用户名: 密码: 验证码:
BN-C-硅油高温润滑复合胶体制备及其性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
基于固体润滑材料的物化特性和键能理论以及硅油的高温稳定性创新出的BN-C-硅油复合胶体,拓宽了多元润滑体复合理论和硅油的工业应用领域。
     本文在回顾胶体科学发展概况的同时,综述了胶体中分散相超微/纳米颗粒的复合方法及其在润滑领域的应用现状。在此基础上,提出了高温超微/纳米胶体润滑新概念,并以硅油为基,包覆BN-C固体润滑剂制备出高温润滑复合胶体。
     基于BN和C具有相似的物化特性、晶体结构和润滑互补特性,本文探讨了两者之间的复合匹配性,并根据固体与分子经验电子理论(EET)对BN及BN-C复合物的价电子结构进行了分析。研究表明:BN-C复合物的层间键能(0.25673374 kJ/mol)小于BN的层间键能(0.33129492kJ/mol),如果两者复合,其复合物的层间滑移更为容易,可获得低摩擦系数的复合固体润滑颗粒。
     为了实现超微/纳米BN-C颗粒的复合,本文对行星式高能球磨机进行了改进设计,增加了偏心机构,从而提高了碰撞能量。通过对该高能球磨机球磨过程中磨球的动力学和运动学分析,研究了被研磨颗粒的受力、变形以及其研磨效率,得出研磨效率与公转速度、公转/自转比例系数、偏心距和磨球直径等之间的关系,为超微/纳米胶粒的制备工艺参数的设定提供了依据。
     为了提高BN-C超微/纳米胶粒的分散稳定性,使其能稳定地悬浮于硅油中,本文基于胶体理论,加入非离子性表面活性剂,探讨了其组分和配方及其对BN-C超微/纳米胶粒的修饰和包覆。建立了胶粒尺寸与其沉降速度的关系模型,模拟得出当BN-C胶粒的粒径小于284.7nm时,该复合胶粒可以稳定悬浮于硅油中,为BN-C-硅油复合胶体的制备和分散稳定性提供了重要理论依据。
     文中采用SEM和EDS分析了超微/纳米胶粒的粒度分布状况和组成元素。并通过FTIR和XPS对复合胶粒所含元素的成键状态进行了分析研究,发现采用文中所述的制备工艺可使BN-C形成B、C、N三种元素原子级结合的化合物。XRD对复合胶粒的结晶状态分析说明形成的新化合物为与h-BN晶体结构相似的六方化合物。结合前面所述基于EET理论进行的滑移理论分析,该研究为润滑机理的探讨提供了依据。
     采用XP-5型销盘式摩擦磨损试验机研究了本文所制备的高温复合胶体的润滑性能,实验证实了无论在常温还是高温下,该胶体都具有优良的润滑性能。结合文中所做的微观分析,探讨了胶体的高温润滑机理。最后以发汗金属陶瓷烧结体为典型对象,研究和验证该复合胶体的浸润性。
The BN-C-silicone oil composite colloid, which is manufactured by innovation based on the physicochemical characteristics of solid lubricants and the theory of bond energy, as well as the stability of silicone oil at elevated temperature, has enriched the recombining theory of multivariate lubricants and widened the industrial application fields of silicone oil.
     In the thesis, the development situation of colloid science, the preparation methods of ultra-micro/nano composite particles and their application status in lubrication field were summarized. Based on the review, a new concept about high temperature ultra-micro/nano lubricating colloid was presented. And silicone oil was adopted as the dispersing medium to prepare BN-C-silicone oil composite colloids with high temperature lubricating property by using high energy ball milling method.
     Based on the similar physical properties and similar crystal structure, together with the complementary lubricating properties, BN and C matched well when they were recombined. According to analyzing the valence electronic structure of BN and BN-C based on Empirical Electron Theory (EET), it was found that the lamellar bonds energy of BN-C compound (0.25673374 kJ/mol) was lower than that of BN (0.33129492kJ/mol), which meat that the slip between layers was easier to happen in BN-C compound. And lower lamellar bonds energy led to the smaller frictional coefficient.
