    81. Robert, W. C., Darryl, Y. S., Matthew, S. M., Eriksson, M. A., Alan, R. B., Polydiacetylene films: areview of recent investigations into chromogenic transitions and nanomechanical properties, J. Phys.:Condens. Matter2004,16, R679.
    82. Chae, S. K., Park, H., Yoon, J., Lee, C. H., Ahn, D. J., Kim, J. M., Polydiacetylene supramolecules inelectrospun microfibers: Fabrication, micropatterning, and sensor applications, Adv. Mater.2007,19,521-524.
    83. Yoon, J., Chae, S. K., Kim, J. M., Colorimetric Sensors for Volatile Organic Compounds (VOCs) Basedon Conjugated Polymer-Embedded Electrospun Fibers, J. Am. Chem. Soc.2007,129,3038-3039.
    84. Lee, J., Balakrishnan, S., Cho, J., Jeon, S. H., Kim, J. M., Detection of adulterated gasoline usingcolorimetric organic microfibers, J. Mater. Chem.2011,21,2648-2655.
    85. Jeon, H., Lee, J., Kim, M. H., Yoon, J., Polydiacetylene-Based Electrospun Fibers for Detection of HClGas, Macromol. Rapid Commun.2012,33,972-976.
    1. Walker, R., Audorff, H., Kador, L., Schmidt, H. W., Blends of Azobenzene-Containing Polymers andMolecular Glasses as Stable Rewritable Holographic Storage Materials, Practical Holography Xxiv:Materials and Applications2010,7619,76190H.
    2. Audorff, H., Kreger, K., Walker, R., Haarer, D., Kador, L., Schmidt, H. W., Holographic Gratings andData Storage in Azobenzene-Containing Block Copolymers and Molecular Glasses, ComplexMacromolecular Systems II2010,228,59-121.
    3. Wu, S., Shi, F., Zhang, Q. J., Bubeck, C., Stable Hydrogen-Bonding Complexes ofPoly(4-vinylpyridine) and Polydiacetylenes for Photolithography and Sensing, Macromolecules2009,42,4110-4117.
    4. Zhang, Y. M., Wang, C., Pei, X. Q., Wang, Q. H., Wang, T. M., Shape memory polyurethanescontaining azo exhibiting photoisomerization function, J. Mater. Chem.2010,20,9976-9981.
    5. Lee, M. J., Ji, H. N., Han, Y. K., Silicon-Containing Azo Polymers with Paired Mesogens and TheirApplications to Optical Memory Media, J. Polym. Sci. Pol. Chem.2008,46,6734-6745.
    6. Bang, C. U., Shishido, A., Ikeda, T., Azobenzene liquid-crystalline polymer for optical switching ofgrating waveguide couplers with a flat surface, Macromol. Rapid Commun.2007,28,1040-1044.
    7. Heydari, E., Mohajerani, E., Shams, A., All optical switching in azo-polymer planar waveguide, Opt.Commun.2011,284,1208-1212.
    8. Jian Hung, L., Yu Chung, H., Ngoc, D., Hung-Chih, K., Chia Chen, H., Optical modulation of guidedmode resonance in the waveguide grating structure incorporated withazo-doped-poly(methylmethacrylate) cladding layer, Opt. Express2012,20,377-384384.
    9. Vapaavuori, J., Priimagi, A., Kaivola, M., Photoinduced surface-relief gratings in films ofsupramolecular polymer-bisazobenzene complexes, J. Mater. Chem.2010,20,5260-5264.
    10. Natansohn, A., Rochon, P., Photoinduced motions in azo-containing polymers, Chem. Rev.2002,102,4139-4175.
    11. Koskela, J. E., Vapaavuori, J., Hautala, J., Priimagi, A., Faul, C. F. J., Kaivola, M., Ras, R. H. A.,Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range inSupramolecular Polymer-Bisazobenzene Complexes, J. Phys. Chem. C2012,116,2363-2370.
    12. Oliveira, O. N., dos Santos, D. S., Balogh, D. T., Zucolotto, V., Mendonca, C. R., Optical storageand surface-relief gratings in azobenzene-containing nanostructured films, Adv. Colloid Interface Sci.2005,116,179-192.
    13. Ortyl, E., Jaworowska, J., Seifi, P. T., Barille, R., Kucharski, S., Photochromic Polymer and HybridMaterials Containing Azo Methylisoxazole Dye, Soft Materials2011,9,335-346.
    14. H ckel, M., Kador, L., Kropp, D., Schmidt, H. W., Polymer Blends with Azobenzene-ContainingBlock Copolymers as Stable Rewritable Volume Holographic Media, Adv. Mater.2007,19,227-231.
    15. Pan, X., Wang, C., Xu, H., Wang, C., Zhang, X., Polarization holographic gratings in an azobenzeneside-chain liquid-crystalline polymer, Appl. Phys. B2007,86,693-697.
    16. Yesodha, S. K., Pillai, C. K. S., Tsutsumi, N., Stable polymeric materials for nonlinear optics: areview based on azobenzene systems, Prog. Polym. Sci.2004,29,45-74.
    17. Lee, C. H., Bihari, B., Filler, R., Mandal, B. K., New azobenzene non-linear optical materials foreye and sensor protection, Opt. Materials2009,32,147-153.
    18. Villacampa, B., Sanchez, C., Rodriguez-Martinez, F. J., Cases, R., Alcala, R., Oriol, L., Millaruelo,M., Non-linear optical properties of liquid crystalline azobenzene polymeric films, Mol. Cryst. Liq.Cryst.2004,411,1509-1517.
    19. Rodriguez, F. J., Sanchez, C., Villacampa, B., Alcala, R., Cases, R., Millaruelo, M., Oriol, L.,Optical anisotropy and non-linear optical properties of azobenzene methacrylic polymers, Polymer2004,45,2341-2348.
    20. Ikeda, T., Mamiya, J., Yu, Y. L., Photomechanics of liquid-crystalline elastomers and otherpolymers, Angew. Chem. Int. Ed.2007,46,506-528.
    21. Barrett, C. J., Mamiya, J. I., Yager, K. G., Ikeda, T., Photo-mechanical effects inazobenzene-containing soft materials, Soft Matter2007,3,1249-1261.
