用户名: 密码: 验证码:
锆酸盐/无机盐复相质子导体的设计、制备和性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
锆基钙钛矿型高温质子导体具有良好的化学稳定性和较高的晶粒电导率,是固体氧化物燃料电池用电解质隔膜的重要候选材料。然而,烧结温度高、总电导率偏低是其实用化面临的最大障碍。本论文在详细研究和对比钇掺杂锆酸锶和锆酸钡烧结性能和电化学性能的基础上,采用ZnO为烧结助剂,大幅度降低了这类质子导体的烧结温度,缩短了保温时间,进一步以无机盐为第二相添加剂,设计制备了具有新型微观结构的锆酸钡/无机盐复相质子导体,详细研究了它们的烧结性能和电化学性能。
     采用高温固相法制备了SrZr_xY_(1-x)O_(3-δ)(SZY)和BaZr_xY_(1-x)O_(3-δ)(BZY)(x = 0.05, 0.10, 0.15)系列单相粉体,在烧结温度为1600°C,保温时间大于6 h的条件下,得到密度为95 %左右的质子导体。电性能测试表明,在固溶度范围内,随着Y_2O_3掺杂量的增加,SZY和BZY的质子导电性能提高。Y_2O_3掺杂量为10 %的SZY_(10)在800°C的直流电导率为1.2×10-3 S/cm,相对来说,同样掺杂量的BZY材料的直流电导率较低,仅为5.32×10-4 S/cm。活化能分析表明, SZY比BZY具有更高的直流电导活化能,这主要与SZY晶格结构的正交畸变有关。
     ZnO是SZY_(10)(SrZr_(0.9)Y_(0.1) O_(2.95))和BZY_(10)(BaZr_(0.9)Y_(0.1) O_(2.95))的有效烧结助剂。研究表明,适量的ZnO(< 5 mol%)可以大幅度降低两者的烧结温度达250°C以上,保温时间可以缩短到4 h。ZnO主要以固溶取代的形式存在于SZY_(10)和BZY_(10)晶格中,其在晶格中固溶使晶格缺陷增加是主要的促烧机理。在电性能方面,ZnO对SZY_(10)和BZY_(10)导电性能的影响不同。在BZY_(10)中,材料的直流电导率随着ZnO添加量的增加单调下降;在SZY_(10)中,材料的直流电导率先随ZnO的添加量增加而增加,当添加量超过5 mol%以后,电导率出现大幅下降。电动势测试结果表明,添加5 mol%以下ZnO不会显著改变SZY_(10)和BZY_(10)的质子导电特性,离子传导系数在0.85以上。但是,当ZnO在SZY_(10)中的添加量达到6 mol%时,材料的离子传导系数急剧下降。重点从缺陷化学角度对ZnO在SZY_(10)和BZY_(10)中的不同影响进行了讨论。
     在1320~1350℃/4 h的烧结条件下,制备了符合预期设想结构的系列BaZr_(0.9)Y_(0.1)O_(2.95)/无机盐(硫酸盐、碳酸盐和氢氧化钠)复相质子导体,重点研究了BaZr_(0.9)Y_(0.1)O_(2.95)/Na_2SO_4复相质子导体的烧结性能、微观结构和电性能等。研究结果表明,BaZr_(0.9)Y_(0.1)O_(2.95)/Na_2SO_4复相材料以BaZrO_3的等轴晶粒为主晶相,Na_2SO_4主要分布于晶界处。对比单相材料BaZr_(0.9)Y_(0.1)O_(2.95),复相材料的直流电导率提高了一个数量级以上,接近10~(-2) S/cm,离子传导系数在0.9以上,是纯质子导体。BaZr_(0.9)Y_(0.1)O_(2.95)/Na2SO4复相材料具有不同于单相材料的导电机理,这是硫酸钠在晶界处的分布造成的。
     烧结温度、保温时间、ZnO含量以及第二相无机盐类型是影响BaZr_(0.9)Y_(0.1)O_(2.95)/无机盐复相质子导体电性能的关键因素。选择较低的烧结温度和较短的保温时间,可以避免无机盐在体系中的挥发,得到具有较高电导率的复相质子导体。在满足烧结性能要求的基础上,应该尽量减小ZnO的添加量,以避免其对体系导电性能的不良影响。实验所涉及的几种无机盐与氢氧化钠都对主晶相的直流电导率产生影响,按照对直流电导率提高幅度从大到小的顺序为:硫酸盐>碳酸盐>氢氧化钠。
Protonic conductor of Y-doped zirconates exhibits good chemical stability and high bulk conductivity. However, its low grain boundary conductivity and high refractory nature, hence a low total conductivity and high sintering temperature, remain the main obstacles in its high-drain applications as electrolytes of solid state fuel cells (SOFC). In this study, we investigated the sintering behaviors and DC electrical conductivities of Y_2O_3 doped SrZrO_3 and BaZrO_3. The influences of sintering additive ZnO on the properties of Y-doped zirconates were thoroughly studied. Furthermore, heterogeneous composites were designed and fabricated with Y-doped BaZrO_3 as matrix and some inorganic salts as dispersants by a conventional powder processing. The electrical conductivities of the composites were investigated, and the enhancements were interpreted from the point of view of microstructure.