     To achieve energy enough for the recombination of BN-C ultra-micro/nano particles, the planetary high energy ball mill was improved. An eccentric part was added to improve the impact energy of the planetary high energy ball mill. Then the stress, deformation of the particles and the milling efficiency were discussed through analyzing the kinetics and kinematics of the balls during the milling process. It was found that the milling efficiency was relative with revolution speed, proportion of revolution speed to rotation speed, eccentric distance and the diameter of the milling balls. These could be the theoretical reference for setting the milling technic parameters to prepare the ultra-micro/nano particles.
     Based on the colloid theory, nonionic surfactants were added to make the BN-C ultra-micro/nano composite particles suspend in silicone oil stably and avoid particle agglomeration. And the proportion of the selected surfactant was discussed. Then the surface modification mechanism of the colloidal particles was also discussed. Through modeling the relation between the size of particles and sedimentation speed, it was found that the BN-C particles could suspend stably in silicone oil if their diameters were less than 284.7 nm. These were the important theoretical basis for the preparation and dispersion stability of the colloid.
     The diameters of the ultra-micro/nano colloid particles and the elements in the particles were measured by SEM and EDS. And through analyzing the binding status of the colloid particles by using FTIR and XPS, it was found that the new compound was formed by B, C and N combining in atomic ways. The XRD analysis showed that the new compound had hexagonal crystal structure, which was similar to h-BN. Together with the theoretical slip analysis based on EET, this could be used for discussing the lubricating mechanism.
     The lubricating properties of the prepared composite colloid were measured by using XP-5 friction and wear tester. It was found that the colloid showed good lubricating property at whatever ambient and high temperature. And based on the microscopic analysis, the lubricating mechanism was discussed. Finally, considering the structure characteristic of the sweat-gland ceramic sinter, the lubricity of the colloid infiltrated in the sinter was also studied.
引文
[1]德鲁·迈尔斯著.吴大诚,朱谱新,王罗新等译.表面、界面和胶体——原理及应用[M].北京:化学工业出版社,2005.1.
    [2]侯万国,孙德军,张春光编著.应用胶体化学[M].北京:科学出版社,1998.11.
    [3]G.Caminoa,S.M.Lomakinb,M.Lazzaria,Polydimethyl-siloxane thermal degradation Part 1.Kinetic aspects[J].Polymer 42(2001):2395-2402.
    [4]中国机械工程学会摩擦学学会《润滑工程》编写组.润滑工程[M].北京:机械工业出版社,1986.
    [5]黄文润.硅油及二次加工品[M].北京:化学工业出版社,2004.
    [6]董浚修主编.润滑原理及润滑油(第二版)[M].北京:中国石化出版社,1998.
    [7]史佩京,刘谦,于鹤龙,等.纳米铜微粒作为润滑油添加剂的分散方法及其摩擦学性能研究[J].石油炼制与化工,2005,36(3):33-38.
    [8]陈爽,刘维民.油酸修饰纳米粒子作为润滑油添加剂的研究[J].五邑大学学报:自然科学版,2005,19(1):4-7.
    [9]胡泽善,王立光,黄令,等.纳米硼酸铜颗粒的制备及其用作润滑油添加剂的摩擦学性能[J].摩擦学学报,第20卷第4期,2000年8月:292-295.
    [10]杨新,张国正,柏五星.润滑油纳米铜添加剂在几种不同种类基础油中的摩擦学特性研究[J].润滑油,第21卷第4期,2006年8月:35-39.
    [11]L Rapoport,V Leshchinsky,M Lvovsky,et al.Friction and wear of powdered composites impregnated with WS_2 inorganic fullerent-like nanoparticles[J].Wear,2002,252:527-581.
    [12]王寿鹤.纳米级固体润滑剂的研制和摩擦学性能研究[O].上海大学博士论文,1999.
    [13]王李波,冯大鹏,刘维民.几种纳米微粒作为锂基脂添加剂对钢-钢摩擦副摩擦磨损性能的影响研究[J].摩擦学学报,2005/03:107-111.
    [14]江龙编著.胶体化学概论[M].北京:科学出版社,2002.
    [15]王相田,胡黎明,胡英.胶体科学的现状及发展[J].自然杂志,第19卷第4期,1997.4:227-230.
    [16]陈宗淇,杨孔章.胶体化学发展简史[J].化学通报,1988年第6期:56-59.
    [17]沈钟,赵振国,王果庭.胶体与表面化学[M].北京:化学工业出版社,2004.
    [18]冯绪胜,刘洪国,郝京诚等.胶体化学[M].北京:化学工业出版社,2005.