    22. Hernandez-Ainsa, S., Alcala, R., Barbera, J., Marcos, M., Sanchez, C., Serrano, J. L., IonicPhotoresponsive Azo-Codendrimer with Room Temperature Mesomorphism and High PhotoinducedOptical Anisotropy, Macromolecules2010,43,2660-2663.
    23. Wang, D. H., Lee, K. M., Yu, Z. N., Koerner, H., Vaia, R. A., White, T. J., Tan, L. S.,Photomechanical Response of Glassy Azobenzene Polyimide Networks, Macromolecules2011,44,3840-3846.
    24. Ohm, C., Brehmer, M., Zentel, R., Liquid Crystalline Elastomers as Actuators and Sensors, Adv.Mater.2010,22,3366-3387.
    25. Fernandez, R., Ramos, J. A., Esposito, L., Tercjak, A., Mondragon, I., Reversible Optical StorageProperties of Nanostructured Epoxy-Based Thermosets Modified with Azobenzene Units,Macromolecules2011,44,9738-9746.
    26. Moritsugu, M., Ishikawa, T., Kawata, T., Ogata, T., Kuwahara, Y., Kurihara, S., Thermal andPhotochemical Control of Molecular Orientation of Azo-Functionalized Polymer Liquid Crystals andApplication for Photo-Rewritable Paper, Macromol. Rapid Commun.2011,32,1546-1550.
    27. Schab Balcerzak, E., Siwy, M., Kawalec, M., Sobolewska, A., Chamera, A., Miniewicz, A.,Synthesis, Characterization, and Study of Photoinduced Optical Anisotropy in Polyimides ContainingSide Azobenzene Units, J. Phys. Chem. A2009,113,8765-8780.
    28. Pei, S., Chen, X., Wang, F., Jiang, Z., Peng, W., Dynamics of the Photo-Induced Orientation andRelaxation of a Novel Hyperbranched Poly(Aryl Ether) Containing Azobenzene Groups, Laser Phys.2010,20,1144-1148.
    29. Shen, X., Liu, H., Li, Y., Liu, S., Click-Together Azobenzene Dendrons: Synthesis andCharacterization, Macromolecules2008,41,2421-2425.
    30. del Barrio, J. s., Tejedor, R. M., Chinelatto, L. S., Sa nchez, C., Pin ol, M., Oriol, L., Photocontrol ofthe Supramolecular Chirality Imposed by Stereocenters in Liquid Crystalline Azodendrimers, Chem.Mater.2009,22,1714-1723.
    31. Zhang, Q., Bazuin, C. G., Barrett, C. J., Simple spacer-free dye-polyelectrolyte ionic complex:Side-chain liquid crystal order with high and stable photoinduced Birefringence, Chem. Mater.2008,20,29-31.
    32. Zhang, Q., Bazuin, C. G., Liquid Crystallinity and Other Properties in Complexes of CationicAzo-Containing Surfactomesogens with Poly(styrenesulfonate), Macromolecules2009,42,4775-4786.
    33. Zhang, Q. A., Bazuin, C. G., Solvent Manipulation of Liquid Crystal Order and Other Properties inAzo-Containing Surfactomesogen/Poly(styrene sulfonate) Complexes, Macromol. Chem. Phys.2010,211,1071-1082.
    34. Qiu, H. D., Takafuji, M., Sawada, T., Liu, X., Jiang, S. X., Ihara, H., New strategy for drasticenhancement of selectivity via chemical modification of counter anions in ionic liquid polymer phase,Chem. Commun.2010,46,8740-8742.
    35. Kulikovska, O., Goldenberg, L. M., Kulikovsky, L., Stumpe, J., Smart ionic sol-gel-basedazobenzene materials for optical generation of microstructures, Chem. Mater.2008,20,3528-3534.
    36. Marcos, M., Alcala, R., Barbera, J., Romero, P., Sanchez, C., Serrano, J. L., Photosensitive IonicNematic Liquid Crystalline Complexes Based on Dendrimers and Hyperbranched Polymers and aCyanoazobenzene Carboxylic Acid, Chem. Mater.2008,20,5209-5217.
    37. Xiao, S., Lu, X., Lu, Q., Photosensitive polymer from ionic self-assembly of azobenzene dye andpoly(ionic liquid) and its alignment characteristic toward liquid crystal molecules, Macromolecules2007,40,7944-7950.
    38. Altomare, A., Ciardelli, F., Gallot, B., Mader, M., Solaro, R., Tirelli, N., Synthesis andpolymerization of amphiphilic methacrylates containing permanent dipole azobenzene chromophores, J.Polym. Sci. Pol. Chem.2001,39,2957-2977.
    39. Kim, J., Fukuda, T., Large photo-induced birefringence in azobenzene copolymer, Mol. Cryst. Liq.Cryst.2006,446,71-80.
    40. Hu, J. P., Li, Y. F., Ji, Z. Y., Jiang, G. Y., Yang, L. M., Hu, W. P., Gao, H. J., Jiang, L., Wen, Y. Q.,Song, Y. L., Zhu, D. B., A non-planar organic molecule with non-volatile electrical bistability fornano-scale data storage, J. Mater. Chem.2007,17,3530-3535.
    41. Kaspar, M., Hamplova, V., Novotna, V., Studenovsky, M., Ilavsky, M., Thermal properties ofliquid-crystalline diols and corresponding bis-urethanes with mesogenic groups of various structures inside chains, Mol. Cryst. Liq. Cryst.2002,392,17-30.
    42. Xiao, S. F., Lu, X. M., Lu, Q. H., Su, B., Photosensitive liquid-crystalline supramoleculesself-assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy,Macromolecules2008,41,3884-3892.
    43. Li, X., Wen, R., Zhang, Y., Zhu, L., Zhang, B., Zhang, H., Photoresponsive side-chain liquidcrystalline polymers with an easily cross-linkable azobenzene mesogen, J. Mater. Chem.2009,19,236.
    44. Hansch, C., Leo, A., Taft, R. W., A survey of Hammett substituent constants and resonance and fieldparameters, Chem. Rev.1991,91,165-195.