     SrZrxY1-x O_3-δ(SZY) and BaZrxY1-x O_3-δ(BZY) (x = 0.05, 0.10, 0.15) powders were synthesized by conventional solid-state reaction. Densified protonic conductors (95 % theoretical density) were achieved after sintering at 1600°C for more than 6 h. DC electrical measurements indicated that the protonic conductivities of SZY and BZY increased with increasing the Y_2O_3 content. The DC conductivity of SZY_(10) (with 10 % Y_2O_3) is 1.2×10-3 S/cm at 800°C in wet hydrogen, while BZY_(10) only achieved 5.32×10-4 S/cm under the same conditions. SZY has higher DC electrical activation energy than BZY, which closely relates to its deviation of orthorhombic lattice from cubic.
     Transition metal oxide ZnO is an effective sintering additive for zirconates. Addition of more than 2 mol% ZnO in SZY and BZY lowered their sintering temperatures by 250°C. XRD analysis confirmed the formation of solid-solution upon ZnO addition into SZY and BZY. The increased lattice defects by Zn substitution on Zr-site may account for the enhanced sintering ability. As for electrical properties, ZnO impart different impacts on SZY_(10) and BZY_(10). In BZY_(10), addition of ZnO leads to a monotonically decreased DC electrical conductivity. In SZY_(10), addition of 2~5 mol% ZnO had benecial effects on its protonic conduction. Excess ZnO content (>5 mol%) in SZY_(10) led to a decreased protonic conduction. Ionic transport number more than 0.85 at 800°C by electromotive force (EMF) measurements under fuel cell conditions revealed that SZY_(10) and BZY_(10) with low ZnO contents (less than 5 mol%) are nearly pure protonic conductors. The different influences of ZnO addition on the properties of SZY_(10) and BZY_(10) are discussed according to defect chemistry.
     With BZY_(10) as the main phase, sulphates, carbonates and sodium oxyhydrate as the second phase respectively, several kinds of barium zirconate/salt composites were designed and fabricated at sintering temperature of 1320~1350 ?C and keeping time of 4 h, aiming to improve the total electrical conductivity of single phase barium zirconate. The sintering behavior, microstructure and electrical conductivity of BaZr_(0.9)Y_(0.1)O_(2.95)/Na2SO4 composites are thoroughly studied and compared with those of the single phase BZY_(10). The BaZr_(0.9)Y_(0.1)O_(2.95)/Na_2SO_4 composites exhibit multi-phase microstructures, with BZY_(10) grains as the main phase and small amounts of sulfates distributed at the grain boundaries, which is consistent with the expected microstructure. The electrical conductivity of BZY_(10) increased by more than one order of magnitude, close to 10-2 S/cm, upon introducing Na2SO4 at the grain boundary. The ionic transport number of more than 0.9 indicates a pure protonic conductor at temperature range of interest. The proton transport mechanism is discussed based on the different mechanisms of zirconate and sulphates.
     Key factors of influencing the electrical conduction of the barium zirconate/salt composites involve sintering temperature, keeping time, ZnO content and species of salts. Low sintering temperature and short sintering time would help to avoid the evaporation of salts from the composite, and result in high conductivity. ZnO content should be minimized because of its detrimental influence on the proton conductivity of the composites. Of the salts in this study, we observed an improvement of electrical conductivity of barium zirconate in the sequence of sulphates > carbonates > sodium hydroxide.
引文
[1] Dufour A U. Fuel Cells-a New Contributor to Stationary Power [J]. J. Power Sources, 1998, 71: 19-25.
    [2] Cameron D S. Fuel Cells System: New Industrial Application for Gold Platinum [J]. Metals Rev., 1990, 34: 26-35.
    [3]衣宝廉.燃料电池-原理、技术、应用[M],北京:化学工业出版社,2003. 431~432.
    [4] Virkar A V. Solid Oxide Fuel Cells for Distributed, Residential and Portable Power http://www.coe.utah.edu/coe/about/Newletters/july2001.pdf.
    [5] Brian C H, Angelika H. Materials for Fuel-Cell Technologies [J]. Nature, 2001, 414: 345~349.
    [6] Inaba H, Tagawa H. Ceria-based solid electrolyte [J]. Solid State Ionics, 1996, 83: 1~16.
    [7] Kilner J A, Steele B C H. Nonstoichiometric Oxides [M]. edited by Sorensen T, New York: Academic Press, 1981. 233~269.
