用户名: 密码: 验证码:
硼掺杂碳纳米管的制备及其在镁基复合材料中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
碳纳米管(CNTs)凭借其超强的力学性能成为复合材料的理想增强体。镁及其合金作为基体的主要特点是密度低、比强度和比刚度高。对于CNTs增强镁基复合材料,CNTs与镁之间的界面的物理和化学特性对其性能起着核心作用。界面结构的优化和稳定决定了CNTs和镁性能能否充分发挥进而获得综合性能优异的复合材料。因此,研究CNTs和镁的界面性质和结合状态,对发展高性能镁基复合材料具有重要意义。
     本论文为改善CNTs与镁基体之间的界面结合性,分别采用高温气相法和固态气相法制备了硼掺杂CNTs(BCNTs),然后采用超声和化学的方法对BCNTs和CNTs进行分散,在此基础上本实验通过粉末冶金结合热挤压的方法分别制备了BCNTs/Mg和CNTs/Mg复合材料。
     分别通过高温气化B_2O_3和B、固态气相法制备了硼掺杂CNTs,探讨了硼掺杂对CNTs形貌与结构的影响,并研究了CNTs的酸化处理对其硼原子掺杂比例的影响。采用XPS测试了硼原子的掺杂比例,采用TEM和Raman分析了BCNTs的形貌和结构。结果表明:采用高温气化B_2O_3或B的方法和固态气相法能有效实现对CNTs进行硼掺杂,但CNTs的酸化处理会降低硼原子的掺杂比例。
     采用3-磺丙基十六烷基二甲基铵分别对BCNTs和CNTs进行分散,然后通过粉末冶金结合热挤压法分别制备了BCNTs/Mg和CNTs/Mg复合材料,研究了BCNTs和CNTs含量以及硼掺杂对复合材料的显微组织、硬度、拉伸和压缩性能、摩擦磨损性能的影响,探讨了BCNTs和CNTs与镁基体的界面结合性。结果表明:表面活性剂能提高BCNTs和CNTs在基体中的分散性;随着CNTs含量的增大,CNTs/Mg显微硬度增大,抗拉强度、抗压强度呈峰值,延伸率则呈下降趋势,当CNTs含量为1.0wt.%时,复合材料的抗拉强度达最大值243.4MPa,抗压强度为434.8MPa。硼掺杂能改善CNTs与Mg基体的界面结合,有效提高材料的强度。当BCNTs含量为1.0wt.%时,BCNTs/Mg的抗拉强度和抗压强度分别为258.3MPa和473.2MPa,较CNTs/Mg分别提高了6.1%和8.8%,当BCNTs添加量达到1.5wt.%时,拉伸强度提高达18.7%。断口形貌观察表明CNTs在断口处呈拔出状态,而BCNTs被基体包覆,断口处呈拔断状态,说明硼掺杂改善了复合材料的界面结合性。
Carbon nanotubes (CNTs) have been considered to be a perfect reinforcement for composites due to its superior mechanical properties. Magnesium and its alloys are used as martix due to their low density, high specific strength and stiffness. The physico-chemical characteristic of the interface between CNTs and Mg matrix play a critical role in developing the CNTs reinforced Mg matrix composites with high performance. Therefore,interfacial reactions, the effects of interfaces on properties and the effective ways to control interfacial reactions are significant to Mg matrix composites with high performance.
     In this paper, in order to improve the interfacial bonding between CNTs and Mg matrix, boron-doped CNTs (BCNTs) were firstly prepared by calcining the mixture of B_2O_3 or B and CNTs, solid-state gas-phase boronisation. Then the CNTs and BCNTs were dispersed in Mg powder by ultrasonic and chemical method. Finally, the composites were prepared by powder metallurgy combined with hot extrusion technique.
     BCNTs were prepared by calcining the mixture of B_2O_3 or B and CNTs, solid-state gas-phase boronisation respectively. The impact of acidification on B-doped ratio of the CNTs was also investigated. XPS was used to validate B-doped ratio, TEM and Raman were used to analyze morphology and structure of BCNTs. The results showed that BCNTs can be successfully prepared by above methods. However, B-doped ratio was reduced by acidification of the CNTs.