    [19]陈宗淇,王光信,徐桂英编.胶体与界面化学[M].北京:高等教育出版社,2001.
    [20]李凤生编著.纳米功能复合材料及应用[M].北京:国防工业出版社,2003.6.
    [21]周瑞发,韩雅芳,陈祥宝.纳米材料技术[M].北京:国防工业出版社,2003/7.
    [22]张志琨,崔作林.纳米技术与纳米材料[M].北京:国防工业出版社,2000.
    [23]张立德,牟季美等.纳米材料和纳米结构[M].北京:科学出版社,2001.
    [24]Birringer R,Gleiter H,Klein HP,et al.Synthesis of n-metals[J].Phys.Lett.1984.102A(8):365-369.
    [25]C.Suryanarayana.Mechanical alloying and milling[J].Progress in Materials Science,46(2001):1-184.
    [26]徐建生,钟康年.纳米润滑剂的制各及特性研究[J].润滑与密封,2002.4:14-16.
    [27]B.Li,X.Wang,W.Liu.Tribochemistry and antiwear mechanism of organic-inorganic nanoparticles as lubricant additives[J].Tribology Letters,Vol.22,No.1,April 2006:79-84.
    [28]Bakunin V.N.,A.Y.Suslov,G.N.Kuzmina et al.Synthesis and application of inorganic nanoparticles as lubricant components—a review[J].J.Nano.Res.6(2-3),2004,273-284.
    [29]Jingfang Zhou,ZhishenWu,Zhijun Zhang et al.Tribological behavior and lubricating mechanism of Cu nanoparticles in oil[J],Tribology Letters 8(2000):213-218.
    [30]郭志光等.纳米铜润滑添加剂在四球机上的摩擦学性能研究及机理探讨[J].润滑与密封,2005年11月第6期(总第172期):60-63.
    [31]L Rapoport,M Lvovshy,I Lapsker,et al.Friciton and wear of bronze powder composites including fullerene-like WS2 nanoparticles[J].Wear,2001,249:150-157.
    [32]L.Rapoport,Y.Billik,Y.Feldman,M.Homoyonfer,S.R.Cohen & R.Tenne.Hollow nanoparticles of WS2 as potential solid-state lubricants[J].Nature,387,1997:791-793.
    [33]L.Rapoport,N.Fleischer & R.Tenne.Fullerene-like WS2 nanoparticles:superior lubricants for harsh conditions[J].Adv.Mater.15(7-8),2003:651-655.
    [34]S.Tarasov.A.kolubaev et al.Study of friction reduction by nanocopper additives to motor oil[J].Wear 252(2002):63-69.
    [35]于立岩,崔作林.铜纳米粒子对润滑油摩擦磨损性能的影响[J].青岛化工学院学报,第23卷第3期,2002.9:33-35.
    [36]L.Kolodziejczyk,D.Martinez-Martinez,T.C.Rojas.Surface-modified Pd nanoparticles as a superior additive for lubrication[J].Journal of Nanoparticle Research(2007)9:639-645.
    [37]董凌,陈国需,方建华,等.复合纳米添加剂的摩擦学和磨损修复性能研究[J].润滑与密封,200(5):26-28.
    [38]郭志光,顾卡丽,徐建生,等.有机钼及其复合纳米润滑添加剂的摩擦磨损性能研究[J].摩擦学学报,2005,25(4):317-319.
    [39]孙玉秋,郭小川.几种纳米材料在润滑脂中的摩擦学行为研究[J].重庆石油高等专科学校学报,2004(6):38-39.
    [40]刘维民.纳米颗粒及其在润滑油脂中的作用[J].摩擦学学报,2003,23(4):265-267.
    [41]李宝良,余安,江亲瑜.纳米润滑油添加剂摩擦学性能试验研究[J].大连铁道学院学报,2005,26(4):22-24.
    [42]顾卓明,顾彩乡,王仁兵,等.纳米碳酸钙用作润滑油添加剂的研究[J].上海海运学院学报,2003,24(3):227-231.
    [43]陈磊,陈建敏,周惠娣.液相化学还原法制备纳米铜颗粒的研究[J].机械工程材料,第29卷第7期,2005年7月:65-67.
    [44]松永正久.固体润滑手册[M].北京:机械工业出版社,1986.9.