    [8] Haering C, Schichl R H, Schnfller M. Degradation of the Electrical Conductivity in Stabilized Zirconia system Part II: Scandia-Stabilised Zirconia [J]. Solid State Ionics, 2005, 176: 261~268.
    [9] Steele B C H. Appraisal of Ce1-yGdyO2-y/2 Electrolytes for IT-SOFC Operation at 500 oC [J]. Solid State Ionics, 2000, 129: 95~110.
    [10] Zhan Z L, Wen T L, Tu H Y, et al. AC Impedance Investigation of Samarium-Doped Ceria [J]. J. Electrochem. Soc., 2001, 148 (5): A427~A432.
    [11] Ralph J M, Schoeler A C, Krumpelt M. Materials for Lower Temperature SOFC [J]. J. Mater. Sci., 2001, 36: 1161~1172.
    [12] Leah R T, Brandon N P, Aguiar P. Modeling of Cells, Stacks and Systems Based Around Metal-Supported Planar IT-SOFC Cells with CGO Electrolytes Operating at 500-600 oC [J]. J. Power Sources, 2005, 145: 336~352.
    [13] Leng Y J, Chan S H, Jiang S P, et al. Low-Temperature SOFC with Thin Film GDC Electrolyte Prepared in Situ by Solid-State Reaction [J]. Solid State Ionics, 2004, 170: 9~15.
    [14] Ishihara T, Matsuda H, Yakita Y. Doped LaGaO3 Perovskite Type Oxide as a New Oxide Ionic Conductor [J]. J. Am. Chem. Soc., 1994, 116: 3801~3803.
    [15] Ishihara T, Hiei Y, Yakita Y. Oxidative Reforming of Methane Using Solid Oxide Fuel Cell with LaGaO3-Based Electrolyte [J]. Solid State Ionics, 1995, 79: 371~375.
    [16] Cherry M, Islam M S, Catlow C R A, Oxygen Ion Migration in Perovskite-Type Oxides [J]. J. Solid State Chem., 1995, 118: 125~132.
    [17] Iwahara H, Esaka T, Uchida H, et al. Proton Conduction in Sintered Oxides and Its Application to Steam Electrolysis for Hydrogen Production [J]. Solid State Ionics, 1981, 3-4: 359~362.
    [18] Iwahara H, Uchida H, Morimoto K. High-Temperature Solid Electrolyte Fuel-Cells Using Perovskite-Type Oxide Based on BaCeO3 [J]. J. Appl. Electrochem., 1990, 137: 462~466.
    [19] Kreuer K D. Proton-Conducting Oxides [J]. Annu. Rev. Mater. Res., 2003, 33: 333~361.
    [20] Iwahara H. Solid State Protonic Devices Using Proton Conducting Ceramics [J]. J. of University of Science and Technology of China (Chinese), 2004, 34(2): 165~175.
    [21] Matsumoto H, Hayashi H, Iwahara H. Electrochemical hydrogen isotope sensor based on solid electrolytes [J]. J. Nuc. Sci. Tech., 2002, 39(4): 367~370.
    [22] Matsumoto H, Okubo M, Hamajima S, et al. Extraction and Production of Hydrogen Using High-temperature Proton Conductor [J]. Solid State Ionics, 2002, 152-153: 715~720.
    [23] Qiu L G, Ma G L, Wen D J. Properties and Applications of Ceramic BaCe0.8Ho0.2O3-α[J]. Chinese Journal of Chemistry, 2005, 23: 1641~1645.
    [24] Norby T. The Promise of Protonics [J]. Nature, 2001, 410: 877~878.
    [25] Haile S M. Fuel Cells: Powering Progress in the 21st Century, http://www.eas.caltech.edu/engenious/fall01/haile.html.
    [26] Martin S W, Poling S A, Sutherland J T. Design and Development of New Glass-Ceramic Proton Conducting Membranes, Proceedings of the 2002 U.S. DOE Hydrogen Program Review NREL/CP-610-32405.
    [27] Haile S M, Boysen D A, Chisholm C R I, et al. Solid Acids as Fuel Cell Electrolytes [J]. Nature, 2001, 410: 910~912.
    [28] Uda T, Boysen A B, Haile S M, Thermodynamic, Thermomechanical, and Electrochemical Evaluation of CsHSO4 [J]. Solid State Ionics, 2005, 176(1-2): 127~133.
    [29] Iwahara H, Ono K, Ogaki K. Proton Conduction in Sintered Oxides Based on BaCeO3 [J]. J. Electrochem. Soc., 1988, 135(2): 529~533.
    [30] Mitsui A, Miyayama M, Yanagida H. Evaluation of the activation energy for proton conduction in perovskite-type oxides. Solid State Ionics, 1987, 22(2-3): 213~217.
    [31] Du Y, Nowick A S. Structural Transitions and Proton Conduction in Nonstoichiometric A3B’B2”O9 Perovskite-Type Oxides [J]. J. Am. Ceram. Soc., 1995, 78: 3033~3039.
