用户名: 密码: 验证码:
女性盆底功能障碍的新型组织工程材料的优化设计及试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
女性盆腔脏器脱垂(POP)是一种常见病,国内发病率约为40%并且逐年增加,已成为严重影响中老年妇女健康和生活质量的一组妇科问题。
     目前认为各种利用补片的术式是治疗POP的最佳手段,临床广泛使用的聚丙烯合成材料的补片虽然疗效确切的优点,但具有顺应性差、组织侵蚀性强、、感染率高等缺点并导致性交痛等相关并发症。而选择经过脱细胞处理的生物材料(ECM)是克服上述固有缺陷的方法之一。
     ECM材料植入人体后最终会降解,通过致胶原组织增生、周围组织移行而形成支撑结构,从而达到支撑盆底的作用。相对于传统的聚丙烯补片,其优点是组织侵蚀率低,术后性交痛、盆腔慢性疼痛及小便困难的发生率少,其顺应性也相对较好。因此ECM补片有可能成为未来最有希望的盆底补片。
     理想的ECM应具备如下特性:有良好的组织相容性;可降解及降解速度可控性;无抗原作用;诱导组织再生;有一定空隙率;有一定机械强度。目前几种常用的ECM材料都接近或具备以上部分特性:包括小肠粘膜下层(SIS)、脱细胞膀胱(UBM)、脱细胞真皮(ADM)、脱细胞心包(AP)以及脱细胞胆囊(CEM)等,作为盆底补片材料,ECM的选择非常重要,但目前却缺乏横向比较,导致ECM选择的随意性,我们研究的目的之一,就是依据盆底的特殊环境和要求,从常用的ECM材料中作各种特性的比较,选择其中一种最适合作为POP补片的ECM材料作为后续试验的研究对象。
     但是ECM补片尚未在临床大量推广,存在的主要问题是:诱导周围组织再生的能力和ECM降解周期存在矛盾,目前尚无良好办法控制这一平衡,导致疗效特别是远期效果的不稳定。目前解决ECM以上不足的方法有两个,其一是在ECM材料上选择具有多项分化潜能的干细胞作为种子细胞,构建组织工程补片,将组织工程补片植入体内后,干细胞能在体内分化,增殖,理论上能丰富盆底细胞和组织结构,解决组织修复不足的矛盾,提高远期效果。其二是通过构建ECM-聚丙烯复合补片的方法,克服各种补片材料的不足,以期能提高ECM的远期效果,同时降低聚丙烯补片的相关并发症。
     本研究通过制备五种最常研究的猪ECM材料,并根据盆底的特殊环境设计数项检测指标,选择其中一种最适合用作POP补片的ECM材料作为研究对象,并通过将骨髓间充质干细胞(BMSCs)作为种子细胞,和ECM材料构建组织工程补片,另外还将2层该ECM材料同一层聚丙烯材料一起构建三明治结构的POP复合补片,植入SD大鼠阴道粘膜下,检测组织相容性及免疫学指标的变化,从而为目前临床POP补片的开发或改进提供一条新的思路。主要实验方法及结果如下:
     一、不同组织来源ECM支架材料的优化制备及种子细胞的选择
     1.采用机械法和化学脱细胞法对bama小型猪的心包、真皮、小肠、膀胱、胆囊进行脱细胞处理后,并对各种材料进行冻干,γ射线消毒,塑料封装处理。构建不同来源的ECM材料。
     2.成功对大鼠的BMSCs进行分离,培养和鉴定,将其作为POP组织工程补片的种子细胞。
     二、不同组织来源ECM材料的体外特性检测以及支架材料的选择
     1.从材料的抗菌性能、生物相容性、体外降解周期、吸水性、生物力学性能对5种常用ECM材料进行进行综合分析。观察5种材料交联前后上述检测指标的性能变化。
     2.研究发现UBM具有最长的降解周期,最强的抗菌性、最高的吸水性、最好的生物力学性能、以及优秀的组织相容性,适合于盆底特殊环境。亦是最适合用作盆底组织工程补片的支架材料。
     三、组织工程材料的构建及体内生物相容性试验
     1.实验分为5组,每组12只大鼠,分别植入UBM,接种BMSCs的UBM,复合聚丙烯补片的UBM,单纯聚丙烯补片,假手术组。于术后第一、二、三、四周分别取材,做HE染色石蜡切片观察和免疫组化检测。
     2.HE染色石蜡切片发现UBM组、UBM+BMSCs组和复合补片组第一周炎症反应明显,但第二周开始明显减轻,到第四周时仅有轻微反应;聚丙烯组强烈的炎症反应伴随整个实验观察阶段。炎症反应由低到高排序是:UBM+BMSCs组     3.免疫组化检测发现CD4的表达情况由低到高排序为:UBM+BMSCs组     总之,本研究依据盆底的特殊环境,通过对各种常用的ECM材料进行体外各项特性检测,发现UBM是最适合用于POP补片的ECM材料,并对UBM进行体内的生物学性能试验,发现接种BMSCs的UBM和UBM作为盆底修复补片具有引发的炎症和免疫反应较小,能诱导免疫反应向免疫适应转变,而且UBM还可修饰聚丙烯补片,起到炎症隔离和免疫调节的作用,但接种BMSCs的UBM和单纯UBM在体内降解速度较快,因此复合聚丙烯材料的UBM可能是未来盆底修复材料的理想候选者。
The femal pelvic organ prolapse (POP) is a common disease, with an incidence of 40% in china and increased year by years. The POP has been regarded as a considerable gynecologic problem that seriesly influenced the the health of middle-aged and old women.