    [45]李溪滨,刘如铁,龚雪冰.添加Ni包覆MoS2的Ni-Cr高温固体自润滑材料的研究[J].稀有金屙材料与工程,第32卷第10期,2003年10月:783-786.
    [46]龚雪冰,李溪滨.金属Ni包覆MoS2粉末的研制[J].粉末冶金材料科学与工程,第6卷第1期,2001年3月:69-72.
    [47]张厚安,胡小平等.机械合金化制备Al-Pb粉末[J].粉末冶金技术,第18卷第4期,2000年:270-273.
    [48]D.LI,D.Y.GENG.Metal-nonmetal transition and the electronic transport behavior in disordered PbO2-Ag2O-xC system synthesized by ball milling[J].Journal of materials science 40(2005):1087-1091.
    [49]左可胜,席生岐,周敬恩等.铜锌粉末低温机械合金化[J].中国有色金属学报,第15卷第10期,2005年10月:1577-1582.
    [50]谢希德,陆栋主编.固体能带理论[M].上海:复旦大学出版社,1998.
    [51]邵美成.鲍林规则与键价理论[M].北京:高等教育出版社.1993.
    [52]余瑞璜.圃体与分子经验电子理论[J].科学通报,1978,23(4):217-224.
    [53]张瑞林.固体与分子经验电子理论[M].长春:吉林科学技术出版社,1993.
    [54]石淼森编著.固体润滑剂[M].北京:化学工业出版社,2000.
    [55]曹阳编著.结构与材料[M].北京:高等教育出版社,2003.6.
    [57]宋月鹏,刘国权,李志林等.经验电子理论中与温度相关的价电子结构计算模型[J].材料热处理学报,第26卷,第4期,2005年8月:125-128.
    [58]周飞,李中华,纪嘉明,等.40CrMn合金奥氏体结构及相变行为的电子理论研究[J].材料科学与工程,2000,18(2):64-68.
    [59]徐万东,张瑞林,余瑞璜.过渡金属化合物晶体结合能计算[J].中国科学(A辑),1988年3月:323-324.
    [60]Zhu Ruifu,Chao Zhiqiang,LuYupeng,et al.Tensile deform action behavior and its nature of serial austenitic manganese steels[J].Journal of Shandong University of Technology.1997,27(1):50-52.
    [61]章桥新.锆的难熔化合物价电子结构[J].中国有色金属学报,第10卷第4期,2000年8月:516-518.
    [62]吴非,余瑞璜,张瑞林.Fe-Mn合金高温相图的电子理论计算[J].中国科学(A辑),1990年8月:889-896.
    [63]师瑞霞,杨瑞成,李嘉.Cr、Mo元素对12Cr1MoV钢基体强化作用的电子理论研究[J].机械工程材料,第27卷第11期,2003年11月:10-12.
    [64]王庆松,秦海青,王娜.Al-Mg-Si合金滑移面结合及位错运动机制[J].重庆工学院学报:52-56.
    [65]刘伟东,刘志林,屈华.Ti-4.5Al-5Mo-1.5Cr合金增韧的价电子理论研究[J].金属学报,2002,38(2):1245-1250.
    [66]李文,关振中,杜立明等.Ti-Al系金属间化合物价电子结构对其脆性的影响[J].金属热处理,1996年第11期:3-5.
    [67]Li Zhilin,Ma Changxiang,Liu Zhilin.Valence electron structure of high property high-speed-impact-resistance steel and its composition design[J].Acta Metallurgical Sincia (Eglish letters).1999,12(4):408-414.
    [68]刘志林.合金价电子结构与成分设计[M].长春:吉林科学技术出版社,1990.
    [69]刘志林.界面电子结构与界面性能[M].北京:科学出版社,2002:223-239.
    [70]Fei Zhou,Koshi Adachi,Koji Kato.Friction and wear behavior of BCN coatings sliding against ceramic and steelballs in various environments[J].Wear,vol.261,no.3-4,2006:301-310.
    [71]Kim.SY,Park.J,Choi.HC,et al.X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes[J].Journal of the American Chemical Society,vol.129,no.6,2007:1705-1716.
    [72]Wang Yongqian,Liu Liming,Qin Jian,et al.Optical and mechanical properties of nanocrystalline BCN films[C].Abstracts of the 8th IUMRS International Conference on Electronic Materials.Xi'an,China,2002.
    [73]白锁柱,姚斌,郑大,等.新型BCN化合物的结构表征和相转变[J].物理学报,第55卷第11期2006年11月:5740-5744.
