用户名: 密码: 验证码:
自支撑X射线透射光栅的制备及测试
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
针对国外对高线密度衍射光学元件的出口限制以及我国惯性约束聚变(ICF)等离子体诊断研究、高分辨率光谱仪和空间X射线光谱分析领域对高线密度X射线透射光柵的迫切需求,本文在标量腄夂褪庇蛴邢薏罘郑‵DTD)矢量模拟结果的理论基础上设计出高线密度X射线光栅版图,并以深亚微米、纳米级电子束光刻和深亚微米、纳米级X射线曝光复制为手段,结合等离子体刻蚀技术和微电镀技术,研究成功一套具有实用化意义的高线密度无底衬透射光栅的工艺技术路线,制作出2000线/毫米、3333线/毫米无底衬全镂空X射线自支撑透射光柵和1000线/毫米无底衬自支撑单级衍射光栅。在元件研制过程中,解决了制造技术中的一些关键技术问题,比如光栅占空比的控制、加强筋的制备和聚酰亚胺底衬的刻蚀镂空。最后,对三种光栅的衍射特性进行了测试和分析。
     本文完成的主要工作有:
     1.针对透射光栅在X射线光栅谱仪中的应用,利用透射光栅的标量和矢量模型,得到了3种透射光栅的设计参数;
     2.2000线/毫米和3333线/毫米软X射线透射母光柵掩腞约?1000线/毫米单级衍射光栅掩模的研制,包括支撑薄膜的制备、电子束的邻近效应校正、电子束刻蚀微纳米级抗蚀剂图形技术、微电镀技术和等离子体刻蚀微纳米图形技术等;
     3.解决了接近式曝光过程中因菲涅耳衍射引起的图形展宽问题,利用X射线曝光成功小批量复制出2000线/毫米、3333线/毫米光栅以及1000线/毫米单级衍射光栅图形;
     4.研究了加强筋图形设计、光学光刻技术、加强筋的厚金精细电镀技术和机械性能分析以及聚酰亚胺薄膜的ICP刻蚀技术。成功制备出2000线/毫米和3333线/毫米全镂空自支撑透射光栅以及1000线/毫米镂空自支撑单级衍射光栅;
     5.对上述三种类型的光栅在进行了衍射效率的测试,所制备的镂空透射光栅的衍射效率几乎达到理想值,并从制备结果和衍射图形来看,所制备的2000线/毫米和33333线/毫米透射光栅的栅线平滑、侧壁陡直、占空比接近1:1,单极衍射光栅有效抑制了高级衍射,实现了设计思想;部分制备的器件应用于激光等离子诊断以及Z-pinch X射线谱仪,部分满足了我国ICF诊断对高线密度。
     6.研究了采用高灵敏度光刻胶制备大面积光栅的工艺技术,初步制备出15mm×15mm 2000线/毫米大面积X射线透射光栅掩模。
To break foreign export prohibitions of high-density diffractive optical elements (DOE), as well as to meet the urgent needs of our inertial confinement fusion (ICF) plasma diagnostic studies and space X-ray spectra, based on the diffraction simulation results by using the scalar diffraction theory and finite difference time domain ( FDTD) algorithm, which is established on the theory of vector, 2000 l/mm, 3333 l/mm self-standing transmission gratings and 1000 l/mm single-order diffraction transmission gratings were designed. Combining on the advantage of high resolution and almost infinite numbers of patterns of e-beam lithography and high efficiency, low cost and easily forming high aspect ratio of X-rays lithography as a means of reproduction, these three kinds of gratings mentioned above were fabricated. Firstly, using the e-beam lithography and micro-electroplating technology a master mask of gratings was fabricated on polyimide membrane substrate. Then using X-rays lithography and micro-electroplating, child gratings was replicated basing on the master mask. And then the self-standing mesh structure was transferred to the child gratings using U-V lithography and micro-electroplating. Finally, with the technology of etching and inductively coupled plasma (ICP), the fabrication of X-rays self-standing transmission gratings was fulfilled. During the fabrication process, several key technical issues, such as the grating duty cycle control, the fabrication of self-standing structure mesh and etching hollow polyimide substrates were analysized and solved. Diffraction efficiency of these three kinds of gratings mentioned above was conducted and analysed in the National Synchrotron Radiation Laboratory (NSRL).