     It has been generally accepeted that various kinds of operation based on scaffolds were the best treatment method for POP, and the propolene scaffold widely used in clinic has the feature of certain curative effect with long-lasting period. However these prostheses carry an inherent risk of sepsis formation, erosion related to their biomechanical properties and low biocompatibility. Reversely, the bio-patch processed by decellular procedure treatment was a ideal scaffold for POP without these defects abovely mentioned.
     The ECM scaffold planted in body will degredated eventually. Meanwhile, the ECM could promote the proliferation of the collagen tissue and the migration of surrounding tissue, so the substitution tissues formed at the pelvic floor. Contrast to the propolene material, the ECM material show obvious predominances such as low tissue erosion, low incidence rate of algopareunia, chronic pelvic pain, and dysurination with good compliance. So the ECM material would become the perspective pelvic scaffold in the future.
     The ideal ECM scaffold should have these properties: good biocompatibility, self degradation with a controllable rate; no antigene effect; could induce tissue regeneration; with cellule and and mechanical strength, etc. some kinds of commonly used ECM patial or fully possesed these properties as mentioned abovely. Such as small intestinal submucosa(SIS), urinary bladder matrix(UBM), acellular dermis matrix(ADM), acellular pericardium(AP), cholecyst-derived extracellular matrix(CEM), etc. it’s important to choose a suitable ECM scaffold for POP treatment as pelvic requirements. Unfortunely, the surgens choose the ECM scaffold for POP operation as their pleasure because lacking of a comparative study of these ECM materials for pelvic patch recently. One purpose of our study was to choose one kind of commonly used ECM materials for POP treatment base on the special enviroments and requirements of pelvic reconstruction surgery. The ECM scaffold have not been generalized in clinic for the main problem: the contradiction existed that the ability inducing surrounding tissue regeneration with the degradation period, and no sounded method presently to control this contradiction, therefore the curative effect especially the long-term curative effect are not stable. There are two meanses to tackle this problem: first, by means of tissue engineering method, the multiple-differentiation potent stem cells could be planted on the scaffold as seed cells. Then the stem cells could proliferated and differentiated when the tissue engineering scaffold was planted in vivo, and the pelvic tissue and cells could profusioned with a improved long-term curative effect theoretically. The other method is construction of the compound ECM-Propolene scaffold. With the expectation of overcoming the difects of the two kinds of materials, promoting the long-term curative rate and depressing the complications caused by single propolene material.
     This research prepared 5 kinds of porcine ECM materials that commonly studied at present. Designed multiple detection index based on the special environment of pelvic floor, and choose one kind of ECM as the research object best for POP scaffold. The bone marrow stem cells(BMSCs) were taken as seed cells and seeded on the chosen ECM to construct the tissue engineering scaffold for POP. At the mean time, the compound scaffold sandwished by 2 layer of chosen ECM and one layer of propolene were constructed. Then these scaffolds were planted in the vaginal submucosa of SD rats, and the tissue compliance and immune index changes were decteted. Expect to provid a new idea for the development pelvic scaffold for treatment of POP. The main experiment methods and results were exploied as followed:
     1, the preparation of each ECM and the choice of seeding cells
     1), The pericardium, demis, small intestine, urinary bladder, and cholecyst of bama’s pig were decellularized by mechnical and chemical methods, then these materials were disinfected and rinsed, and terminally sterilized using CO60γradiation
     2), The BMSCs of rats as the seeding cells of POP tissue engineering scaffold were detached, cultivated and indentificated successfully.
     2, the characteristic evaluation of each ECM in vitro and the choice of the scaffold for POP
     1), Each ECM materials were evaluated in terms of histological structure, water absorption ability, biodegradation ability, mechanical properties, antimicrobial activity and biocompatibility in vitro, and these ECM materials after cross-linked were evaluated also.
     2), The UBM was indentificated that it possessed the most long-lasting degredation period, the best antimaicrobial activity, water absorption, mechanical properties, and biocompatibility. The UBM maybe the material most to fit the pelvic environment and the best choice for POP tissue patch or tissue engineering scaffold.