     3-(N, N-Dimethylpalmitylammonio) propanesulfonate was used to enhance the dispersion of CNTs and BCNTs, the distribution of CNTs and BCNTs were observed by SEM, and the result indicated a better dispersion of CNTs and BCNTs in Mg powder. After obtaining composite powders, CNTs and BCNTs reinforced Mg composites were prepared by powder metallurgy combined with hot extrusion. The effects of reinforcement content and B-doping on microstructure, hardness, tensile properties, compressive properties, friction and wear properties were investigated. In addition, the interface between BCNTs and Mg were observed. The results showed that with the increase of CNTs and BCNTs content, the microhardness of the composites was increased, tensile strength and compressive strength increased firstly and then decreased, elongation decreased. The microhardness was up to 66HV when the content of CNTs in the CNTs/Mg composites is 1.5wt.%. Tensile strength and compressive strength were up to 243.4MPa and 434.8MPa when using 1.0wt.% CNTs in the composites. B-doping can improve interface between CNTs and Mg and increase strength of composites effectively. Tensile and compressive strength were 258.3MPa (+6.1%) and 473.2MPa (+8.8%) respectively for the 1.0wt.% BCNTs/Mg composites. Compressive strength of the 1.5wt.%BCNTs/Mg composites is 18.7% higher than that of the 1.5wt.%CNTs/Mg composites. The fracture observation showed that CNTs were pulled out, but BCNTs were pulled off in the fractured surface, indicating that B-doping can enhance the interfacial bonding between Mg and CNTs.
引文
[1]陈剑峰,于志强,武高辉,等,金属基复合材料强度的影响因素,金属热处理,2003,28(2):1
    [2] E. Aghion, B. Bronfin, Magnesium alloys development towards the 21st century, Materials Science Forum, 2000, (3502351): 19
    [3]张先菊,Mullite/Al合金复合材料界面微结构及微成分的研究:[硕士学位论文],四川;四川大学,2004
    [4]胡茂良,吉泽升,等,镁基复合材料国内外研究现状及展望,轻合金加工技术,2004,(13):10~13
    [5]廖利华,滕新营,等,镁基复合材料界面显微结构与优化,热加工工艺,2004,(5):53~55
    [6]吴桢干,顾明元,陈煜,等,SiCp/Mg复合材料的界面结构,稀有金属材料与工程,1998,1(27):37
    [7]蔡叶,黄伯云,苏华钦,铸造SiCp/Mg (AZ81)复合材料界面,中国有色金属学报,1997,7(3):108
    [8]蔡叶,苏华钦,SiCp/AZ80镁基复合材料的界面与断口特征,复合材料学报,1997,14(2):76
    [9] K.N. Braszcynska, L. Litynska, A. Zyska, et al., TEM analysis of the in terfaces between the composites in magnesium matrix composites reinforced with SiC particles, Materials chemistry and physics, 2003, 81: 326
    [10]B. Inem, G. Pollard, Interface structure and fractography of a magnesium-alloy, metal-matrix composite reinforced with SiC particles, Journal of Materials Science, 1993, 28: 4427~4434
    [11]B. Inem, Crystallography of the second phase/SiC Particles interface, nucleation of the second phase atβ-SiC and its effect on interfacial bonding, elastic properties and ductility of magnesium matrix composites, Journal of Materials Science, 1995, 30: 5763~5769
    [12]郝元恺,杨广平,复合材料进展,北京:北京航空航天出版社,1994
    [13]M.Y. Zheng, K. Wu, C.K. Yao, Characterization of interfacial reaction in squeezecast SiCw/Mg Composite, Materials Letters, 2001, (47): 118
    [14]陈玉喜,李斗星,张国定,(SiCw + B4C)/MB15镁基复合材料的微观结构,金属学报,2000,36(11):1229~1232
    [15]E.Y. El·Saeid, S.J. Fernandez, J.L. Perez Castellanos, Experimental study of the strain rate and temperature effects on the mechanical behavior of a magnesium silicon carbide composite, Journal of Testing and Evaluation, 2003, 31(6): 449~457
    [16]F. Yan, K. Wu, M. Zhao, Superplasticity in SiCw/ZK60 Composite, Acta Metallurgica Sinica ( English Letters ), 2003, 16(3): 217~220
    [17]F. Yan, K. Wu, G.L. Wu, et al., Superplastic deformation behavior of a 19.7vol.%β-SiCw/ZK60 Composite, Materials Letters, 2003, 57(13/14): 1992~1996
    [18]M.Y. Zheng, K. Wu, C.K. Yao, et al., Interfacial microstructure and fracture behavior of SiC whisker reinforced magnesium matrix composites, Materials Science Forum, 2003, (419/422): 795~800
    [19]郗雨林,张文兴,柴东琅,等,粉末冶金法制备MB15镁基复合材料组织及性能的研究,热加工工艺,2002,1:51~53
    [20]S. Chung, B.H. Wang, Microstructural study of the wear behaviour of SiCp/Al composites, Tribology international, 1994, 27: 307~314.
