用户名: 密码: 验证码:
质子导体电解质BaZr_(0.1)Ce_(0.7)Y_(0.2)O_3的制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
具有钙钛矿结构的质子导体以其较高的离子电导率和质子迁移数以及较低的导电活化能等优点成为中温固体氧化物燃料电池(SOFC)电解质材料的研究热点。本课题以BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3–δ)(BZCY)质子导体作为电解质材料,通过ZnO掺杂改善其烧结和电导性能,并将其应用于单电池中。
     采用溶胶凝胶法成功制备了具有钙钛矿结构的BZCY质子导体。对样品在不同温度下的电导率进行测试,发现BZCY在中低温区电导率较高,700℃时即达到~0.039S/cm。对电导率进行Arrhenius关系拟合,发现在500~650℃,650~750℃两个温度区间样品的活化能分别为67.68和89.23 kJ/mol,证明BZCY在中低温区有优良的导电性能。
     样品的烧结性能测试表明BZCY在温度为1073℃时刚开始烧结,而温度达到1400℃时烧结仍没有结束。同时,SEM测试显示在1300℃下煅烧6h的样品烧结情况仍然较差。采用ZnO作助烧剂改善BZCY的烧结性能,研究了不同掺杂含量及不同引入方式的ZnO对样品烧结性能的影响。结果表明,ZnO以粉末直接混合形式掺入BZCY时,掺杂量达到2mol%后,样品的烧结性能即有明显的改善,其初始烧结温度降为~900℃。而样品电导率则在掺杂量为4mol%时取得最大值。ZnO以Zn(NO_3)_2热分解形式掺入BZCY时,样品的导电率及烧结性能还能得到进一步提高。
     制备并测试了以BZCY为电解质的单电池。研究了旋涂、干压和喷压三种制备工艺对单电池性能的影响,发现旋涂法制备的电解质厚度较小(~17μm),但粉体初始堆积密度低,电解质难以烧结致密,不但单电池开路电压较低,而且欧姆阻抗偏大。电池在650和700℃的最大功率密度分别为125和220mW/cm~2。以干压法制备电解质时,BZCY粉体初始堆积密度较高,电解质易烧结致密,电池的开路电压接近理论值,但厚度较大(40~60μm),且各处厚薄不均,电池欧姆阻抗较大。650和700℃时,电池的最大功率密度分别为165和212mW/cm~2。喷压法制备BZCY电解质的工艺为本文率先提出:先将BZCY悬浊液喷涂在阳极上,得到厚度较小且分布均匀的BZCY薄层,然后加压提高其堆积密度。该方法制备的电解质厚度较小,薄厚均匀。电池开路电压较高,欧姆电阻较小。单电池在650和700℃最大功率密度分别达到375和527mW/cm~2,较前两种工艺有明显提升。
     总之,本文通过对ZnO助烧的研究,有效降低了BZCY的烧结温度,改善了BZCY的烧结性能。并且研究了旋涂、干压和喷压三种制备工艺对电池性能的影响,发现喷压法制得的电解质厚度小,烧结致密度高,单电池获得了最佳的输出性能。
High temperature proton conductors with perovskite structure have become hot for electrolyte of IT-SOFCs because of their high ionic conductivity, high ionic transferring number and low conducting activation energy. In this thesis, investigation is focused on BaZr_(0.1)Ce_(0.7)Y_(0.2)O_(3–δ) (BZCY). To improve the sintering property and conductivity, ZnO is incorporated as an additive. Single cell with BZCY electrolyte is fabricated and characterized.
     BZCY has been synthesized successfully using glycine-nitrate process. Conductivity tests at various temperature point out BZCY displays a fairly high conductivity in the intermediate-low temperature range, and it is around 0.039S/cm at 700℃. Fitting results of the conductivity data in terms of Arrhenius equation reveal the activation energy of BZCY is 67.68kJ/mol at 500~650℃, 89.23 kJ/mol at 650~750℃respectively. It proves a fairly good conductive property of BZCY at intermediaerature region.
     According to sintering shrinkage curves, the sintering of BZCY is not occurred until the sintering temperature ascends to 1073℃, and a sintering temperature as high as 1400℃even cannot finalize the sintering of BZCY. Meanwhile, SEM images indicate the sintering of a specimen calcined at 1300℃for 6h is not satisfactory yet. To improve the sintering behavior of BZCY, ZnO is incorporated to the specimen as an additive. And the effect of different amount of incorporated ZnO and how to add it to BZCY are investigated. Results show, when ZnO powder is used as additive which was mixed with BZCY directly, the addition of only 2mol% ZnO has facilitated BZCY sintering drastically and lowered the starting sintering temperature from 1073℃to 900℃. The conductivity of BZCY ascends to its peak with the addition of 4mol% ZnO. On the other hand, when ZnO is added to BZCY by decomposition of Zn(NO_3)_2 which is mixed with BZCY at firsit could improve both sintering ability and conductive property of BZCY much more.