     The major works in this article are listed as follows:
     1. Based on the scalar diffraction theory and vector theory of FDTD algorithm, self-supporting transmission gratings models were designed and the diffraction simulation was conducted in X-ray band. According to the simulation results and the limit of fabricating techniques, the map of transmission gratings was designed to get the maximum diffraction efficiency;
     2. The masks of 2000 l/mm and 3333 l/mm soft X-ray transmission grating as well as that of 1000 l/mm single-order diffraction gratings were fabricated, including fabricating the supporting membrane of polyimide (PI), electron beam proximity effect correction, Micro-Nano Resist graphics technology of electron beam lithography, micro-plating technology and plasma etching micro-nano-graphics technology, etc.;
     3. Small-batch of 2000 l/mm and 3333 l/mm transmission gratings as well as 1000 l/mm single-order diffraction gratings on PI supporting membrane were replicated successfully by using contact X-ray exposure. Graphics broadening problem caused by Fresnel diffraction during the process of exposure was resolved;
     4. 2000 l/mm and 3333 l/mm self-standing transmission gratings, as well as 1000 l/mm self-standing single-order diffraction gratings were prepared successfully. Self-standing structure mesh, optical lithography, micro-plating , mechanical properties and etching of PI membrane were all studied. These samples were all used in SGⅢPrototype Laser Facility respectively, which have a great significance for the next study.
     5. The three types of gratings mentioned above were tested in NSRL, the test results show that the diffraction efficiency of transmission gratings and the duty cycle are almost close to the ideal value according to the theoretical analysis. From the SEM pictures, we can see that the bars of 2000 l/mm and 3333 l/mm transmission gratings are all smooth; wall is steep and the duty cycle is close to 1:1;
     6. Studied manufacturing process of the large area gratings by using sensitive photo-resist and initially a 15mm×15mm 2000 l/mm X-ray transmission grating masks were prepared.
引文
1李海亮,马杰,朱效立,吴坚,谢常青,刘明. 3333线/毫米软X射线全镂空自支撑透射光栅的制备与测试[J].微纳电子技术,2010,47(3):174-178.
    2李海亮,吴坚,朱效立等. 2000 l/mm X射线镂空透射光栅的制备研究[J].光学学报, 2009, 29(10): 2650~2655.
    3 Brinkman, AC., Gunsing, C.J.Th., et al.. First light measurements of Capella with the Low Energy Transmission Grating Spectrometer aboard the Chandra X-ray Observatory [J]. Ap. J. Letters, 2000, 530(2): 111-114.
    4 Claude R. Canizares, John E. Davis, Daniel Dewey, et al.. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight [J]. Publications of the Astronomical Society of the Pacific, 2005, 117(7):1144-1171.
    5 Edward I. Moses, George H. Miller, and Robert L. Kauffman. The ICF Status and Plans in the United States [J]. JOURNAL DE PHYSIQUE IV, 2006, 113(1):9-16.
    6 MARTIN C. RICHARDSON, ROBIN S. MARJORIBANKS, S. A. LETZRING, et al. Spectrally Discriminating Time-Resolved and Space-Resolved X-Ray Plasma Diagnostics [J]. IEEE JOURNAL OF QUANTUM ELECTRONICS, 1983, 19(12):1861-1869.
    7 V. Kantsyrev, B. Bauer, A. Shlyaptseva, et al.. Advanced X-ray EUV Diagnostics for Spectroscopy, Imaging and Polarimetry at the Nevada Terawatt Facility Z-pinch Plasma Source [J]. SPIE,2000, 4138: 203-214.
    8 K. L. Baker, J. L. Porter, and L. E. Ruggles et al.. X-ray spectral power measurements utilizing the diffraction pattern of a slit[J] , REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70(3):1624-1626.
    9杨家敏,丁耀南,郑志坚等.高谱分辨X光能谱诊断技术[J].强激光与离子束2003, 15(1):69-72.
    10 ZHU XL, WANG DQ, XIE CQ, et al.. Fabrication of X-ray Diffractive Optical Elements for ICF Target Diagnosis [J]. SPIE, 2007, 6722(2):1-7.
    11 ZHU XL, XIE CQ, YE TC, et al.. Fabrication of 200nm period X-ray transmission gratings using electron beam lithography [J]. SPIE, 2008, 6823:1-6.
    12 Claude R. Canizares, John E. Davis, Daniel Dewey et al.. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight [J]. Publications of the Astronomical Society of the Pacific, 2005,
    13 T. A. Savas, M. L. Schattenburg, J. M. Carter et al.. Large-area Achromatic Interferometric Lithography for 100 nm Period Gratings and Grids [J]. J. Vac. Sci. Technol.B, 1996(11/12), 14(6): 4167-4170.
    14 N. M. Ceglio, R. L. Kauffman, A. M. Hawryluk et al.. Time-resolved X-ray Transmission Grating Spectrometer for Studying Laser-produced Plasmas [J]. APPLIED OPTICS, 22(2), 1983(1): 318-327.
    15 P. Predehl, H. Kraus and H. Brauninger. The Grating Elements for the Axaf-low Energy Transmission Grating Spectrometer [C]. Proc. SPIE, 1992, 1943: 475-481.