    45. Zakrevskyy, Y., Stumpe, J., Faul, C. F. J., A supramolecular approach to optically anisotropicmaterials: Photosensitive ionic self-assembly complexes, Adv. Mater.2006,18,2133-2136.
    46. Faul, C. F. J., Antonietti, M., Ionic self-assembly: Facile synthesis of supramolecular materials, Adv.Mater.2003,15,673-683.
    47. Hernandez-Ainsa, S., Alcala, R., Barbera, J., Marcos, M., Sanchez, C., Serrano, J. L., Ionicazo-codendrimers: Influence of the acids contents in the liquid crystalline properties and thephotoinduced optical anisotropy, Eur. Polym. J.2011,47,311-318.
    1. Grell, M., Bradley, D. D. C., Polarized luminescence from oriented molecular materials, Adv. Mater.1999,11,895-905.
    2. Nagamatsu, S., Misaki, M., Yoshida, Y., Azumi, R., Tanigaki, N., Yase, K., Multi-layered orientedpolyfluorene films, J. Phys. Chem. B2009,113,5746-5751.
    3. Grimsdale, A. C., Chan, K. L., Martin, R. E., Jokisz, P. G., Holmes, A. B., Synthesis of light-emittingconjugated polymers for applications in electroluminescent devices, Chem. Rev.2009,109,897-1091.
    4. Misaki, M., Chikamatsu, M., Yoshida, Y., Azumi, R., Tanigaki, N., Yase, K., Nagamatsu, S., Ueda, Y.,Highly efficient polarized polymer light-emitting diodes utilizing oriented films of-phasepoly(9,9-dioctylfluorene), Appl. Phys. Lett.2008,93,023304.
    5. Aldred, M. P., Vlachos, P., Contoret, A. E. A., Farrar, S. R., Chung-Tsoi, W., Mansoor, B., Woon, K.L., Hudson, R., Kelly, S. M., O'Neill, M., Linearly polarised organic light-emitting diodes (OLEDs):Synthesis and characterisation of a novel hole-transporting photoalignment copolymer, J. Mater. Chem.2005,15,3208-3213.
    6. Abbas, M., D'Amico, F., Ali, M., Mencarelli, I., Setti, L., Bontempi, E., Gunnella, R., Rubbingeffects on the structural and optical properties of poly(3-hexylthiophene) films, J. Phys. D: Appl. Phys.2010,43,035103.
    7. He, B., Li, J., Bo, Z., Huang, Y., Highly polarized blue luminescence from the orientedpoly(9,9-dioctylfluorene)/polyethylene blending films, Macromolecules2005,38,6762-6766.
    8. Kwak, G., Minakuchi, M., Sakaguchi, T., Masuda, T., Fujiki, M., Poly(diphenylacetylene) bearinglong alkyl side chain via silylene linkage: Its lyotropic liquid crystallinity and optical anisotropy, Chem.Mater.2007,19,3654-3661.
    9. Yan, D., Lu, J., Wei, M., Ma, J., Evans, D. G., Duan, X., Layer-by-layer assembly of ruthenium(ii)complex anion/layered double hydroxide ordered ultrathin films with polarized luminescence, Chem.Commun.2009,6358-6360.
    10. Yasuda, T., Ooi, H., Morita, J., Akama, Y., Minoura, K., Funahashi, M., Shimomura, T., Kato, T.,π-Conjugated oligothiophene-based polycatenar liquid crystals: Self-organization and photoconductive,luminescent, and redox properties, Adv. Funct. Mater.2009,19,411-419.
    11. Nishizawa, T., Lim, H. K., Tajima, K., Hashimoto, K., Highly uniaxial orientation inoligo(p-phenylenevinylene) films induced during wet-coating process, J. Am. Chem. Soc.2009,131,2464-2465.
    12. Li, C. Z., Matsuo, Y., Nakamura, E., Luminescent bow-tie-shaped decaaryl[60]fullerene mesogens,J. Am. Chem. Soc.2009,131,17058-17059.
    13. Pagliara, S., Camposeo, A., Mele, E., Persano, L., Cingolani, R., Pisignano, D., Enhancement oflight polarization from electrospun polymer fibers by room temperature nanoimprint lithography,Nanotechnology2010,21,215304.
    14. Yin, K., Zhang, L., Lai, C., Zhong, L., Smith, S., Fong, H., Zhu, Z., Photoluminescence anisotropyof uni-axially aligned electrospun conjugated polymer nanofibers of MEH-PPV and P3HT, J. Mater.Chem.2011,21,444-448.
    15. Zhong, W., Li, F., Chen, L., Chen, Y. W., Wei, Y., A novel approach to electrospinning of pristineand aligned MEH-PPV using binary solvents, J. Mater. Chem.2012,22,5523-5530.
    16. Contoret, A. E. A., Farrar, S. R., Jackson, P. O., Khan, S. M., May, L., O'Neill, M., Nicholls, J. E.,Kelly, S. M., Richards, G. J., Polarized Electroluminescence from an Anisotropic Nematic Network ona Non-contact Photoalignment Layer, Adv. Mater.2000,12,971-974.
    17. Schadt, M., Seiberle, H., Schuster, A., Optical patterning of multi-domain liquid-crystal displayswith wide viewing angles, Nature1996,381,212-215.
    18. Gibbons, W. M., Shannon, P. J., Sun, S.-T., Swetlin, B. J., Surface-mediated alignment of nematicliquid crystals with polarized laser light, Nature1991,351,49-50.
    19. Weder, C., Sarwa, C., Montali, A., Bastiaansen, G., Smith, P., Incorporation of photoluminescentpolarizers into liquid crystal displays, Science1998,279,835-837.
    20. Schadt, M., Schmitt, K., Kozinkov, V., Chigrinov, V., Surface-induced parallel alignment of liquidcrystals by linearly polymerized photopolymers, Jpn. J. Appl. Phys. Part11992,31,2155-21642164.
    21. Goldenberg, L. M., Kulikovsky, L., Gritsai, Y., Kulikovska, O., Tomczyk, J., Stumpe, J., Veryefficient surface relief holographic materials based on azobenzene-containing epoxy resins cured infilms, J. Mater. Chem.2010,20,9161.