    [32] Nowick A S, Liang K C. Effect of Non-stoichiometry on the Protonic and Oxygen-Ionic Conductivity of Sr2(ScNb)O6: A Complex Perovskite [J]. Solid State Ionics, 2000, 129: 201~207.
    [33] Bohn H G, Schober T, Mono T, et al. The High Temperature Proton Conductor Ba3Ca1.18Nb1.82O9-x, I. Electrical Conductivity [J]. Solid State Ionics, 1999, 117: 219~228.
    [34] Schober T, Bohn H G, Mono T, et al. The high temperature proton conductor Ba3Ca1.18Nb1.82O9-δ- Part II: electrochemical cell measurements and TEM [J]. Solid State Ionics, 1999, 118 (3-4): 173~178.
    [35] Pirzada M, Grimes R W, Minervini L, et al. Oxygen Migration in A2BB2O7 Pyrochlores [J]. Solid State Ionics, 2001, 140: 201~208.
    [36] Omata T, Okuda K, Tsugimoto S, et al. Water and Hydrogen Evolution Properties and Protonic Conducting Behaviors of Ca2+ -doped La2Zr2O7 with a Pyrochlore Structure [J]. Solid State. Ionics, 1997, 104: 249~258.
    [37] Shimura T, Komori M, Iwahara H. Ionic-Conduction in Pyrochlore-Type Oxides Containing Rare-Earth Elements at High-Temperature [J]. Solid State Ionics, 1996: 86-88, 685~689.
    [38] Yu T H, Tuller H L. Ionic-Conduction and Disorder in the Gd2Sn2O7 Pyrochlore System [J]. Solid State Ionics, 1996, 86-88: 177~182.
    [39]尹自光,掺杂锆酸镧质子导体的制备和性能研究[D],天津:天津大学,2004.
    [40] Haugsrud R, Norby T. Proton Conduction in Rare-Earth Ortho-Niobates and Ortho-Tantalates [J]. Nature, 2006, 5: 193~196.
    [41] Amezawa K, Tomii Y, Yamamoto N. High Temperature Protonic Conduction in LaPO4 Doped with Alkaline Earth Metals [J]. Solid State Ionics, 2005, 176: 135~141.
    [42] Amezawa K, Kitajima Y, Tomii Y, et al, Protonic Conduction in Acceptor-Doped LaP3O9 [J]. Solid State Ionics, 2005, 176: 2867~2870.
    [43]王常珍,固体电解质和化学传感器[M],北京:冶金工业出版社,2000.
    [44] Kreuer K D. On the Development of Proton Conducting and Materials for Technological Applications [J]. Solid State Ionics, 1997, 97: 1-15.
    [45] Iwahara H. Technological Challenges in the Application of Proton Conducting Ceramics [J]. Solid State Ionics, 1995, 77: 289~298.
    [46] Schober T, Krug F, Schilling W. Criteria for the Application of High Temperature Proton Conductors in SOFCs [J]. Solid State Ionics, 1997, 97: 369~373.
    [47] Yajima T, Koide K, Fukatu N, et al. A New Hydrogen Sensor for Molten Aluminum [J]. Sensors and Actuators, 1993, B13-14: 697~699.
    [48]张宏力,高温质子导体的制备和性能研究[D],上海:上海大学,2004.
    [49]仇立干,BaxCe0.8Re0.2O3-α的合成、结构及其电化学性能[D],苏州:苏州大学,2005.
    [50]王平,高温质子导体的制备及硫酸盐质子导体的稳定性能研究[D],合肥:中国科技大学,1999.
    [51]王洪涛,SrCexYb1-xO3-α陶瓷的合成及其电性能研究[D],苏州:苏州大学,2005.
    [52]邵玮,高温质子导体在铝液精炼中的应用研究[D],上海:上海大学,2003.
    [53]陆佩文,无机材料科学基础[M],武汉:武汉工业大学出版社,1996,43~44.
    [54]吴忠庆,介电性质的理论研究[M],北京:清华大学,2003.
    [55] Mizusaki J, Mori N, Takai H, et al. Oxygen Nonstoichiometry and Defect Equilibrium in the Perovskite-Type Oxides La1-xSrxMnO3+δ[J]. Solid State Ionics, 2000, 129: 163~177.
    [56]束奇峰,张家芸,亚锰酸镧及其A位掺杂物的结构与缺陷[J],中国稀土学报,2004,z1期.
    [57] Mizusaki J, Yonemura Y, Kamata H, et al. Electronic Conductivity, Seebeck Coefficient, Defect and Electronic Structure of Nonstoichiometric La1-xSrxMnO3 [J]. Solid State Ionics, 2000, 132: 167~180.
    [58] Nowick A S, Du Y. High-Temperature Protonic Conductors with Perovskite- Related Structures [J]. Solid State Ionics, 1995, 77: 137~146.