    16 M. L. Schattenburg, R. J. Aucoin, R. C. Fleming et al.. Fabrication of High-energy X-ray Transmission Gratings for the Advanced X-ray Astrophysics Facility (AXAF) [C]. SPIE, 1994, 2280:181-190.
    17 Takaki Hatsui, Hiroyuki Setoyama, Eiji Shigemasa et al.. Design of a Novel Transmission-Grating Spectrometer for Soft X-ray Emission Studies [J]. Journal of Electron Spectroscopy and Related Phenomena 144–147, 2005: 1059–1062.
    18 Ralf K. Heilmann, Minseung Ahn, Mark W. Bautz et al.. Development of a Critical-angle Transmission Grating Spectrometer for the International X-Ray Observatory [J]. SPIE, 3766:74370G1-12.
    19 M. Ahn. Fabrication of Critical-Angle Transmission Gratings for High Efficiency X-ray Spectroscopy. Ph.D. thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology (2009).
    20 Xiangdong Xu, Yilin Hong, Yangchao Tian et al. .Fabrication of Self—supporting Transmission Gratings for Plasma Diagnostics[J]. SPIE Vol. 3766, 1999:380-385.
    21朱伟忠,吴衍青,郭智等.大面积10000线/毫米软X射线金属型透射光栅的设计制作与检测[J].物理学报,2008,57(10):6386-6392.
    22徐向东,洪义麟,傅绍军等.全息离子束刻蚀衍射光栅[J].物理学报, 2004, 33 (5):340-344.
    23徐向东,洪义麟,霍同林等.软x射线透射光栅制作技术[J].光学技术,2001, 27(4):294-296.
    24徐向东,洪义麟,田扬超等.软X射线透射光栅支撑结构的制作工艺研究[J].微细加工技术, 2001(3):22-25.
    25杨家敏,丁耀南,郑志坚等.高谱分辨X光能谱诊断技术[J].强激光与粒子束,2003, 15(1) :69-72.
    26 Edward I. Moses, George H. Miller, and Robert L. Kauffman. The ICF Status andPlans in the United States [J]. JOURNAL DE PHYSIQUE IV, 2005:1-8.
    27 K. L. Baker, J. L. Porter, and L. E. Ruggles et al.. X-ray Spectral Power Measurements Utilizing the Diffraction Pattern of a Slit [J]. REVIEW OF SCIENTIFIC INSTRUMENTS, 1999, 70(3):1624-1626.
    28 Claude R. Canizares, John E. Davis, Daniel Dewey et al.. The Chandra High Energy Transmission Grating: Design, Fabrication, Ground Calibration and Five Years in Flight [J]. Publications of the Astronomical Society of the Pacific, 2005(7), 0507035:1-34.
    29孙景文.“高温等离子X射线谱学”,国防工业出版社,北京,2003:1-6.
    30 C.S. Nelson, T.H. Markert, Y.S. Song, M.L. Schattenburg et al. Efficiency Measurements and Modeling of the Advanced X-ray Astrophysics Facility (AXAF) high-energy transmission gratings[C]. SPIE Vol. 2280 :191-203.
    31 M.L. Schattenburg, R.J. Aucoin, R.C. Fleming, et al.. Fabrication of Energy X-ray Transmission Gratings for AXAF High. these proceedings.
    32邱克强.软X射线透射光栅制作.中国科技大学博士毕业论文.合肥. 2008.
    33梁浩明,庄夔,张庆英等.衍射光栅刻划机[J].光学学报, 1981, 1(1):51-58.
    34巴音贺.希格,高键翔,齐向东等.9.77μm激光器零级耦合输出选频振荡光栅的设计和研制[J].中国激光,2005,32(3):301-305.
    35 V W Stanley, A Franks and K Lindsey. A Simple Ruling Engine for X-ray Gratings [J]. Journal of Scientific Instruments, 1968, 1(2):643-645.
    36 Brauninger, H. Kraus, H. Dangschat. Fabrication of Transmission Gratings for Use in Cosmic X-ray and XUV Astronomy [J].Applied Optics, 1979, 18(20):3502-350.
    37 Xiaoli Zhu, Changqing Xie and Tianchun Ye et al. Fabrication of 200nm Period X- ray Transmission Gratings Using Electron Beam Lithography[C]. Proc. SPIE,2007,6832,68320VI- 6.
    38朱效立,马杰,曹磊峰等.高线密度x射线透射光栅的制作工艺[J],半导体学报,2007,28,2006- 2010.
    39 E.Spiller and R.Feder.“X-ray lithography”, X-ray Optics Edited By H.-J.Qeisser, Springer-Verlag, Berlin, 1977.
    40崔铮.微纳加工技术及其应用.高能教育出版社,2005.
    41何杰,夏建白.半导体科学与技术,科学出版社,2007.