    22. Herna ndez-Ainsa, S., Alcala, R., Barbera, J. n., Marcos, M., Sa nchez, C., Serrano, J. L., IonicPhotoresponsive Azo-Codendrimer with Room Temperature Mesomorphism and High PhotoinducedOptical Anisotropy, Macromolecules2010,43,2660-2663.
    23. Vapaavuori, J., Valtavirta, V., Alasaarela, T., Mamiya, J.-I., Priimagi, A., Shishido, A., Kaivola, M.,Efficient surface structuring and photoalignment of supramolecular polymer–azobenzene complexesthrough rational chromophore design, J. Mater. Chem.2011,21,15437.
    24. Ikeda, T., Mamiya, J., Yu, Y., Photomechanics of Liquid-Crystalline Elastomers and Other Polymers,Angew. Chem. Int. Ed.2007,46,506-528.
    25. Li, C., Zhang, Y., Ju, J., Cheng, F., Liu, M., Jiang, L., Yu, Y., In Situ Fully Light-Driven Switchingof Superhydrophobic Adhesion, Adv. Funct. Mater.2012,22,760-763.
    26. Fukuda, K., Seki, T., Ichimura, K., Photoalignment of poly(di-n-hexylsilane) by azobenzenemonolayer:1. Preparative conditions of poly(di-n-hexylsilane) spincast film, Macromolecules2002,35,2177-2183.
    27. V gtle, F., Gorka, M., Hesse, R., Ceroni, P., Maestri, M., Balzani, V., Photochemical andphotophysical properties of poly(propylene amine) dendrimers with peripheral naphthalene andazobenzene groups, Photoch. Photobio.2002,1,45-51.
    28. Ceroni, P., Laghi, I., Maestri, M., Balzani, V., Gestermann, S., Gorkab, M., V gtle, F.,Photochemical, photophysical and electrochemical properties of six dansyl-based dyads, New J. Chem.2002,26,66-75.
    29. Gimenez, R., Millaruelo, M., Pinol, M., Serrano, J. L., Vinuales, A., Rosenhauer, R., Fischer, T.,Stumpe, J., Synthesis, thermal and optical properties of liquid crystalline terpolymers containingazobenzene and dye moieties, Polymer2005,46,9230-9242.
    30. Rosenhauer, R., Fischer, T., Stumpe, J., Gimenez, R., Pinol, M., Serrano, J. L., Vinuales, A., Broer,D., Light-induced orientation of liquid crystalline terpolymers containing azobenzene and dye moieties,Macromolecules2005,38,2213-2222.
    31. Harbron, E. J., Vicente, D. A., Hoyt, M. T., Fluorescence Modulation via Isomer-Dependent EnergyTransfer in an Azobenzene-Functionalized Poly(phenylenevinylene) Derivative, J. Phy. Chem. B2004,108,18789-18792.
    32. Abdallah, D., Whelan, J., Dust, J. M., Hoz, S., Buncel, E., Energy Transfer in theAzobenzene Naphthalene Light Harvesting System, J. Phys. Chem. A2009,113,6640-6647.
    33. Schuster, D. I., Li, K., Guldi, D. M., Palkar, A., Echegoyen, L., Stanisky, C., Cross, R. J., Niemi, M.,Tkachenko, N. V., Lemmetyinen, H., Azobenzene-Linked Porphyrin Fullerene Dyads, J. Am. Chem.Soc.2007,129,15973-15982.
    34. Hara, Y., Fujii, T., Kashida, H., Sekiguchi, K., Liang, X., Niwa, K., Takase, T., Yoshida, Y.,Asanuma, H., Coherent Quenching of a Fluorophore for the Design of a Highly Sensitive In-StemMolecular Beacon, Angew. Chem. Int. Ed.2010,49,5502-5506.
    35. Astruc, D., Boisselier, E., Ornelas, C., Dendrimers Designed for Functions: From Physical,Photophysical, and Supramolecular Properties to Applications in Sensing, Catalysis, MolecularElectronics, Photonics, and Nanomedicine, Chem. Rev.2010,110,1857-1959.
    36. Archut, A., Azzellini, G. C., Balzani, V., De Cola, L., V gtle, F., Toward Photoswitchable DendriticHosts. Interaction between Azobenzene-Functionalized Dendrimers and Eosin, J. Am. Chem. Soc.1998,120,12187-12191.
    37. Dube, H., Ams, M. R., Rebek, J., Supramolecular Control of Fluorescence through ReversibleEncapsulation, J. Am. Chem. Soc.2010,132,9984-9985.
    38. Canilho, N., Kas mi, E., Schlüter, A. D., Mezzenga, R., Comblike Liquid-Crystalline Polymersfrom Ionic Complexation of Dendronized Polymers and Lipids, Macromolecules2007,40,2822-2830.
    39. Zakrevskyy, Y., Faul, C. F. J., Guan, Y., Stumpe, J., Alignment of a Perylene-Based IonicSelf-Assembly Complex in Thermotropic and Lyotropic Liquid-Crystalline Phases, Adv. Funct. Mater.2004,14,835-841.
    40. Xiao, S. F., Lu, X. M., Lu, Q. H., Su, B., Photosensitive liquid-crystalline supramoleculesself-assembled from ionic liquid crystal and polyelectrolyte for laser-induced optical anisotropy,Macromolecules2008,41,3884-3892.
    41. Zhang, Q., Bazuin, C. G., Liquid Crystallinity and Other Properties in Complexes of CationicAzo-Containing Surfactomesogens with Poly(styrenesulfonate), Macromolecules2009,42,4775-4786.
    42. Li, X., Wen, R., Zhang, Y., Zhu, L., Zhang, B., Zhang, H., Photoresponsive side-chain liquidcrystalline polymers with an easily cross-linkable azobenzene mesogen, J. Mater. Chem.2009,19,236-245.
    43. Ilieva, D., Nedelchev, L., Petrova, T., Dragostinova, V., Todorov, T., Nikolova, L., Ramanujam, P.S., Photoinduced processes and holographic storage in stilbene and stilbenecarboxaldehyde in apolymethylmethacrylate matrix, J. Opt. A. Pure Appl. Op.2006,8,221-224.