     3, The construction of tissue scaffold and the biometical function and biocompatibility evaluation in vivo
     1), The experiment tat were classified to 5 group, with 12 rats each, the UBM single, UBM+BMSCs(tissue-engineering scaffold), compound scaffold, or propelene single were planted into the vaginal submucosa of rats of each group respectively, the last group was false-surgery group. The scaffold and the tissue surrounded were harvested for HE staining and immunohistochemisry at the 1~(st), 2~(nd),3~(rd), and the forth week after operation.
     2) Represented by HE staining, the inflame reaction were obvious at the first week after operation in UBM, UBM+BMSCs and compound scaffold group, but obviously relieved at the second week; the intensed inflame reaction viewed through the total experiment period in propolene group.
     The sequence of the imflame reaction degree was: UBM+BMSCs group     3) The expressing level of CD4 was: UBM+BMSCs group     On the whole, the study evaluated several ECM materials in vitro based on the special pelvic environment, founded that UBM is the best ECM material for POP scaffold, and the biocompatibility test of UBM were carried out later. The result was that UBM and UBM+BMSCs can led to decreased inflame reaction by induce immune reaction change to immune adaptation. Even more, the UBM can modify the propolene scaffold by modulate the immune reaction and isolate inflame reaction. The degredation period of BMSCs+UBM and UBM were relatively fast, it’s inferred that the compound scaffold composed of UBM and propolene maybe the future candidate for POP patch.
引文
1. Zantop T, Gilbert TW, Yoder MC, Badylak SF. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of achilles tendon reconstruction. J Orthop Res. 2006. 24(6): 1299-309.
    2. Badylak SF, Park K, Peppas N, McCabe G, Yoder M. Marrow-derived cells populate scaffolds composed of xenogeneic extracellular matrix. Exp Hematol. 2001. 29(11): 1310-8.
    3. Reing JE, Zhang L, Myers-Irvin J, et al. Degradation products of extracellular matrix affect cell migration and proliferation. Tissue Eng Part A. 2009. 15(3): 605-14.
    4. Jones KS. Effects of biomaterial-induced inflammation on fibrosis and rejection. Semin Immunol. 2008. 20(2): 130-6.
    5. Brown BN, Barnes CA, Kasick RT, et al. Surface characterization of extracellular matrix scaffolds. Biomaterials. 2010. 31(3): 428-37.
    6. Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. Science. 1999. 284(5411): 143-7.
    7. Conget PA, Minguell JJ. Phenotypical and functional properties of human bone marrow mesenchymal progenitor cells. J Cell Physiol. 1999. 181(1): 67-73.
    8. Izadpanah R, Joswig T, Tsien F, Dufour J, Kirijan JC, Bunnell BA. Characterization of multipotent mesenchymal stem cells from the bone marrow of rhesus macaques. Stem Cells Dev. 2005. 14(4): 440-51.
    9. Freytes DO, Badylak SF, Webster TJ, Geddes LA, Rundell AE. Biaxial strength of multilaminated extracellular matrix scaffolds. Biomaterials. 2004. 25(12): 2353-61.
    10. Ge L, Zheng S, Wei H. Comparison of histological structure and biocompatibility between human acellular dermal matrix (ADM) and porcine ADM. Burns. 2009. 35(1): 46-50.
    11. Coburn JC, Brody S, Billiar KL, Pandit A. Biaxial mechanical evaluation of cholecyst-derived extracellular matrix: a weakly anisotropic potential tissue engineered biomaterial. J Biomed Mater Res A. 2007. 81(1): 250-6.
    12. Turner NJ, Yates AJ Jr, Weber DJ, et al. Xenogeneic extracellular matrix as an inductive scaffold for regeneration of a functioning musculotendinous junction. TissueEng Part A. 2010. 16(11): 3309-17.
    13. Boruch AV, Nieponice A, Qureshi IR, Gilbert TW, Badylak SF. Constructive remodeling of biologic scaffolds is dependent on early exposure to physiologic bladder filling in a canine partial cystectomy model. J Surg Res. 2010. 161(2): 217-25.
    14. Badylak S, Obermiller J, Geddes L, Matheny R. Extracellular matrix for myocardial repair. Heart Surg Forum. 2003. 6(2): E20-6.
    15. Ota T, Gilbert TW, Schwartzman D, et al. A fusion protein of hepatocyte growth factor enhances reconstruction of myocardium in a cardiac patch derived from porcine urinary bladder matrix. J Thorac Cardiovasc Surg. 2008. 136(5): 1309-17.
    16. Gilbert TW, Gilbert S, Madden M, Reynolds SD, Badylak SF. Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann Thorac Surg. 2008. 86(3): 967-74; discussion 967-74.
    17. Nieponice A, McGrath K, Qureshi I, et al. An extracellular matrix scaffold for esophageal stricture prevention after circumferential EMR. Gastrointest Endosc. 2009. 69(2): 289-96.