    [59] Davies R A, Islam M S, Chadwick A V, et al. Cation dopant Sites in the CaZrO3 Proton Conductor: A Combined EXAFS and Computer Simulation Study [J]. Solid State Ionics, 2000, 130: 115~122.
    [60] Davies R A, Islam M S, Gale J D. Dopant and Proton Incorporation in Perovskite-type Zirconates [J]. Solid State Ionics, 1999, 126: 323~335.
    [61] Yajima T, Suzuki H, Yogo T, et al. Protonic Conduction in SrZrO3-Based Oxides [J]. Solid State Ionics, 1992, 51: 101~107.
    [62] Kreuer K D, Schonherr E, Maier J. Proton and Oxygen Diffusion in BaCeO3 Based Compounds: A Combined Thermal Analysis and Conductivity Study [J]. Solid State Ionics, 1994, 70-71: 272~277.
    [63] Norby T, Larring Y. Concentration and Transport of Protons in Oxides [J]. Curr. Opin. Solid State Mater. Sci. 1997, 2: 593~599.
    [64] Krug F, Schober T, Springer T. In Situ Measurements of the Water Uptake in Yb Doped SrCeO3 [J]. Solid State Ionics, 1995, 81: 111~115.
    [65] Schober T, Bohn H G. Water Vapor Solubility and Electrochemical Characterization of the High Temperature Proton Conductor BaZr0.9Y0.1O2.95 [J]. Solid State Ionics, 2000, 127: 351~360.
    [66] Bonanos N. Oxide-based Protonic Conductors: Point Defects and Transport Properties [J]. Solid State Ionics, 2001, 145: 265~274.
    [67] Kreuer K D, Dippel T H, Yu M, et al. Water Solubility, Proton and Oxygen Diffusion in Acceptor-Doped BaCeO3: A Single-Crystal Analysis [J]. Solid State Ionics, 1996, 86-88: 613~620.
    [68] Takahashi T. High Conductivity Solid Ionic Conductors: Recent Trends and Applications [J]. World Scientific, 1989, 166~179.
    [69] Kreuer K D. Aspects of the formation and mobility of protonic charge carriers and the stability of perovskite-type oxides [J]. Solid State Ionics, 1999, 125: 285~302.
    [70] Matsushita E, Sasaki T. Theoretical Approach for Proton Conduction in Perovskite-type Oxides [J]. Solid State Ionics, 1999, 125: 31~37.
    [71] Hibino T, Mizutani K, Yajima T, et al. Characterization of Proton in Y-Doped SrZrO3 Polycrystal by IR Spectroscopy [J]. Solid State Ionics, 1992, 58: 85~88
    [72] Yugami H, Shibayama Y, Hattori T, et al. Proton Diffusivity in SrZrO3: Sc3+ Single Crystals Studied by Infrared Absorption Spectroscopy [J]. Solid State Ionics, 1995, 79: 171~176.
    [73] Sata N, Hiramoto H, Ishigame M, et al. Site Identification of Protons in SrTiO3: Mechanism for Large Protonic Conduction [J]. Phys. Rev. B, 1996, 54(22): 15795.
    [74] Shin S, Huang H H, Ishigame M, et al. Protonic Conduction in the Single Crystals of SrZrO3 and SrCeO3 Doped with Y2O3 [J]. Solid State Ionics, 1990, 40-41: 910~913.
    [75] Yugami H, Shibayama Y, Matsuo S, et al. Proton Sites and Defect-Interactions in SrZrO3 Single Crystals Studied by Infrared Absorption Spectroscopy [J]. Solid State Ionics, 1996, 85: 319~322.
    [76] Omata T, Takagi M, Otsuka-Yao-Matsuo S. O-H Stretching Vibrations of Proton Conducting Alkaline-earth Zirconates [J]. Solid State Ionics, 2004, 168: 99~109.
    [77]仇立干,BaCe0.8Re0.2O3-α的合成、结构及其电化学性能[D],苏州:苏州大学,2005.
    [78] Stevenson D A, Jiang N, Buchanan R M, et al. Characterization of Gd, Yb and Nd Doped Barium Cerates as Proton Conductors [J]. Solid State Ionics, 1993, 62: 279~285
    [79] Iwahara H, Uchida H, Morimoto K. High-Temperature Solid Electrolyte Fuel-Cells Using Perovskite-Type Oxide Based on BaCeO3 [J]. J. Appl. Electrochem., 1990, 137: 462~468.
    [80]郑敏辉,陈祥. SrCeO3基高温质子导体基Al液定氢探头[J],金属学报,1994,30(5):B238~242.
    [81]王金霞,王斯婷. BaCexY1-xO3-δ质子导体的制备与性能[J],吉林大学学报,2005,43(5):666~668.
    [82]费敬银,辛文利,梁国正,等. SrCe0.95Yb0.05O3-α的制备及其质子导电特性[J],化学物理学报,2003,16(5):425~428.