     Cells using BZCY as electrolyte are fabricated and characterized. The influence of three methods for manufacturing electrolyte layer, namely slurry spin coating, dry pressing and spray pressing is examined. For the slurry spin coating method, the electrolyte membrane is very thin, about 17μm. Due to the low green density of electrolyte layer, it is difficult to densify BZCY electrolyte, which results in a low open-circuit voltage and large Ohmic resistance. Maximum power densities of the cell are 125 and 220mW/cm~2 at 650 and 700℃, respectively. The dry pressing method produces an excellent sintering of BZCY, which is attributed to the high green density of electrolyte. And the fuel cell displays an OCV close to the theoretical value. However the
     h but also very dense, then resulting in the best cell performance among three 40~60μm thickness of the electrolyte membrane is so big and uneven that the Ohmic resistance is very large. Maximum power densities of the cell fabricated by dry pressing were 165 and 212mW/cm~2 at 650 and 700℃, respectively. The spray pressing is a simple and effective one for fabricating BZCY films. First, the BZCY suspension is sprinkled on the anode surface to form a thin and even BZCY layer. Then the electrolyte layer and the anode pellet are pressed together in a high pressure in order to increase the green density of such bi-layers. The high green density enhances the sintering of BZCY effectively, so that an increased OCV and decreased Ohmic resistance are achieved. Maximum power densities of the cell fabricated by spray pressing are 375 and 527mW/cm~2 at 650 and 700℃, respectively.
     In conclusion, the use of ZnO as an additive to facilitate sintering ability of BZCY has decreased the starting sintering temperature significantly and improved the sintering property of BZCY. Comparison of three different methods for making electrolyte indicate that spray pressing method produces a high-quality electrolyte layer which is not only thin enougmethods.
引文
1韩敏芳,彭苏萍.固体氧化物燃料电池材料及制备.科学出版社. 2004: 1~24.
    2衣宝廉.燃料电池.化学工业出版. 2000: 13~34.
    3李瑛,王林山.燃料电池.冶金工业出版社. 2000: 6~20.
    4黄喜强.固体氧化物燃料电池复合电极材料的制备及性能研究.博士后研究工作报告. 2003: 3~9.
    5 H. Iwahara, T. Esaka. Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production. Solid State Ionics. 1981, 3~4: 359~363.
    6 W. Lee, A. S. Nowick, L. A. Boaturmer. Protonic conduction in acceeptor-doped KTaO3 crystals. Solid State Ionics. 1986, 18~19: 989~993.
    7 S. Shin, H. Huang, M. Ishigame, H. Iwahara. Protonic conduction in the single crystals of SrZrO3 and SrCeO3 doped with Y2O3. Solid State Ionics. 1990, 40~41: 910~913.
    8 T. Scherban, A. S. Nowick. Bulk protonic conduction in Yb-doped SrCeO3. Solid State Ionics. 1989, 3: 189~194.
    9 E. Matsushita, A. Tanase. Theoretical approach for protonic conduction in perovskite-oxide ceramics. Solid State Ionics. 1997, 97: 45~50.
    10 E. Matsushita, T. Sasaki. Theoretical approach for protonic conduction in perovskite-type oxides. Solid State Ionics. 1999, 125: 31~37.
    11徐志弘,温延琏,中科院上海硅酸盐所.掺杂BaCeO3和SrCeO3在氧、氢及水气氛下的电导性能.无机材料学报. 1993.
    12 T. Hibino, K. Mizutani, T.Yajima, H. Iwahara. Evaluation of proton conductivity in SrCeO3, BaCeO3, CaZrO3 and SrZrO3 by temperature programmed desorption method. Solid State Ionics. 1992, 57: 303~306.
    13 R. Glockner, M. S. lslam, T. Norby. Protons and other deffects in BaCeO3 : a computational study. Solid State Ionics. 1999, 122: 145~156.
    14 T. Ishihara, H. Matsuda, Y. Takita. Effects of rare earth cations doped for La site on the oxide ionic conductivity of LaGaO3-based perovskite type oxide. Solid State Ionics. 1995, 79: 147~151.
    15 G. Ma, T. Shimura, H. Iwahara. Simultaneous doping with La3+ and Y3+ for Ba2+ and Ce4+sites in BaCeO3 and the ionic conduction. Solid State Ionics. 1999, 120: 51~60.
    16 G. Ma, T. Shimura, H. Iwahara. Ionic conduction and nonstoichiometry in BaxCe0.90Y0.10O3-δ. Solid State Ionics. 1998, 110: 103~110.
    17 S. Barison, M. Battagliarin, T. Cavallin, S. Daollio, L. Doubova, R. Gerbast. Non-Stoichiometry Role on the Properties of Ba1+ xCe0. 65Zr0. 20Y0. 15O3-δ; Proton Conductors for IT-SOFCs. Fuel Cells. 2008, 8: 360~368.
    18 J. Wu, R. A. Davies, M. S. Islam. Atomistic study of doped BaCeO3: Dopant site-selectivity and cation nonstoichiometry. Chemistry of Materials. 2005, 17: 856~851.
    19 L. Yang, S. Wang, B. Kevin, M.Liu. Enhanced Sulfur and Coking Tolerance of a Mixed Ion Conductor for SOFCs: BaZr0.1Ce0.7Y0.2-xYbxO3-a. Science. 2009, 326: 126~129.