    44. Wolarz, E., Fischer, T., Stumpe, J., Photoorientation in thin aligned layers of side-group liquidcrystalline copolysiloxane doped with azobenzene and stilbene derivatives, Thin Solid Films2003,424,179-185.
    45. Fischer, T., Ruhmann, R., Seeboth, A., Photochemically induced structure transfer from analogousazobenzenes and stilbenes onto a liquid crystalline phase, J. Chem. Soc., Perkin Trans.21996,1087-1090.
    46. Giménez, R., Pi ol, M., Serrano, J. L., Vi uales, A. I., Rosenhauer, R., Stumpe, J., Photo-inducedanisotropic films based on liquid crystalline copolymers containing stilbene units, Polymer2006,47,5707-5714.
    47. Evans, K. E., Thermal stress mechanisms in optical storage thin films, J. Appl. Phys.1988,63,4946-4950.
    48. Bartholomeusz, B. J., Thermal modeling studies of organic compact disk-writable media, Appl. Opt.1992,31,909-918.
    49. Rosenhauer, R., Stumpe, J., Gimenez, R., Pinol, M., Serrano, J. L., Vinuales, A., Broer, D.,Generation of Anisotropic Emission by Light-Induced Orientation of Liquid Crystalline Polymers,Macromolecules2011,44,1438-1449.
    1. Li, D., Wang, Y., Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as UniaxiallyAligned Arrays, Nano Lett.2003,3,1167-1171.
    2. Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers byelectrospinning and their applications in nanocomposites, Compos. Sci. Technol.2003,63,2223-2253.
    3. Li, D., Wang, Y., Xia, Y., Electrospinning Nanofibers as Uniaxially Aligned Arrays andLayer-by-Layer Stacked Films, Adv. Mater.2004,16,361-366.
    4. Lee, S.-W., Belcher, A. M., Virus-Based Fabrication of Micro-and Nanofibers Using Electrospinning,Nano Lett.2004,4,387-390.
    5. Powell, H. M., Supp, D. M., Boyce, S. T., Influence of electrospun collagen on wound contraction ofengineered skin substitutes, Biomaterials2008,29,834-843.
    6. Kim, H.-W., Kim, H.-E., Nanofiber generation of hydroxyapatite and fluor-hydroxyapatitebioceramics, Journal of Biomedical Materials Research Part B: Applied Biomaterials2006,77B,323-328.
    7. Sundarrajan, S., Venkatesan, A., Ramakrishna, S., Fabrication of Nanostructured Self-DetoxifyingNanofiber Membranes that Contain Active Polymeric Functional Groups, Macromol. Rapid Commun.2009,30,1769-1774.
    8. Uyar, T., Havelund, R., Hacaloglu, J., Besenbacher, F., Kingshott, P., Functional ElectrospunPolystyrene Nanofibers Incorporating-, β-, and γ-Cyclodextrins: Comparison of Molecular FilterPerformance, ACS Nano2010,4,5121-5130.
    9. Ma, Z., Kotaki, M., Ramakrishna, S., Electrospun cellulose nanofiber as affinity membrane, Journalof Membrane Science2005,265,115-123.
    10. Wang, X., Kim, Y.-G., Drew, C., Ku, B.-C., Kumar, J., Samuelson, L. A., Electrostatic Assembly ofConjugated Polymer Thin Layers on Electrospun Nanofibrous Membranes for Biosensors, Nano Lett.2004,4,331-334.
    11. He, X., Arsat, R., Sadek, A. Z., Wlodarski, W., Kalantar-zadeh, K., Li, J., Electrospun PVP fibersand gas sensing properties of PVP/36°YX LiTaO3SAW device, Sensors and Actuators B: Chemical2010,145,674-679.
    12. Yoon, J., Jung, Y. S., Kim, J. M., A Combinatorial Approach for Colorimetric Differentiation ofOrganic Solvents Based on Conjugated Polymer-Embedded Electrospun Fibers, Adv. Funct. Mater.2009,19,209-214.
    13. Ma, M., Mao, Y., Gupta, M., Gleason, K. K., Rutledge, G. C., Superhydrophobic Fabrics Producedby Electrospinning and Chemical Vapor Deposition, Macromolecules2005,38,9742-9748.
    14. Lim, H. S., Baek, J. H., Park, K., Shin, H. S., Kim, J., Cho, J. H., Multifunctional Hybrid Fabricswith Thermally Stable Superhydrophobicity, Adv. Mater.2010,22,2138-2141.
    15. Tasuku, O., Bin, D., Yuji, S., Seimei, S., Super-hydrophobic surfaces of layer-by-layer structuredfilm-coated electrospun nanofibrous membranes, Nanotechnology2007,18,165607.
    16. Yu, Y., Gu, L., Wang, C., Dhanabalan, A., van Aken, P. A., Maier, J., Encapsulation of Sn@carbonNanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-BasedBatteries, Angew. Chem. Int. Ed.2009,48,6485-6489.
    17. Lin, D., Wu, H., Zhang, R., Pan, W., Preparation of ZnS nanofibers via electrospinning, Journal ofthe American Ceramic Society2007,90,3664-3666.
    18. Song, H., Yu, H., Pan, G., Bai, X., Dong, B., Zhang, X. T., Hark, S. K., Electrospinning Preparation,Structure, and Photoluminescence Properties of YBO3:Eu3+Nanotubes and Nanowires, Chem. Mater.2008,20,4762-4767.
    19. Wang, X., Drew, C., Lee, S.-H., Senecal, K. J., Kumar, J., Samuelson, L. A., ElectrospunNanofibrous Membranes for Highly Sensitive Optical Sensors, Nano Lett.2002,2,1273-1275.
    20. Madhugiri, S., Dalton, A., Gutierrez, J., Ferraris, J. P., Balkus, K. J., ElectrospunMEH-PPV/SBA-15Composite Nanofibers Using a Dual Syringe Method, J. Am. Chem. Soc.2003,125,14531-14538.
    21. Zhong, W., Li, F., Chen, L., Chen, Y. W., Wei, Y., A novel approach to electrospinning of pristineand aligned MEH-PPV using binary solvents, J. Mater. Chem.2012,22,5523-5530.
    22. Anandakathir, R., Ojha, U., Ada, E. T., Faust, R., Kumar, J., Stilbene-based fluorescent sensor fordetection of organophosphorus warfare nerve agents, J. Macromol. Sci., Pure Appl. Chem.2009,46,1217-1222.