    42 ZHU XL, WANG DQ, XIE CQ, et al.. Fabrication of X-ray Diffractive Optical Elements for ICF Target Diagnosis [J]. SPIE, 2007, 6722:672208.
    43 ZHU XL, XIE CQ,YE TC, et al.. Fabrication of 200nm Period X-rayTransmission Gratings Using Electron Beam Lithography [J]. SPIE, 2007, 6823:68320V.
    44 Wang D Q, Cao L F, Xie C Q. Micro-zone Plates With High-aspect Ratio Fabricated by E-beam and X-ray Lithography. J Microlith Microfab Microsyst. 2006, 5(1): 1-5.
    45邱克强.“软X射线透射光栅的制作”博士学位论文.中国科技大学. 2008.
    46 Max Born and Emil Wolf. Principles of Optics-7th Ed[M].1999,UK: Cambridge University Press,342-380.
    47 M. G. Moharam and T. K. Gaylord. Diffraetion Analysis of Deleetric Surface-relief Gratings [J]. J.OPt.Soe.Am, 1982, 72(10):1385-1392.
    48 M. G. Moharam and T. K. Gaylord. Rigorous Coupled- wave Analysis of Planar-grating Diffraction [J]. J.OPt.Soe.Am, 1981, 71(7): 811-818.
    49 M. G. Moharam, E.B.Grann and D.A.Pommet et al. Stable Implementation of the Rigorous Coupled-wave Analysis for Surface-relief Gratings: Enhaneed Transmittance Matrix Approach [J]. J.OPt.Soe.Am,1995,12(5):1077-1086.
    50 M. G. Moharam, E.B.Grann and D.A.Pommet et al. Formulation for Stable and Effieient Implementation of the Rigorous Coupled-wave Analysis of Binary Gratings [J]. J.OPt.Soe.Am, 1995, 12(5):1068-1076.
    51葛德彪,闫玉波,电磁场时域有限差分方法, 2002年,第一版,西安电子科技大学出版社.
    52 S. C. Allen Taflove, Computational Electrodynamics: The Finite-Difference Time-Domain Method, 1988, Second Edition, Boston London: Artech House, Page 1.
    53 K. S. Yee, Numerical Solution of Initial Boundary Value Problems Involving Maxwell Equations in Isotropic Media, IEEE Trans. Antennas Propagat., May 1996, Vol. 14, No. 3: Page 302-307.
    54 B. Enquist and A. Majda, Absorbing Boundary Conditions for the Numerical Simulation of Waves, Math. Comp., 1977, Vol. 31, No. 139: Page 629-651.
    55 G. Mur, Absorbing Boundary Conditions for the Finite-difference Approximation of the Time-domain Electromagnetic Field Equations, IEEE Trans. Electromagn. Compat, 1981, Vol. 23, No. 4: Page 377-382.
    56 J. P. Berenger, A Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comput. Phys., Vol., 1994, Vol. 114, No. 2: Page 185-200.
    57 J. P. Berenger, Perfectly Matched Layer for the FDTD Solution of Wavestruction Interaction Problems, IEEE Trans. Antennas Propagat., 1996, Vol. 44, No. 1: Page110~117.
    58 J. P. Berenger, Three-dimensional Perfectly Matched Layer for the Absorption of Electromagnetic Waves, J. Comp. Phys.,1996, Vol. 127, No. 2: Page 363-379.
    59 K. S. Yee. Numerical Solution of Initial Boundary Value Problems Involving Maxwell's Equations in Isotropic Media [J], IEEE Trans. Antennas Propagat. 1966, Volume: AP-14: 302-307.
    60 H. W. Schnopper, L. P. van Speybroeck, J. P. Delvaille et al.. Diffraction Grating Transmission Efficiencies for XUV and Soft x rays [J]. Applied Optics, 1977, 16(04): 1088~1091.
    61杨家敏,易荣清,陈正林等.透射光栅对软X射线衍射效率的研究[J].物理学报,1998, 47(4): 0613~0618.
    62 P.Rai-Choudhury et al. Handbook of Microlithography, Micromachining, and Microfabrication. SPIE Optical Engineering Press Vol.1, 1997:139-140.
    63 http://www.nsrl.ustc.edu.cn/zh_CN/Equipmentsinfo.asp.
    64王云翔,刘明,陈宝钦等. SAL 601负性电子束抗蚀剂纳米级集成电路加工[J].微纳电子技术,2003,第7/8期:167-169.
    65 Francisco Jose Torcal-Milla, Luis Miguel Sanchez-Brea, Eusebio Bernabeu. Diffraction of Gratings with Rough Edges[J]. Opt. Express. 2008, 16(24):19757-19769.
    66 http://www.nsrl.ustc.edu.cn/zh_CN/Equipmentsinfo.asp?id=1&tp=syb&mesi=0.2356113.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700