    [83] Ryu K H, Haile S M. Chemical Stability and Proton Conductivity of Doped BaCeO3-BaZrO3 Solid Solutions [J]. Solid State Ionics, 1999, 125: 355~367.
    [84] Scholten M J, Schoonman J, Miltenburg J C, et al. Synthesis of Strontium and Barium Cerate and Their Reaction with Carbon Dioxide [J]. Solid State Ionics, 1993, 61: 83~91.
    [85] Iwahara H, Yajima T, Hibino T. Protonic Conduction in Calcium, Strontium and Barium Zirconates [J]. Solid State Ionics, 1993, 61(1): 65~69.
    [86]邵伟,张宏力,方建慧. SrCe0.95Yb0.05O3-α的直接固相法制备及其导电性能[J],中国有色金属学报,2004,14(1):42~46.
    [87]李志杰,王吉德,刘瑞泉,等.铈、钇双掺杂钙钛矿型复合氧化物的合成及其在常压合成氨中的应用[J],中国稀土学报,2005,23(1):62~65.
    [88]孟波,钙钛矿型氧化物固体电解质陶瓷膜的制备与应用[D],沈阳:东北大学,2005.
    [89] Kosacki I, Tuller H L. Mixed Conductivity in SrCe0.95Yb0.05O3 Protonic Conductors [J]. Solid State Ionics, 1995, 80: 223~229.
    [90] Slade R C T, Flint S D, Singh N. Investigation of Protonic Conduction in Yb- and Y-doped Barium Zirconates [J]. Solid State Ionics, 1995, 82: 135~141.
    [91] Kreuer K D, Adams St, Münch W, et al. Proton Conducting Alkaline Earth Zirconates and Titanates for High Drain Electrochemical Applications [J]. Solid State Ionics, 2001, 145: 295~306.
    [92] Gro? B, Beck C, Meyer F, et al. BaZr0.85Me0.15O2.925 (Me = Y, In and Ga): Crystal Growth, High-resolution Transmission Electron Microscopy, High- termerature X-ray Diffraction and Neutron Scattering Experiments [J]. Solid State Ionics, 2001, 145: 325~331.
    [93] Koto K, Itai M, Numako C. Oxygen Behaviour of Yb-doped SrZrO3 at High Temperature [J]. Solid State Ionics, 2002, 154-155: 741~748.
    [94] Qiu L G, Ma G L, Wen D J. Properties and Application of Ceramic BaCe0.8 Ho0.2O3-α[J]. Chinese Journal of Chemistry, 2005, 23: 1641~1645.
    [95] Shimura T, Esaka K, Matsumoto H, et al. Protonic Conduction in Rh-doped AZrO3 (A=Ba, Sr and Ca) [J]. Solid State Ionics, 2002, 149: 237~246.
    [96] Bohn H G, Schober T. Electrical Conductivity of the High-Temperature Proton Conductor BaZr0.9Y0.1O2.95 [J]. J. Am. Ceram. Soc., 2000, 83(4): 768~772.
    [97] Shimura T, Suzuki K, Iwahara H. Conduction Properties of Mg-, Fe- or Co-substituted Sr2TiO4 at Elevated Temperatures [J]. Solid State Ionics, 1999, 125(1-4): 313~318.
    [98] Shimura T, Tanaka H, Matsumoto H, et al. Influence of the Transition-Metal Doping on Conductivity of a BaCeO3-Based Protonic Conductor [J]. Solid State Ionics, 2005, 176(39-40): 2945~2950.
    [99] Bonanos N, Ellis B, Knight K S, et al. Ionic Conductivity of Gadolinium-Doped Barium Cerate Perovskites [J]. Solid State Ionics, 1989, 35: 179~188.
    [100] Wienstr?er S, Wiemh?fer H D. Investigation of the Influence of Zirconium Substitution on the Properties of Neodymium-Doped Barium Cerates [J]. Solid State Ionics, 1997, 101(2): 1113~1117.
    [101] Ryu H, Haile S M. Chemical Stability and Proton Conductivity of Doped BaCeO3-BaZrO3 Solid Solutions [J]. Solid State Ionics, 1999, 125, 355~367.
    [102] Charrier-Cougoulic, Pagnier T, Lucazeau G. Relationships Between Structural and Conduction Properties of Perovskite-Type BaCexZr1-xO3, 9th International Conference on Solid State Protonic Conductors, Slovenia, 1999.
    [103] Yajima T, Kageoka H, Iwahara H, et a1. Proton Conduction in Sintered Oxides Based on CaZrO3 [J]. Solid State Ionics, 1991, 47(3-4): 271~275.
    [104] Bae J S, Choo W K, Lee C H. The Crystal Structure of Ba(Ce0.8Zr0.2)O3 [J]. J. Euro. Ceram. Soc., 2001, 21(10-11): 1779~1782.