    23. Wan, L.-S., Wu, J., Xu, Z.-K., Porphyrinated Nanofibers via Copolymerization and Electrospinning,Macromol. Rapid Commun.2006,27,1533-1538.
    24. Zhu, J., Sun, G., Preparation and photo-oxidative functions of poly(ethylene-co-methacrylic acid)(PE-co-MAA) nanofibrous membrane supported porphyrins, J. Mater. Chem.2012,22,10581-10588.
    25. Hofmeier, H., Schubert, U. S., Recent developments in the supramolecular chemistry ofterpyridine-metal complexes, Chem. Soc. Rev.2004,33,373-399.
    26. Hinoue, T., Miyata, M., Hisaki, I., Tohnai, N., Guest-Responsive Fluorescence of Inclusion Crystalswith π-Stacked Supramolecular Beads, Angew. Chem.2012,124,159-162.
    27. Ruotsalainen, T., Turku, J., Heikkil, P., Ruokolainen, J., Nyk nen, A., Laitinen, T., Torkkeli, M.,Serimaa, R., Brinke, G. T., Harlin, A., Ikkala, O., Towards internal structuring of electrospun fibers byhierarchical self-assembly of polymeric comb-shaped supramolecules, Adv. Mater.2005,17,1048-1052.
    28. Ruotsalainen, T., Turku, J., Hiekkataipale, P., Vainio, U., Serimaa, R., Brinke, G. t., Harlin, A.,Ruokolainen, J., Ikkala, O., Tailoring of the hierarchical structure within electrospun fibers due tosupramolecular comb-coil block copolymers: polystyrene-block-poly(4-vinyl pyridine) plasticized byhydrogen bonded pentadecylphenol, Soft Matter2007,3,978-985.
    29. Hermida-Merino, D., Belal, M., Greenland, B. W., Woodward, P., Slark, A. T., Davis, F. J., Mitchell,G. R., Hamley, I. W., Hayes, W., Electrospun supramolecular polymer fibres, Eur. Polym. J.2012,48,1249-1255.
    30. Ren, Z., Zhang, R., Wang, F., Yan, S., A study on the hydrogen bonding interaction of theelectrospun ladder polyphenylsilsesquioxane/polyisophthalamide composite fibers by ATR FT-IR,Polym. Chem.2011,2,608-613.
    31. Liu, H. A., Balkus Jr, K. J., Electrospinning of beta silicon carbide nanofibers, Mater. Lett.2009,63,2361-2364.
    32. Koskela, J. E., Vapaavuori, J., Hautala, J., Priimagi, A., Faul, C. F. J., Kaivola, M., Ras, R. H. A.,Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range inSupramolecular Polymer-Bisazobenzene Complexes, J. Phys. Chem. C2011,116,2363-2370.
    33. Ruokolainen, J., ten Brinke, G., Ikkala, O., Torkkeli, M., Serimaa, R., Mesomorphic Structures inFlexible Polymer Surfactant Systems Due to Hydrogen Bonding:Poly(4-vinylpyridine) Pentadecylphenol, Macromolecules1996,29,3409-3415.
    34. Priimagi, A., Vapaavuori, J., Rodriguez, F. J., Faul, C. F. J., Heino, M. T., Ikkala, O., Kauranen, M.,Kaivola, M., Hydrogen-Bonded Polymer Azobenzene Complexes: Enhanced PhotoinducedBirefringence with High Temporal Stability through Interplay of Intermolecular Interactions, Chem.Mater.2008,20,6358-6363.
    35. Jager, W. F., Sarker, A. M., Neckers, D. C., Functionalized4-(dialkylamino)-4'-nitrostilbenes asreactive fluorescent probes for monitoring the photoinitiated polymerization of MMA, Macromolecules1999,32,8791-8799.
    36. Song, X., Geiger, C., Leinhos, U., Perlstein, J., Whitten, D. G., trans-Stilbene Aggregates inMicroheterogeneous Media: Evidence for a Chiral Cyclic Supramolecular Unit, J. Am. Chem. Soc.1994,116,10340-10341.
    37. Spooner, S. P., Whitten, D. G., Energy and electron-transfer processes through Langmuir-Blodgettmultilayers formed from,ω-diphenylpolyene surfactants, J. Am. Chem. Soc.1994,116,1240-1248.
    38. Whitten, D. G., Photochemistry and photophysics of trans-stilbene and related alkenes in surfactantassemblies, Acc. Chem. Res.1993,26,502-509.
    39. Song, X., Geiger, C., Farahat, M., Perlstein, J., Whitten, D. G., Aggregation of Stilbene DerivatizedFatty Acids and Phospholipids in Monolayers and Vesicles1, J. Am. Chem. Soc.1997,119,12481-12491.
    40. Aguiar, M., Hu, B., Karasz, F. E., Akcelrud, L., Light-Emitting Polymers with PendantChromophoric Groups.2. Poly[styrene-co-(p-(stilbenylmethoxy)styrene)], Macromolecules1996,29,3161-3166.
    41. Cohen, M. D., The Photochemistry of Organic Solids, Angew. Chem. Int. Ed.1975,14,386-393.
    1. Page, E. H., Cook, C. K., Hater, M. A., Mueller, C. A., Grote, A. A., Mortimer, V. D., Visual andocular changes associated with exposure to two tertiary amines, Occup. Environ. Med.2003,60,69-75.
    2. Greim, H., Bury, D., Klimisch, H. J., Oeben Negele, M., Ziegler Skylakakis, K., Toxicity of aliphaticamines: Structure-activity relationship, Chemosphere1998,36,271-295.
    3. Epstein, S. S., Environmental determinants of human cancer.[Hydrocarbons, Pesticides, Coal, Dyes,Rubber], Cancer Res.1974,34,2425-2435.
    4. Preti, G., Labows, J. N., Kostelc, J. G., Aldinger, S., Daniele, R., Analysis of lung air from patientswith bronchogenic carcinoma and controls using gas chromatography-mass spectrometry, J.Chromatogr. B1988,432,1-11.