    20纪媛,刘江,贺天民.甘氨酸-硝酸盐法制备中温SOFC电解质及电解质材料.高等学校化学学报. 2003, 23: 1227~1230.
    21朱冬冬,方建慧,施利毅,吴亚平,丁伟中.质子导体SrCe0.95Yb0.05O3-a溶胶凝胶燃烧合成的研究.功能材料. 2004, 35: 1828~1830.
    22张建敏,王吉德,岳凡.纳米晶SrCe0.95Y0.05O3-a烧结特性的研究.化学研究与应用. 2000, 12: 664~667.
    23 L. Zhao, B. He, Q. Nian, Z. Xun, R. Peng, G. Meng, X. Liu. In situ drop-coated BaZr0.1Ce0.7Y0.2O3-δelectrolyte-based proton-conductor solid oxide fuel cells with a novel layered PrBaCuFeO5+δcathode. Journal of Power Sources. 2009, 194: 291-294.
    24朱剑莉,马桂林. La0.9Sr0.1Ga0.8Mg0.2O3-α的微乳液法合成及其质子导电性研究.无机化学学报. 2007.
    25 R. Gregory, S. Structure. Bonding in Crystalline Materials. Cambridge University Press 2004.
    26董相廷,洪广言.溶胶-凝胶合成二氧化铈纳米晶.长春理工大学学报. 2002, 25: 43~46.
    27 Y. Wang, T. Mori. Low-temperature preparation of dense 10 mol %Y2O3 doped CeO2 ceramics using powders synthesized via carbonate coprecipitation. 2003, 18: 1239~1246.
    28艾娜.氧化铈电解质薄膜制备与应用研究.哈尔滨工业大学硕士学位论文. 2007: 9~15.
    29 Y. Lin, R. Ran, Z. Shao. Silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δas cathodes for a proton conducting solid-oxide fuel cell. International Journal of Hydrogen Energy. 2010, In Press, Corrected Proof.
    30 K. Jiang. Low temperature preparation and fuel cell properties of rare earth doped barium cerate solid electrolytes. Science in China. 1999, 42: 298~304.
    31 S. Souza, S. J. Visco, L. C. D. Jonghe. Reduced-Temperature Solid Oxide Fuel Cell Based on YSZ Thin-Film Electrolyte. Electrochemistry Communications. 1997, 144: L35~L37.
    32 W. Lian, L. Yi. Proton conductor of SrCe0.95Ln0.05Ox (Ln=Eu, Sm, Ho, Tm). Journal of Materials Science Letters. 1994, 13: 1032~1034.
    33 A. Azad, S. Subranmaniam, T. W. Dung. On the development of high density barium metazirconate (BaZrO3). Journal of Alloys and Compounds. 2002, 334: 118~130.
    34 P. Babilo, M. Sossina Haile. Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO The American Ceramic Society. 2005, 88: 2362~2368.
    35 H. Ding, B. Lin, D. Fang, Y. Dong. BaZr0.1Ce0.7Y0.2O3-δproton-conducting electrolyte prepared by gel-casting for low-temperature solid oxide fuel cells. Journal of Alloys and Compounds. 2009, 474: 364~369.
    36王贺. ZnO对Y掺杂BaCeO3-BaZrO3固溶体的烧结行为及其电性能研究.中国科学技术大学硕士学位论文. 2009.
    37 J. Serra, W. Meulenberg. Thin-film proton BaZr0.85Y0.15O3 conducting electrolytes: Toward an intermediate-temperature solid oxide fuel cell alternative. Journal of the American Ceramic Society. 2007, 90: 2082~2089.
    38 M. D. Hill, R. S. Roth. System BaO(BaO2)-ZnO. National Institute of Standards and Technology 1995.
    39 K. Uematsu, A.Terada, T. Morimoto. Direct determination of grain growth behavior in zinc oxide with added barium oxide. Journal of the American Ceramic Society. 1989, 72: 1070~1072.
    40 K. Chen, Z. Lü, N. Ai. Development of yttria-stabilized zirconia thin films via slurry spin coating for intermediate-to-low temperature solid oxide fuel cells. Power Sources. 2006, 160: 436~438.
    41 K. Chen, Z. Lü, N. Ai. Fabrication and performance of anode-supported YSZ films by slurry spin coating. Solid State Ionics. Solid State Ionics. 2007, 177: 3455~3460.
    42 K. Chen, Z. Lü, N. Ai. Effect of SDC-impregnated LSM cathodes on the performance of anode-supported YSZ films for SOFCs. Power Sources. 2007, 167: 84~89.
    43 P. Charpentier, P. Fragnaud, D. M. Schleich, E. Gehain. Preparation of thin film SOFCs working at reduced temperature. Solid State Ionics. 2000, 135: 373~380.
    44 Z. Lü, J. Wang, K. Chen. Study on the Ohmic Resistance of Solid Oxide Fuel Cells Based on YSZ Membrane Fabricated by Slurry Spin Coating. 2007: ECS. Solid State Ionics. 2000, 135: 373~380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700