    [21]A.D. Mcleod, C.M. Gabryel, Kinetics of the growth of spinel, MgAl2O4 on alumina particuate in aluminum alloys containing magnesium, Metallurgical Transactions A, 1992, 23: 1279
    [22]Z. Trojanova, P. Lukac, W. Riehemann, et al., Study of relaxation of residual internal stress in Mg composites by internal friction, Materials Science and Engineering A, 2002, 324: 122~126
    [23]S. Jayalakshmi, S.V. Kailas, S. Seshan, Tensile behaviour of squeeze cast AM100 magnesium alloy and its Al2O3 fiber reinforced composites, Composites Part A: Applied Science and Manufacturing, 2002, 33(8): 1135~1140
    [24]M. Svoboda, M. Pahutova, K. Kucharova, et al., The role of matrix microstructure in the creep behaviour of discontinuous fiber-reinforced AZ91 magnesium alloy, Materials Science and Engineering A, 2002, 324: 151~156
    [25]曾毅,张叶方,丁传贤,碳化硼粉末和涂层氧化特性研究,陶瓷学报,1998,(4):183
    [26]S.Gen, H. Shunsuke, Y. Makoto, et al., Fabrication conditions and microstructures of Al18B4O33/AZ91D magnesium alloy composites by compo-casting, Keikinzoku/Journal of Japan Institute of Light Metals, 2002, 52(5): 216~220
    [27]M.Y. Zheng, K. Wu, H.C. Liang, et al., Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites, Materials Letters, 2002, 57(3): 558~564.
    [28]S. Gen, Y. Makoto, Y. Osamu, et al., Mechanical properties and microstructure of Al18B4O33/magnesium alloy composites prepared by compo-casting, Materials Science Forum, 2003, 777~782.
    [29]M.Y. Zheng, K. Wu, M. Liang, et al., Interface of Al18B4O33w/AZ91 magnesium matrix composite after thermal exposure at 600℃, Journal of Materials Science Letters, 2003, 22(23): 1709~1712
    [30]M.Y. Zheng, K. Wu. et al., Microstructure and mechanical properties of aluminum borate whisker-reinforced magnesium matrix composites, Materials Letters, 2002, (57): 558~564
    [31]Q.C. Jiang, X.L. Li, H.Y. Wang, Fabrication of TiC particulate reinforced magnesium matrix composites, Scripta Materialia, 2003, 48(6): 713~717
    [32]H.Y. Wang, Q.C. Jiang, X.L Li, et al., Effect of Al content on the self-propagating high-temperature synthesis reaction of Al2Ti2C system in molten magnesium, Journal of Alloys and Compounds, 2004, 366(1/2): 9~12
    [33]于化顺,金属基复合材料及其制备技术,北京:化学工业出版社,2006
    [34]赵玉涛,戴起勋,陈刚,金属基复合材料,北京:机械工业出版社,2007,118~119
    [35]董群,陈礼清,赵明久,等,镁基复合材料制备技术、性能及应用发展概况,材料导报,2004,18(4):579~582
    [36]S. Iijima, Helical microtubules of graphitic carbon, Nature, 1991, 354: 56~58
    [37]M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Exceptionally high Young's modulus observed for individual carbon nanotubes, Nature, 1996, 381: 678~680
    [38]徐明君,碳纳米管力学性能的研究进展与应用,北京工商大学学报(自然科学版),2005,23(4):32~35
    [39]张立德,牟季美,纳米材料和纳米结构,北京:科学技术出版社,2002,29~35
    [40]S. Berber, Y.K. Kwon, D. Tomanek, Unusually high thermal conductivity of carbon nanotubes, Physical Review Letters, 2000, 84(20): 4613~4616
    [41]M.B. Nardelli, B.I. Yakobson, J. Bernholc, Mechanism of strain release in carbonnanotubes, Physical Review B, 1998, 57(8): 4277~4280
    [42]陈卫祥,陈文录,徐铸德,等,碳纳米管的特性及其高性能的复合材料,复合材料学报,2001,18(4):1~5