    5. Simenhoff, M. L., Burke, J. F., Saukkonen, J. J., Ordinario, A. T., Doty, R., Dunn, S., BiochemicalProfile of Uremic Breath, N. Engl. J. Med.1977,297,132-135.
    6. Venugopal, V., Biosensors in fish production and quality control, Biosens. Bioelectron.2002,17,147-157.
    7. Wang, C., He, X. W., Chen, L. X., A piezoelectric quartz crystal sensor array self assembledcalixarene bilayers for detection of volatile organic amine in gas, Talanta2002,57,1181-1188.
    8. Ayad, M. M., Torad, N. L., Quartz crystal microbalance sensor for detection of aliphatic aminesvapours, Sens. Actuators, B2010,147,481-487.
    9. Che, Y., Yang, X., Loser, S., Zang, L., Expedient Vapor Probing of Organic Amines UsingFluorescent Nanofibers Fabricated from an n-Type Organic Semiconductor, Nano Lett.2008,8,2219-2223.
    10. Shi, L., He, C., Zhu, D., He, Q., Li, Y., Chen, Y., Sun, Y., Fu, Y., Wen, D., Cao, H., Cheng, J., Highperformance aniline vapor detection based on multi-branched fluorescenttriphenylamine-benzothiadiazole derivatives: branch effect and aggregation control of the sensingperformance, J. Mater. Chem.2012,22,11629-11635.
    11. Zhang, X., Liu, X., Lu, R., Zhang, H., Gong, P., Fast detection of organic amine vapors based onfluorescent nanofibrils fabricated from triphenylamine functionalized [small beta]-diketone-borondifluoride, J. Mater. Chem.2012,22,1167-1172.
    12. Ji, S., Li, Y., Yang, M., Gas sensing properties of a composite composed of electrospun poly(methylmethacrylate) nanofibers and in situ polymerized polyaniline, Sens. Actuators, B2008,133,644-649.
    13. Ding, X., Yang, K. L., Liquid crystal based optical sensor for detection of vaporous butylamine inair, Sens. Actuators, B2012,173,607-613.
    14. Kirchner, N., Zedler, L., Mayerhofer, T. G., Mohr, G. J., Functional liquid crystal films selectivelyrecognize amine vapours and simultaneously change their colour, Chem. Commun.2006,1512-1514.
    15. Okada, S., Peng, S., Spevak, W., Charych, D., Color and Chromism of Polydiacetylene Vesicles,Acc. Chem. Res.1998,31,229-239.
    16. Reppy, M. A., Pindzola, B. A., Biosensing with polydiacetylene materials: structures, opticalproperties and applications, Chem. Commun.2007,4317-4338.
    17. Yoon, B., Lee, S., Kim, J. M., Recent conceptual and technological advances inpolydiacetylene-based supramolecular chemosensors, Chem. Soc. Rev.2009,38,1958-1968.
    18. Chen, X., Zhou, G., Peng, X., Yoon, J., Biosensors and chemosensors based on the opticalresponses of polydiacetylenes, Chem. Soc. Rev.2012,41,4610-4630.
    19. Song, J., Cisar, J. S., Bertozzi, C. R., Functional Self-Assembling BolaamphiphilicPolydiacetylenes as Colorimetric Sensor Scaffolds, J. Am. Chem. Soc.2004,126,8459-8465.
    20. Tong, L., Cheng, B., Liu, Z., Wang, Y., Fabrication, structural characterization and sensingproperties of polydiacetylene nanofibers templated from anodized aluminum oxide, Sens. Actuators, B2011,155,584-591.
    21. Lee, J., Kim, H. J., Kim, J., Polydiacetylene Liposome Arrays for Selective Potassium Detection, J.Am. Chem. Soc.2008,130,5010-5011.
    22. Lee, K. M., Chen, X., Fang, W., Kim, J. M., Yoon, J., A Dual Colorimetric and Fluorometric Sensorfor Lead Ion Based on Conjugated Polydiacetylenes, Macromol. Rapid Commun.2011,32,497-500.
    23. Pan, X., Wang, Y., Jiang, H., Zou, G., Zhang, Q., Benzo-15-crown-5functionalizedpolydiacetylene-based colorimetric self-assembled vesicular receptors for lead ion recognition, J. Mater.Chem.2011,21,3604-3610.
    24. Cho, Y. S., Ahn, K. H., Molecular interactions between charged macromolecules: colorimetricdetection and quantification of heparin with a polydiacetylene liposome, J. Mater. Chem. B2013,1,1182-1189.
    25. Chen, X., Kang, S., Kim, M. J., Kim, J., Kim, Y. S., Kim, H., Chi, B., Kim, S. J., Lee, J. Y., Yoon, J.,Thin-Film Formation of Imidazolium-Based Conjugated Polydiacetylenes and Their Application forSensing Anionic Surfactants, Angew. Chem. Int. Ed.2010,49,1422-1425.
    26. Wu, J., Zawistowski, A., Ehrmann, M., Yi, T., Schmuck, C., Peptide Functionalized PolydiacetyleneLiposomes Act as a Fluorescent Turn-On Sensor for Bacterial Lipopolysaccharide, J. Am. Chem. Soc.2011,133,9720-9723.
    27. Li, D., Wang, Y., Xia, Y., Electrospinning of Polymeric and Ceramic Nanofibers as UniaxiallyAligned Arrays, Nano Lett.2003,3,1167-1171.
    28. Huang, Z. M., Zhang, Y. Z., Kotaki, M., Ramakrishna, S., A review on polymer nanofibers byelectrospinning and their applications in nanocomposites, Compos. Sci. Technol.2003,63,2223-2253.
    29. Li, D., Wang, Y., Xia, Y., Electrospinning Nanofibers as Uniaxially Aligned Arrays andLayer-by-Layer Stacked Films, Adv. Mater.2004,16,361-366.
    30. Wu, L., Dou, Y., Lin, K., Zhai, W., Cui, W., Chang, J., Hierarchically structured nanocrystallinehydroxyapatite assembled hollow fibers as a promising protein delivery system, Chem. Commun.2011,47,11674-11676.
    31. Powell, H. M., Supp, D. M., Boyce, S. T., Influence of electrospun collagen on wound contractionof engineered skin substitutes, Biomaterials2008,29,834-843.