    [105]李娟.掺杂锆铈酸盐质子导体的制备与性能研究[D],天津:天津大学,2006.
    [106]庞兆宝,孟波,谭小耀.高温质子导体Ba(Ce0.8Zr0.2)0.9Y0.1O3-δ的合成与性能[J],中国有色金属学报,2006,16(5):858~861.
    [107] Liang C C. Conduction Characteristics of the Lithium Iodide-Aluminum Oxide Solid Electrolytes [J]. J. Electrochem. Soc., 1973, 120: 1289~1292.
    [108] Maier J. Ionic Conduction in Space Charge Regions [J]. Solid State Chem., 1995, 23: 171~263.
    [109] Yaroslavtsev A B. Modification of solid state proton conductors [J]. Solid State Ionics, 2005, 176: 2935~2940.
    [110] Ponomoreva V G, Uvarov N F, Lavrova G V, et al. Composite Protonic Solid Electrolytes in the CsHSO4-SiO2 System [J]. Solid State Ionics 1996, 90: 161~166.
    [111] Ponomoreva V G, Lavrova G V, Simonova L G. Effect of SiO2 Morphology and Pores Size on the Proton Nanocomposite Electrolytes Properties [J]. Solid State Ionics, 1999, 119: 295~299.
    [112] Ponomoreva V G, Tarnopolsky V A, Burgina E B, et al. Proton mobility in the composites of iron acid sulfate monohydrate with silica [J]. Mendeleev Commun. 2002, 12: 223~224.
    [113] Zhu B, Mellander B E. Intermediate Temperature Fuel Cells with Electrolytes Based on Oxyacid Salts [J]. J. Power Sources, 1994, 52: 289-293.
    [114] Mellander B E, Zhu B. High Temperature Protonic Conduction in Phosphate based Salts [J]. Solid State Ionics, 1993, 61: 105~110.
    [115] Zhu B, Mellander B E. Proton Conduction in Salt-Ceramic Composite Systems [J]. Solid State Ionics, 1995, 77: 244~249.
    [116] Maier J. Defect Chemistry in Heterogeneous Systems [J]. Solid State Ionics 1995, 75: 139~145.
    [117] Zhu B. Functional Ceria-Salt-Composite Materials for Advanced ITSOFCApplications [J]. J. Power Sources, 2003, 114: 1~9.
    [118] Zhu B, Liu X G, Schober T. Novel Hybrid Conductors Based on. Doped Ceria and BCY20 for ITSOFC Applications [J]. Electrochem. Commun, 2004, 6: 378~383.
    [119] Schober T. Composites of Ceramic High-Temperature Proton Conductors with Inorganic Compounds [J]. Electrochem. and Solid-State Letters, 2005, 8(4): A199~A200.
    [120] Lundén A, Mellander B E, Zhu B. Mobility of Protons and Oxide Ions in Lithium Sulphate and Oxyacid Salts [J]. Acta Chem. Scand, 1991, 45: 981~985.
    [121] Zhu B, Mellander B E. Proton Conduction and Diffusion in Li2SO4 [J]. Solid State Ionics, 1997, 97: 535~540.
    [122] Wei G L, Luo J L, Sander A R. et al. Li2SO4-based Proton- Conduting Membrane for H2S-Air Fuel Cell [J]. J. Power Sources, 2005, 145: 1~9.
    [123] Li J, Luo J L, Chuang K T, et al. Proton Conductivity and Chemical Stability of Li2SO4 Based Electrolyte in a H2S-Air Fuel Cell [J]. J. Power Sources, 2006, 160: 909~914.
    [124] Feng Y, Luo J L, Chuang K T. Chemical stability of linaso4 electrolyte during operation in a h2-o2 fuel cell [J]. J. Electrochem. Soc., 2006, 153: A865~A868.
    [125] Zhu B. Intermediate Temperature Proton Conducting Salt-Oxide Composites [J]. Solid State Ionics, 1999, 125: 397~405.
    [126] Babilo P, Uda T, Haile S M. Processing of Yttrium-Doped Barium Zirconate for High Proton Conductivity [J]. J. Mater. Res., 2007, 22(5): 1322~1330.
    [127] Manthiram A, Kuo J F, Goodenough J B. Characterization of Oxygen-Deficient. Perovskites as Oxide-Ion Electrolytes [J]. Solid State Ionics, 1993, 62: 225~234.
    [128] Katahira K, Kohchi Y, Shimura T, et al. Protonic Conduction in Zr-substituted BaCeO3 [J]. Solid State Ionics, 2000, 138(1-2): 91~98.
    [129] Gorelov V P, Balakireva V B, Kleshchev Y N, et al. Preparation and Electrical Conductivity of BaZr1?x.RxO3?δ(R: Sc, Y, Ho, Dy, Gd, In) [J]. Inorg. Materials, 2001, 37: 535~538.