    [43]P.J. Boul, J. Liu, E.T. Mickelson, et al., Reversible sidewall functionalization of buckytubes, Chemical Physics Letters, 1999, 3-4 (310): 367~372
    [44]T.W. Ebbeses, H. Hiura, M.E. Biher, Decoration of carbon nanotubes, Advanced Materials, 1996, 8(2): 155
    [45]Q.Q. Li, S.H. Fan, W.Q. Han, Coating of carbon nanotube with nickel by electroless plating method, Journal of Applied Physics, 1997, 236: L501~L503
    [46]L.M. Ang, T.S. Andy Hor, G.Q. Xu, et al., Electroless plating of metals on to carbon nanotubes activated by a single step activation method, Chemistry of Materials, 1999, 11: 2115~2118
    [47]钱兰,江奇,易锦,等,硼掺杂对碳纳米管形貌和磁性能的影响,功能材料,2006,37(9):1398~1400
    [48]W.Q. Han, Y. Bando, K. Kurashima, et al.,Boron-doped carbon nanotubes prepared through a substitution reaction, Chemical Physics Letters, 1999, 299: 368~373
    [49]D.L. Carroll, X. Blase, P.H. Redlich, et al., Effects of nanodomain formation on the electronic structure of doped carbon nanotubes, Physical Review Letters, 1998, 81: 2332~2335
    [50]Z. Wang, C.H. Yu, D.C. Ba, Influence of the gas composition on the synthesis of boron-doped carbon nanotubes by ECR-CVD, New Carbon Materials, 2007, (81): 579~582
    [51]B.C. Satishkumar, A. Govindaraj, K.R. Harikumar, Bundles of aligned carbon nanotubes obtained by the pyrolysis of ferrocene hydrocarbon mixtures: role of the metal nanoparticles produced insitu, Chemical Physics Letters, 1999, 307(4): 158~162
    [52]C.F. Chen, C.L. Tsai, C.L. Lin, The characterization of boron-doped carbon nanotube arrays, Diamond and Related Materials, 2003, 12: 1500~1504
    [53]Z. Zhou, X.P. Gao, J.Yan, et al., A first-principles study of lithium absorption in boron- or nitrogen-doped single-walled carbon nanotubes, Carbon, 2004, 42: 2677~2681
    [54]李四年,纳米碳管增强镁基复合材料的研究:[博士学位论文],沈阳;东北大学,2006
    [55]吴惠箐,丁桂甫,王裕超,等,锌基碳纳米管复合材料的界面特性及增强机理,复合材料学报,2007,24(4):88~94
    [56]J. Yang, R. Schaller, Mechanical spectroscopy of Mg reinforced with Al2O3 short fibers and carbon nanotubes, Materials Science and Engineering A, 2004, 370(1/2): 512~515
    [57]何春年,赵乃勤,纳米相增强铝基复合材料制备技术的研究进展,兵器材料科学与工程,2005,8(3):53~57
    [58]C.N. He, N.Q. Zhao, C.S. Shi, et al., Mechanical properties and microstructures of carbon nanotube-reinforced Al matrix composite fabricated by in situ chemical vapor deposition, Journal of Alloys and Compounds, 2009, 487 (1-2): 258~262
    [59]杨益,杨盛良,碳纳米管增强金属基复合材料的研究现状及展望,材料导报,2007,21:182~184
    [60]黄拿灿,硼砂型固体渗硼剂渗硼机理探讨,广东机械学院学报,1994,12(4):9~14
    [61]孙轶如,活性源辅助脉冲激光沉积BCN薄膜,复旦大学政学者论文集,2002
    [62]K. Kondoh, H. Fukuda, J. Umeda, et al., Microstructural and mechanical analysis of carbon nanotube reinforced magnesium alloy powder composites, Materials Science and Engineering A, 2010, 527: 4103~4108
    [63]胡树兵,纳米复合电刷镀涂层的研究进展,航空制造技术,2010,1:34~39
    [64]蒋少松,AZ31镁合金板热拉深性能研究,哈尔滨工业大学,2003
    [65]侯珍,硼掺杂碳纳米管增强镁基复合材料的制备及力学性能:[硕士学位论文],天津;天津大学,2010
    [66]T. Kitamura, K. Sakane, H. Wada. Formation of needle crystals of magnesium pyroborate, Journal of materials science letters, 1988, 7: 467~469

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700