    [74]何巨龙,田永君,于栋利,等.高压合成B_C_N化合物的结构表征[J].硅酸盐学报,第30卷第1期,2002:51-56.
    [75]张立德主编.超微粉体制备与应用技术[M].北京:中国石化出版社,2001.
    [76]Benjamin.J.S.Dispersion Strengthened super-alloys by mechanical alloying[J].Metal Trans,1970,(1):2943-2948.
    [77]KochCC.Mechanical milling and alloying[J].Materials Science and Technology,1991,15:198-200.
    [78]陈君平,施雨湘,张凡等.高能球磨中的机械合金化机理[J].机械,2004年第31卷第3期:52-54.
    [79]王中林,刘义,张泽主编.纳米相和纳米结构材料—结构和性能表征手册[M].北京:清华大学出版社,2002.4.
    [80]M.Abdellaoui,E.Gaffet.The Physics of Mechanical Alloying in a Planetary Ball Mill:Mathematical Treatment[J].Acta metall,mater.Vol.43,No.3,1995:1087-1098.
    [81]冉广.Al-Pb粉末在机械合金化过程中的粒度及形貌演变[J].稀有金属,第28卷第5期,2004年10月:885-889.
    [82]S.M.Zebarjad,S.A.Sajjadi.Microstructure evaluation of Al-Al_2O_3 composite produced by mechanical alloying method[J].Materials and Design 27(2006):684-688.
    [83]M.Abdellaoui,et al.Structural characterization and reversible hydrogen absorption properties of Mg_2Ni rich nanocomposite materials synthesized by mechanical alloying[J].Journal of Alloys and Compounds 268(1998):233-240.
    [84]D.L.Zhang.Processing of advanced materials using high-energy mechanical milling[J].Progress in Materials Science 49(2004):537-560.
    [85]L.Liu et al.Different Pathways of Phase Transition in A V-Si System Driven by Mechanical Alloying[J].Materials Research Bulletin,Vol.33,No.4,1998:539-545.
    [86]L.Liu,F.Padella,W.Guo et al.Solid State Alloying Reactions Induced By Mechanical In Metal-Silicon(Metal:Mo,Nb)Systems[J].Acta metall,mater.Vol.43,No.10,1995:3755-3761.
    [87]徐祖耀.纳米材料的相变[J].上海金属,第24卷第1期,2002年1月:11-20.
    [88]张厚安,胡小平等.机械合金化制备Al-Pb粉末[J].粉末冶金技术,2000年第18卷第4期:270-273.
    [89]郑水林 编著.超细粉碎[M].北京:中国建材工业出版社,1999.5.
    [90]Johnson K L.著.徐秉业,罗学富,刘信声,等译.接触力学[M].北京:高等教育出版社,1992.
    [91]吕春菊.高能球磨法制备含硼、碳、氮陶瓷的研究[O],浙江大学博士论文,2006.
    [92]赵泓.普通化学[M].上海:华东师范大学出版社,1992.12.
    [93]刘海涛.无机材料合成[M].北京:化学工业出版社,2003.8.
    [94]王云,陈宁.粉体粒度与研磨技术[J].山东陶瓷,第22卷,第3期,1999年9月:16-21.
    [95]朱燕萍.纳米颗粒团聚问题的研究进展[J].天津医科大学学报,(2005)第11卷2期:338-341.
    [96]崔洪梅,刘宏,王继扬等.纳米粉体的团聚与分散[J].机械工程材料,Vol.28,No.8,2004.8:38-41.
    [97]王泽爱,陈国需,宗明.纳米微粒在润滑剂中的分散稳定性[J].润滑与密封,2005(6):167-169.
    [98]赵国玺编著.表面活性剂物理化学[M].北京:北京大学出版社,1991.
    [99]S.S.Papell.Low viscosity magnetic fluid obtained by the colloidal suspension of magnetic particles.US,3215572[P].1965.
    [100]陈爽.油酸修饰纳米粒子的摩擦学性能比较[J].润滑与密封,第32卷第2期,2007年02月:108-110.
    [10l]一ノ濑升,尾崎义治,贺集诚一郎著.赵修建译.超微颗粒导论[M].武汉:武汉工业大学出版社,1991.
    [102]赵振国编.胶体与界面化学—概要、演算与习题[M].北京:化学工业出版社,2004.1.