    [130] Laidoudi M, Talib A, Omar R. Investigation of the Bulk Conductivity of BaZr0.95M0.05O3-α(M=Al, Er, Ho, Tm, Yb and Y) [J]. J. Phys. D Appl. Phys., 2002, 35: 397~401.
    [131] Snijkers F M, Buekenhoudt A, Cooymans J, et al. proton conductivity and phase composition in BaZr0.9Y0.1O3-σ[J]. Scripta Materialia, 2004, 50(5): 655~659.
    [132] Wang W S, Virkar A V. Ionic and Electron-Hole Conduction in BaZr0.93Y0.07 O3-δby 4-Probe D.C. Measurements [J]. J. Power Sources 2005, 142: 1~9.
    [133] Savaniu C D, Canales-Vazquez J, Irvine J T S. Investigation of Proton Conducting BaZr0.9Y0.1O2.95: BaCe0.9Y0.1O2.95 Core–Shell Structures [J]. J. Mater. Chem., 2005, 15: 598~604.
    [134] Iguchi F, Yamada T, Sata N, et al. The Influence of Grain Structures on the Electrical Conductivity of a BaZr0.95Y0.05O3 Proton Conductor [J]. Solid State Ionics, 2006, 177: 2381~2384.
    [135] Tao S, Irvine J T S, A Stable. Easily Sintered Proton-Conducting Oxide Electrolyte for Moderate-Temperature Fuel Cells and Electrolyzers [J]. Advanced Materials, 2006, 18: 1581~1584.
    [136] Magrez A, Schober T. Preparation, Sintering, and Water Incorporation of Proton Conducting Ba0.99Zr0.8Y0.2O3-δ: Comparison Between Three Different Synthesis Techniques [J]. Solid State Ionics, 2004, 175: 585~588.
    [137] Babilo P, Haile S M. Enhanced Sintering of Yttrium-Doped Barium Zirconate by Addition of ZnO [J]. J. Am. Ceram. Soc., 2005, 88(9): 2362~2368.
    [138] Sayir A. High Temperature Proton Conducting Ceramics Developed, http:// www.grc.nasa.gov/WWW/RT/2004/RM/RM29C-sayir2.html, The Official Website of NASA.
    [139] Jamnik J, Habermeier H U, Maier J. Information of Ionic Boundary Effects by a Novel Penetration Impedance Technique [J]. Physica B, 1995, 204(1-4): 57~64.
    [140] Maier J. Space Charge Regions in Solid Two-Phase Systems and Their Conduction Contribution—I. Conductance Enhancement in the System Ionic Conductor-‘Inert’Phase and Application on AgC1:Al2O3 and AgC1:SiO2 [J]. J. Physics and Chemistry of Solids, 1985, 46(3): 309~320.
    [141] Gomes E, Figueiredo F M, Marques F M B. Mixed Conduction Induced by Grain Boundary Engineering [J]. J. Euro. Ceram. Soc., 2006, 26: 2991~2997.
    [142] Zhu B. Proton and Oxygen Ion Conduction in Nonoxide Ceramics [J]. Materials Research Bulletin, 2000, 35(1): 47~52.
    [143] Münch W, Kreuer K D, Adams S G, et al. The Relation Between Crystal Structure and the Formation and Mobility of Protonic Charge Carriers in Perovskite-Type Oxides: A Case Study of Y-doped BaCeO3 and SrCeO3 [J]. Phase Transitions A Multinational Journal, 1999, 68(3): 567~586.
    [144] Shi C S, Yoshino M, Morinaga M. First-principles study of protonic conduction in In-doped AZrO3 (A=Ca, Sr, Ba) [J]. Solid State Ionics, 2005, 176:1091~1096.
    [145] Iguchi F, Sata N, Tsurui T, et al. Microstructures and Grain Boundary Conductivity of BaZr1?xYxO3 (x = 0.05, 0.10, 0.15) ceramics [J]. Solid State Ionics, 2007, 178: 691~695.
    [146] Islam M S, Slater P R, Tolchard J R, et al. Doping and Defect Association in AZrO3 (A = Ca, Band) and LaMO3 (M = Sc, Ga) Perovskite-Type Ionic Conductors [J]. Dalton Trans., 2004, 3061~3066.
    [147] Mukundan R, Brosha E L, Birdsell S A, et al. Tritium Conductivity and Isotope Effect in Proton-Conducting Perovskites [J]. J. Electrochem. Soc., 1999, 146: 2184~2188.
    [148] Haile S M. The Role of Microstructure and Processing on the Proton Conducting Properties of Gadolinium-Doped Barium Cerates [J]. J. Mater. Res., 1998, 13(6): 1576~1595.
    [149] Wu J. Defect Chemistry and Proton Conductivity in Ba-based Perovskites [D]. Califonia: Califonia Institute of Technology, 2005.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700