    32. Sundarrajan, S., Venkatesan, A., Ramakrishna, S., Fabrication of Nanostructured Self-DetoxifyingNanofiber Membranes that Contain Active Polymeric Functional Groups, Macromol. Rapid Commun.2009,30,1769-1774.
    33. Uyar, T., Havelund, R., Hacaloglu, J., Besenbacher, F., Kingshott, P., Functional ElectrospunPolystyrene Nanofibers Incorporating-, β-, and γ-Cyclodextrins: Comparison of Molecular FilterPerformance, ACS Nano2010,4,5121-5130.
    34. Ma, Z., Kotaki, M., Ramakrishna, S., Electrospun cellulose nanofiber as affinity membrane,Journal of Membrane Science2005,265,115-123.
    35. Lim, H. S., Baek, J. H., Park, K., Shin, H. S., Kim, J., Cho, J. H., Multifunctional Hybrid Fabricswith Thermally Stable Superhydrophobicity, Adv. Mater.2010,22,2138-2141.
    36. Si, Y., Ren, T., Ding, B., Yu, J., Sun, G., Synthesis of mesoporous magnetic Fe3O4@carbonnanofibers utilizing in situ polymerized polybenzoxazine for water purification, J. Mater. Chem.2012,22,4619-4622.
    37. Yu, Y., Gu, L., Wang, C., Dhanabalan, A., van Aken, P. A., Maier, J., Encapsulation of Sn@carbonNanoparticles in Bamboo-like Hollow Carbon Nanofibers as an Anode Material in Lithium-BasedBatteries, Angew. Chem. Int. Ed.2009,48,6485-6489.
    38. Lin, D., Wu, H., Zhang, R., Pan, W., Preparation of ZnS nanofibers via electrospinning, Journal ofthe American Ceramic Society2007,90,3664-3666.
    39. Song, H., Yu, H., Pan, G., Bai, X., Dong, B., Zhang, X. T., Hark, S. K., Electrospinning Preparation,Structure, and Photoluminescence Properties of YBO3:Eu3+Nanotubes and Nanowires, Chem. Mater.2008,20,4762-4767.
    40. Wang, W., Li, Y., Sun, M., Zhou, C., Zhang, Y., Li, Y., Yang, Q., Colorimetric and fluorescentnanofibrous film as a chemosensor for Hg2+in aqueous solution prepared by electrospinning andhost-guest interaction, Chem. Commun.2012,48,6040-6042.
    41. Liu, N., Fang, G., Wan, J., Zhou, H., Long, H., Zhao, X., Electrospun PEDOT:PSS-PVA nanofiberbased ultrahigh-strain sensors with controllable electrical conductivity, J. Mater. Chem.2011,21,18962-18966.
    42. Cho, N. G., Woo, H. S., Lee, J. H., Kim, I.-D., Thin-walled NiO tubes functionalized with catalyticPt for highly selective C2H5OH sensors using electrospun fibers as a sacrificial template, Chem.Commun.2011,47,11300-11302.
    43. Yoon, J., Chae, S. K., Kim, J. M., Colorimetric Sensors for Volatile Organic Compounds (VOCs)Based on Conjugated Polymer-Embedded Electrospun Fibers, J. Am. Chem. Soc.2007,129,3038-3039.
    44. Yoon, J., Jung, Y. S., Kim, J. M., A Combinatorial Approach for Colorimetric Differentiation ofOrganic Solvents Based on Conjugated Polymer-Embedded Electrospun Fibers, Adv. Funct. Mater.2009,19,209-214.
    45. Lee, J., Balakrishnan, S., Cho, J., Jeon, S. H., Kim, J. M., Detection of adulterated gasoline usingcolorimetric organic microfibers, J. Mater. Chem.2011,21,2648-2655.
    46. Jeon, H., Lee, J., Kim, M. H., Yoon, J., Polydiacetylene-Based Electrospun Fibers for Detection ofHCl Gas, Macromol. Rapid Commun.2012,33,972-976.
    47. Koskela, J. E., Vapaavuori, J., Hautala, J., Priimagi, A., Faul, C. F. J., Kaivola, M., Ras, R. H. A.,Surface-Relief Gratings and Stable Birefringence Inscribed Using Light of Broad Spectral Range inSupramolecular Polymer-Bisazobenzene Complexes, J. Phys. Chem. C2011,116,2363-2370.
    48. Ruokolainen, J., ten Brinke, G., Ikkala, O., Torkkeli, M., Serimaa, R., Mesomorphic Structures inFlexible Polymer Surfactant Systems Due to Hydrogen Bonding:Poly(4-vinylpyridine) Pentadecylphenol, Macromolecules1996,29,3409-3415.
    49. Priimagi, A., Vapaavuori, J., Rodriguez, F. J., Faul, C. F. J., Heino, M. T., Ikkala, O., Kauranen, M.,Kaivola, M., Hydrogen-Bonded Polymer Azobenzene Complexes: Enhanced PhotoinducedBirefringence with High Temporal Stability through Interplay of Intermolecular Interactions, Chem.Mater.2008,20,6358-6363.
    50. Chae, S. K., Park, H., Yoon, J., Lee, C. H., Ahn, D. J., Kim, J. M., Polydiacetylene supramoleculesin electrospun microfibers: Fabrication, micropatterning, and sensor applications, Adv. Mater.2007,19,521-524.
    51. Kumar, U., Kato, T., Frechet, J. M. J., Use of intermolecular hydrogen bonding for the induction ofliquid crystallinity in the side chain of polysiloxanes, J. Am. Chem. Soc.1992,114,6630-6639.
    52. Yu, H., Liu, H., Kobayashi, T., Fabrication and Photoresponse of SupramolecularLiquid Crystalline Microparticles, ACS Applied Materials&Interfaces2011,3,1333-1340.
    53. Charych, D. H., Nagy, J. O., Spevak, W., Bednarski, M. D., Direct colorimetric detection of areceptor-ligand interaction by a polymerized bilayer assembly, Science1993,261,585-588.
    54. Seo, D., Kim, J., Effect of the Molecular Size of Analytes on Polydiacetylene Chromism, Adv.Funct. Mater.2010,20,1397-1403.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700