    [103]任俊,沈健,卢寿慈著.颗粒分散科学与技术颗粒[M].北京:化学工业出版社,2005.
    [104]何峰,张正义,汪武祥等.超细粉润滑剂的稳定性[J].北京科技大学学报,第22卷第3期,2000年6月:253-255.
    [105]廖乾初,蓝芬兰编.扫描电镜分析技术与应用[M].北京:机械工业出版社,1990.
    [106]黄德欢著.纳米技术与应用[M].上海:中国纺织大学出版社,2001.
    [107]王正熙.聚合物红外光谱分析和鉴定[M].成都:四川大学出版社,1989.07第1版.
    [108]A.M.Badalyan,V.I.Belyi,N.V.Gel'fond,et al.Chemical Composition And Structure Of Thin Films Produced By Chemical Vapor Deposition[J].Journal of Structural Chemistry,Vol.43,No.4,2002:556-580.
    [109]V.Linss,S.E.Rodil,P.Reinke et al.Bonding characteristics of DC magnetron sputtered B-C-N thin films investigated by Fourier-transformed infrared spectroscopy and X-ray photoelectron spectroscopy[J].Thin Solid Films,467(2004):76-87.
    [110]岳金顺,程文娟,蒋钢娟等.BCN薄膜的射频反应溅射法制备与结构特性[J].材料科学与工程.第18卷,增刊,Vol.18,Sep.2000:650-652.
    [111]L.J.Bellamy.The Infra-red Spectra of Complex Molecules[M].Chapman and Hall,London,1975.
    [112]Tadao Yuki,Shuichi Umeda,Takashi Sugino.Electrical and optical characteristics of boron carbon nitridc films synthesized by plasma-assisted chemical vapor deposition[J].Diamond and Related Materials(13)2004:1130-1134.
    [113]王典芬.X-射线光电子能谱在非金属材料研究中的应用[M].武汉:武汉工业大学出版社,1994,9.
    [114]王建祺,吴文辉,冯大明.电子能谱学(XPS/XAES/UPS)引论[M].北京:国防工业出版社.1992.8.
    [115]Kim.SY,Park.J,Choi.HC,et al.X-ray photoelectron spectroscopy and first principles calculation of BCN nanotubes[J].Journal of the American Chemical Society,vol.129,no.6,2007:1705-1716.
    [116]杨建,丘泰,沈春英.先驱体制备富氮BCN化合物的热解过程[J].过程工程学报.Vol.6,No.3,June,2006:466-471.
    [117]韩建成.多晶X射线结构分析[M].上海:华东师范大学出版社,1989.9.
    [118]裴光文,钟维烈,岳书彬编著.单晶、多晶和非品物质的X射线衍射[M].济南,山东大学出版社,1989.6.
    [119]Xiaoguang Luo,Jiuxing Zhang,Xiaoju Guo et al.Synthesis of B-C-N nanocrystalline particle by mechanical alloying and spark plasma sintering[J].Journal of Material Science (2006)41:8352-8355.
    [120]K.-H.哈比希著.严立译.材料的磨损与硬度[M].北京:机械工业出版社,1987.2.
    [121]H.-B.克拉盖尔斯基等著.汪一麟 等译.摩擦磨损计算原理[M].北京:机械工业出版社,1982.10.
    [122]G.Caminoa,S.M.Lomakinb,M.Lazzaria.Polydimethyl-siloxane thermal degradation Part 1.Kinetic aspects[J].Polymer 42(2001):2395-2402.
    [123]谭业发.硅油对莫来石陶瓷摩擦磨损性能的影响研究[J].润滑与密封,2000年第2期:20-22.
    [124]汪德涛编.润滑技术手册[M].北京:机械工业出版社,1998.11.
    [125]T.A.Stolarski.Evaluation of the Heat of Adsorption of a Boundary Lubricant[J].ASLE Transactions.Vol.30,No.4,1987:472-478.
    [126]边涛,潘颐,崔岩等.金属基复合材料的自发浸渗制备工艺[J].材料导报,第16卷第1期,2002.1:21-24.
    [127]汪海云,龙振宇.金属基复合材料液相浸渗过程的压力特征[J].现代机械,1998年第2期:52-53.
    [128]W.H.Sutton,Whisker Technology.A.P.Levitt.ed..Whley Intersciencc.New York.1970:273-342.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700