    18. Mase VJ Jr, Hsu JR, Wolf SE, et al. Clinical application of an acellular biologic scaffold for surgical repair of a large, traumatic quadriceps femoris muscle defect. Orthopedics. 2010. 33(7): 511.
    19. Claerhout F, Verbist G, Verbeken E, Konstantinovic M, De Ridder D, Deprest J. Fate of collagen-based implants used in pelvic floor surgery: a 2-year follow-up study in a rabbit model. Am J Obstet Gynecol. 2008. 198(1): 94.e1-6.
    20. Hodde JP, Record RD, Tullius RS, Badylak SF. Retention of endothelial cell adherence to porcine-derived extracellular matrix after disinfection and sterilization. Tissue Eng. 2002. 8(2): 225-34.
    21. Parekh A, Mantle B, Banks J, et al. Repair of the tympanic membrane with urinary bladder matrix. Laryngoscope. 2009. 119(6): 1206-13.
    22. Chaliha C, Khullar V. Surgical repair of vaginal prolapse: a gynaecological hernia. Int J Surg. 2006. 4(4): 242-50.
    23. Altman D, Lopez A, Gustafsson C, Falconer C, Nordenstam J, Zetterstrom J. Anatomical outcome and quality of life following posterior vaginal wall prolapse repair using collagen xenograft. Int Urogynecol J Pelvic Floor Dysfunct. 2005. 16(4):298-303.
    24. Brun JL, Bordenave L, Lefebvre F, et al. Physical and biological characteristics of the main biomaterials used in pelvic surgery. Biomed Mater Eng. 1992. 2(4): 203-25.
    25. Nazemi TM, Kobashi KC. Complications of grafts used in female pelvic floor reconstruction: Mesh erosion and extrusion. Indian J Urol. 2007. 23(2): 153-60.
    26. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Semin Immunol. 2008. 20(2): 86-100.
    27. Luttikhuizen DT, Harmsen MC, Van Luyn MJ. Cellular and molecular dynamics in the foreign body reaction. Tissue Eng. 2006. 12(7): 1955-70.
    28. Badylak SF. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol. 2004. 12(3-4): 367-77.
    29. Badylak SF. The extracellular matrix as a biologic scaffold material. Biomaterials. 2007. 28(25): 3587-93.
    30. Mantovani F, Trinchieri A, Castelnuovo C, Romano AL, Pisani E. Reconstructive urethroplasty using porcine acellular matrix. Eur Urol. 2003. 44(5): 600-2.
    31. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomaterials. 2006. 27(19): 3675-83.
    32. Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng. 2006. 12(3): 519-26.
    33. Hodde J, Janis A, Hiles M. Effects of sterilization on an extracellular matrix scaffold: part II. Bioactivity and matrix interaction. J Mater Sci Mater Med. 2007. 18(4): 545-50.
    34. Sellaro TL, Ravindra AK, Stolz DB, Badylak SF. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organ-specific extracellular matrix scaffolds. Tissue Eng. 2007. 13(9): 2301-10.
    35. Valentin JE, Freytes DO, Grasman JM, et al. Oxygen diffusivity of biologic and synthetic scaffold materials for tissue engineering. J Biomed Mater Res A. 2009. 91(4): 1010-7.
    36. Freytes DO, Tullius RS, Badylak SF. Effect of storage upon material properties of lyophilized porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res B Appl Biomater. 2006. 78(2): 327-33.
    37. Ahn HH, Kim KS, Lee JH, et al. Porcine small intestinal submucosa sheets as a scaffold for human bone marrow stem cells. Int J Biol Macromol. 2007. 41(5): 590-6.
    38. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 2006. 12(10): 2949-55.
    39. Sarikaya A, Record R, Wu CC, Tullius B, Badylak S, Ladisch M. Antimicrobial activity associated with extracellular matrices. Tissue Eng. 2002. 8(1): 63-71.
    40. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF. Antibacterial activity within degradation products of biological scaffolds composed of extracellular matrix. Tissue Eng. 2006. 12(10): 2949-55.
    41. Steinstraesser L, Koehler T, Jacobsen F, et al. Host defense peptides in wound healing. Mol Med. 2008. 14(7-8): 528-37.
    42. Nuding S, Zabel LT, Enders C, et al. Antibacterial activity of human defensins on anaerobic intestinal bacterial species: a major role of HBD-3. Microbes Infect. 2009. 11(3): 384-93.
    43. Brown KL, Hancock RE. Cationic host defense (antimicrobial) peptides. Curr Opin Immunol. 2006. 18(1): 24-30.
    44. Gallo RL, Murakami M, Ohtake T, Zaiou M. Biology and clinical relevance of naturally occurring antimicrobial peptides. J Allergy Clin Immunol. 2002. 110(6): 823-31.
    45. Evseenko D, Schenke-Layland K, Dravid G, et al. Identification of the critical extracellular matrix proteins that promote human embryonic stem cell assembly. Stem Cells Dev. 2009. 18(6): 919-28.
    46. McKee KK, Capizzi S, Yurchenco PD. Scaffold-forming and Adhesive Contributions of Synthetic Laminin-binding Proteins to Basement Membrane Assembly. J Biol Chem. 2009. 284(13): 8984-94.
    47. Richard G. Jansen, Toin H. van Kuppevelt, Willeke F. Daamen, Anne Marie Kuijpers-Jagtman, Johannes W. Von den Hoff. Tissue reactions to collagen scaffolds in the oral mucosa and skin of rats: Environmental and mechanical factors. Archives of Oral Biology. 2008, 53(4):376-387.
    48. Evelyn K.F. Yim, Jie Wen, Kam W. Leong. Enhanced extracellular matrix productionand differentiation of human embryonic germ cell derivatives in biodegradable poly(ε-caprolactone-co-ethyl ethylene phosphate) scaffold. Acta Biomaterialia, 2006; 2(4):365-376.
    49. Hyun Jung Moon, Eun Su Jeon, Young Mi Kim, Mi Jeong Lee, Chang-Keun Oh, Jae Ho Kim. Sphingosylphosphorylcholine stimulates expression of fibronectin through TGF-β1-Smad-dependent mechanism in human mesenchymal stem cells. The International Journal of Biochemistry & Cell Biology. 2007; 39(6):1224-1234.
    50. Caroline Elmer, Bo Blomgren, Christian Falconer, Anju Zhang, Daniel Altman. Histological Inflammatory Response to Transvaginal Polypropylene Mesh for Pelvic Reconstructive Surgery. The Journal of Urology, 2009;181(3):1189-1195.
    51. R. Keith Huffaker, Tristi W. Muir, Arundhati Rao, Shannon S. Baumann, Thomas J. Kuehl, Lisa M. Pierce. Histologic response of porcine collagen-coated and uncoated polypropylene grafts in a rabbit vagina model. American Journal of Obstetrics and Gynecology, 2008; 198(5):582.e1-582.e7.
    52. Kyu Hyun Han, Hee Gyung Kang, Hae Jin Gil, Eun Mi Lee, Curie Ahn, Jaeseok Yang. The immunosuppressive effect of embryonic stem cells and mesenchymal stem cells on both primary and secondary alloimmune responses. Transplant Immunology, 2010; 23(3) :141-146.
    53. Peiman Hematti. Role of mesenchymal stromal cells in solid organ transplantation. Transplantation Reviews, 2008; 22(4):262-273.
    54. Alexandra Bayrak, Maria Tyralla, Juliane Ladhoff, Martina Schleicher, Ulrich A. Stock, Hans-Dieter Volk, Martina Seifert. Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials .2010; 31(14):3793-3803.
    55. Stephen F. Badylak. Xenogeneic extracellular matrix as a scaffold for tissue reconstruction . Transplant Immunology.2004; 12(3-4): 367-377.
    56. Stephen F. Badylak. The extracellular matrix as a biologic scaffold material. Biomaterials, 2007; 28(25): 3587-3593.
    57. Yang M, Liu L. MHC II gene knockout in tissue engineering may prevent immune rejection of transplants. Medical Hypotheses. 2008; 70(4):798-801.
    58. Robert A. Brown, James B. Phillips. Cell Responses to Biomimetic Protein ScaffoldsUsed in Tissue Repair and Engineering. International Review of Cytology. 2007; 262:75-150.
    59. Robert J. Schutte, Lola Xie, Bruce Klitzman, William M. Reichert. In vivo cytokine- associated responses to biomaterials. Biomaterials 2009; 30(2):160-168.
    60. Mallapragada SK, Narasimhan B. Immunomodulatory biomaterials. International Journal of Pharmaceutics. 2008; 364(2): 265-271.
    61. Anderson JM, Rodriguez A, Chang DT. Foreign body reaction to biomaterials. Seminars in Immunology. 2008; 20(2):86-100.
    62. Stephen F. Badylak, Thomas W. Gilbert. Immune response to biologic scaffold materials. Seminars in Immunology, 2008; 20(2);109-116.
    1. Bader A, Schilling T, Teebken OE, Brandes G, Herden T, Steinhoff G. Tissue engineering of heart valves - human endothelial cell seeding of detergent acellularized porcine valves. Eur J Cardiothorac Surg 1998;14:279-84.
    2. Booth C, Korosis SA, Wilcox HE, Watterson KG, Kearney JN,Fisher J. Tissue engineering of cardiac valve prostheses I: development and histological characteri- zation of an acellular porcine scaffold. J Heart Valve Dis 2002;11:457-62.
    3. Grauss RW, Hazekamp MG, Oppenhuizen F, van Munsteren CJ, Gittenberger-de-Groot AC, DeRuiter MC. Histological evaluation of decellularised porcine aortic valves: matrix changes due to different decellularisation methods. Eur J Cardiothorac Surg 2005;27:566-71.
    4. Kasimir MT, Rieder E, Seebacher G, Silberhumer G, Wolner E, Weigel G. Comparison of different decellularization procedures of porcine heart valves. Int J Artif Organs 2003;26:421-7.
    5. Korossis SA, Booth C, Wilcox HE, Watterson KG, Kearney JN, Fisher J. Tissue engineering of cardiac valve prostheses II: biomechanical characterization of decellularized porcine aortic heart valves. J Heart Valve Dis 2002;11:463-71.
    6. Rieder E, Kasimir MT, Silberhumer G, Seebacher G, Wolner E,Simon P. Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 2004;127:399-405.
    7. Schenke-Layland K, Vasilevski O, Opitz F, Konig K, Riemann I,Halbhuber KJ, et al. Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 2003;143(3):201-8, Sep.
    8. Conklin BS, Richter ER, Kreutziger KL, Zhong DS, Chen C.Development and evaluation of a novel decellularized vascular xenograft. Med Eng Phys 2002;24:173-83.
    9. Dahl SL, Koh J, Prabhakar V, Niklason LE. Decellularized native and engineering arterial scaffolds for transplantation. Cell Transplant 2003;12:659-66.
    10. Schmidt CE, Baier JM. Acellular vascular tissues: natural biomaterials for tissuerepair and tissue engineering. Biomaterials 2000;21(22):2215-31.
    11. Uchimura E, Sawa Y, Taketani S, Yamanaka Y, Hara M, Matsuda H. Novel method of preparing acellular cardiovascular grafts by decellularization with poly(ethylene glycol). J Biomed Mater Res A 2003;67:834-7.
    12. Chen RN, Ho HO, Tsai YT, Sheu MT. Process development of an acellular dermal matrix (ADM) for biomedical applications. Biomaterials 2004;25:2679-86.
    13. Hudson TW, Liu SY, Schmidt CE. Engineering an improved acellular nerve graft via optimized chemical processing. Tissue Eng 2004;10:1346-58.
    14. Kim BS, Yoo JJ, Atala A. Peripheral nerve regeneration using acellular nerve grafts. J Biomed Mater Res 2004;68A(2):201-9.
    15. Borschel GH, Dennis RG, Kuzon JWM. Contractile skeletal muscle tissue-engineered on an acellular scaffold. Plast Reconstr Surg 2004;113:595-602.10 S.F. Badylak et al. / Acta Biomaterialia 5 (2009) 1-13
    16. Cartmell JS, Dunn MG. Effect of chemical treatment on tendon cellularity and mechanical properties. J Biomed Mater Res 2000;49:134-40.
    17. Woods T, Gratzer PF. Effectiveness of three extraction techniques in the development of a decellularized bone-anterior cruciate ligament-bone graft. Biomaterials 2005;26(35):7339-49.
    18. Badylak SF, Lantz GC, Coffey A, Geddes LA. Small intestinal submucosa as a large diameter vascular graft in the dog. J Surg Res 1989;47(1):74-80.
    19. Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T, Voytik SL, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. Journal of Biomedical Materials Research 1995;29(8):977-85.
    20. Kropp BP, Eppley BL, Prevel CD, Rippy MK, Harruff RC, Badylak SF, et al. Experimental assessment of small intestinal submucosa as a bladder wall substitute. Urology 1995;46(3):396-400.
    21. Chen F, Yoo JJ, Atala A. Acellular collagen matrix as a possible“off the shelf”biomaterial for urethral repair. Urology 1999;54(3):407-10.
    22. Freytes DO, Badylak SF, Webster TJ, Geddes LA, Rundell AE.Biaxial strength of multilaminated extracellular matrix scaffolds.Biomaterials 2004;25(12):2353-61.
    23. Gilbert TW, Stolz DB, Biancaniello F, Simmons-Byrd A, Badylak SF. Productionand characterization of ECM powder: implications for tissue engineering applications. Biomaterials 2005;26(12):1431-5.
    24. Lin P, Chan WC, Badylak SF, Bhatia SN. Assessing porcine liverderived biomatrix for hepatic tissue engineering. Tissue Eng 2004;10(7-8):1046-53.
    25. Badylak SF, Tullius R, Kokini K, Shelbourne KD, Klootwyk T,Voytik SL, et al. The use of xenogeneic small intestinal submucosa as a biomaterial for Achilles tendon repair in a dog model. J Biomed Mater Res 1995;29(8):977-85.
    26. Brown B, Lindberg K, Reing J, Stolz DB, Badylak SF. The basement membrane component of biologic scaffolds derived from extracellular matrix. Tissue Eng 2006;12(3):519-26.
    27. Hodde JP, Badylak SF, Brightman AO, Voytik-Harbin SL.Glycosaminoglycan content of small intestinal submucosa: a bioscaffold for tissue replacement. Tissue Eng 1996;2(3):209-17.
    28. Gilbert TW, Sellaro TL, Badylak SF. Decellularization of tissues and organs. Biomateri als 2006;27(19):3675-83.
    29. Hodde JP, Record R, Tullius R, Badylak SF. Fibronectin peptides mediate HMEC adhesion to porcine-derived extracellular matrix.Biomaterials 2002;23(8):1841-8.
    30. McDevitt CA, Wildey GM, Cutrone RM. Transforming growth factor-beta1 in a sterilized tissue derived from the pig small intestine submucosa. J Biomed Mater Res A 2003;67(2):637-40.
    31. Voytik-Harbin SL, Brightman AO, Kraine MR, Waisner B, Badylak SF. Identification of extractable growth factors from small intestinal submucosa. J Cell Biochem 1997;67(4):478-91.
    32. Hodde JP, Ernst DM, Hiles MC. An investigation of the long-term bioactivity of endogenous growth factor in OASIS Wound Matrix.Wound Care 2005;14(1):23-5.
    33. Hodde JP, Record RD, Liang HA, Badylak SF. Vascular endothelial growth factor in porcine-derived extracellular matrix. Endothelium 2001;8(1):11-24.
    34. Sacks MS, Gloeckner DC. Quantification of the fiber architecture and biaxial mechanical behavior of porcine intestinal submucosa. J Biomed Mater Res 1999;46(1):1-10.
    35. Gong J, Sagiv O, Cai H, Tsang SH, Del Priore LV. Effects of extracellular matrix andneighboring cells on induction of human embryonic stem cells into retinal or retinal pigment epithelial progenitors. Exp Eye Res 2008;86(6):957-65.
    36. Sellaro TL, Ravindra AK, Stolz DB, Badylak SF. Maintenance of hepatic sinusoidal endothelial cell phenotype in vitro using organspecific extracellular matrix scaffolds. Tissue Eng 2007;13(9):2301-10.
    37. Hosokawa T, Betsuyaku T, Nishimura M, Furuyama A, Katagiri K, Mochitate K. Differentiation of tracheal basal cells to ciliated cells and tissue reconstruction on the synthesized basement membrane substratum in vitro. Connect Tissue Res 2007;48(1):9-18.
    38. Hosokawa T, Betsuyaku T, Odajima N, Suzuki M, Mochitate K,Nasuhara Y, et al. Role of basement membrane in EMMPRIN/CD147 induction in rat tracheal epithelial cells. Biochem Biophys Res Commun 2008;368(2):426-32.
    39. Cartmell JS, Dunn MG. Development of cell-seeded patellar tendon allografts for anterior cruciate ligament reconstruction. Tissue Eng 2004;10(7-8):1065-75.
    40. Harrison RD, Gratzer PF. Effect of extraction protocols and epidermal growth factor on the cellular repopulation of decellularized anterior cruciate ligament allografts. J Biomed Mater Res A 2005;75(4):841-54.
    41. Gilbert TW, Sacks MS, Grashow JS, Woo SL-Y, Badylak SF,Chancellor MB. Fiber kinematics of small intestinal submucosa under biaxial and uniaxial stretch. J Biomech Eng 2006;128(6):890-8.
    42. Gilbert TW, Wognum S, Joyce EM, Freytes DO, Sacks MS, Badylak SF. Collagen fiber alignment and biaxial mechanical behavior of porcine urinary bladder derived extracellular matrix.Biomaterials 2008; 29(36): 4775-82.
    43. Erdag G, Morgan JR. Allogeneic vs xenogeneic immune reaction to bioengineered skin grafts. Cell Transplant 2004;13(6):701-12.
    44. Gock H, Murray-Segal L, Salvaris E, Cowan P, D’Apice AJ.Allogeneic sensitization is more effective than xenogeneic sensitization in eliciting Gal-mediated skin graft rejection. Transplantation 2004;77(5):751-3.
    45. Ross JR, Kirk AD, Ibrahim SE, Howell DN, Baldwin 3rd WM, Sanfilippo FP. Characterization of human anti-porcine“natural antibodies”recovered from ex vivo perfused hearts-predominance of IgM and IgG2. Transplantation 1993;55(5):1144-50.
    46. Bernard MP, Chu ML, Myers JC, Ramirez F, Eikenberry EF, Prockop DJ. Nucleotide sequences of complementary deoxyribonucleic acids for the pro alpha 1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution. Biochemistry 1983;22(22):5213-23.
    47. Bernard MP, Myers JC, Chu ML, Ramirez F, Eikenberry EF, Prockop DJ. Structure of a cDNA for the pro alpha 2 chain of human type I procollagen. Comparison with chick cDNA for pro alpha 2(I) identifies structurally conserved features of the protein and the gene. Biochemistry 1983;22(5):1139-45.
    48. Constantinou CDJ, Jimenez SA. Structure of cDNAs encoding the triple-helical domain of murine alpha 2 (VI) collagen chain and comparison to human and chick homologues. Use of polymerase chain reaction and partially degenerate oligonucleotide for generation of novel cDNA clones. Matrix 1991;11(1):1-9.
    49. Exposito JY, D’Alessio M, Solursh M, Ramirez F. Sea urchin collagen evolutionarily homologous to vertebrate pro-alpha 2(I) collagen. J Biol Chem 1992;267(22): 15559-62.
    50. McPherson TB, Liang H, Record RD, Badylak SF. Galalpha(1,3)Gal epitope in porcine small intestinal submucosa. Tissue Eng 2000;6(3):233-9.
    51. Raeder RH, Badylak SF, Sheehan C, Kallakury B, Metzger DW.Natural anti-galactose alpha1,3 galactose antibodies delay, but do not prevent the acceptance of extracellular matrix xenografts.Transplant Immunol 2002 Jun;10(1):15-24.
    52. Derwin KA, Baker AR, Spragg RK, Leigh DR, Iannotti JP.Commercial extracellular matrix scaffolds for rotator cuff tendon repair. Biomechanical, biochemical and cellular properties. J Bone Joint Surg Am 2006;88(12):2665-72.
    53. Gilbert TW, Freund JM, Badylak SF. Quantification of DNA in biologic scaffold materials. J Surg Res 2009. 152(1): 135-9.
    54. Lovekamp JJ, Simionescu DT, Mercuri JJ, Zubiate B, Sacks MS, Vyavahare NR. Stability and function of glycosaminoglycans in porcine bioprosthetic heart valves. Biomaterials 2006;27(8):1507-18.
    55. Freytes DO, Tullius RS, Valentin JE, Stewart-Akers AM, Badylak SF. Hydrated versus lyophilized forms of porcine extracellular matrix derived from the urinary bladder. J Biomed Mater Res A 2008. 87(4): 862-72.
    56. Burchardt H, Jones H, Glowczewskie F, Rudner C, Enneking WF.Freeze-dried allogeneic segmental cortical-bone grafts in dogs. J Bone Joint Surg Am 1978;60(8):1082-90.
    57. Cornu O, Banse X, Docquier PL, Luyckx S, Delloye C. Effect of freeze-drying and gamma irradiation on the mechanical properties of human cancellous bone. J Orthop Res 2000;18(3):426-31.
    58. Jackson DW, Grood ES, Wilcox P, Butler DL, Simon TM, Holden JP. The effects of processing techniques on the mechanical properties of bone-anterior cruciate ligament-bone allografts. An experimental study in goats. Am J Sports Med 1988;16(2):101-5.
    59. Smith CW, Young IS, Kearney JN. Mechanical properties of tendons: changes with sterilization and preservation. J Biomech Eng 1996;118(1):56-61.
    60. Toritsuka Y, Shino K, Horibe S, Nakamura N, Matsumoto N, Ochi T. Effect of freeze-drying or gamma-irradiation on remodeling of tendon allograft in a rat model. J Orthop Res 1997;15(2):294-300.
    61. Hafeez YM, Zuki AB, Yusof N, Asnah H, Loqman MY, Noordin MM, et al. Effect of freeze-drying and gamma irradiation on biomechanical properties of bovine pericardium. Cell Tissue Bank 2005;6(2):85-9.
    62. Curtil A, Pegg DE, Wilson A. Freeze drying of cardiac valves in preparation for cellular repopulation. Cryobiology 1997;34(1):13-22.
    63. Gilbert TW, Gilbert S, Madden M, Reynolds SD, Badylak SF. Morphologic assessment of extracellular matrix scaffolds for patch tracheoplasty in a canine model. Ann Thorac Surg 2008;86(3):967-74, discussion 967-974.
    64. Freytes DO, Rundell AE, Vande Geest J, Vorp DA, Webster TJ, Badylak SF. Analytically derived material properties of multilaminated extracellular matrix devices using the ball-burst test. Biomaterials 2005;26(27):5518-31.
    65. Zantop T, Gilbert TW, Yoder MC, Badylak SF. Extracellular matrix scaffolds are repopulated by bone marrow-derived cells in a mouse model of Achilles tendon reconstruction. J Orthop Res 2006;24(6):1299-309.
    66. Ringel RL, Kahane JC, Hillsamer PJ, Lee AS, Badylak SF. The application of tissue engineering procedures to repair the larynx. J Speech Lang Hear Res2006;49(1):194-208.
    67. Huber JE, Spievack A, Simmons-Byrd A, Ringel RL, Badylak S. Extracellular matrix as a scaffold for laryngeal reconstruction. Ann Otol Rhinol Laryngol 2003;112(5):428-33.
    68. Gilbert TW, Stewart-Akers AM, Simmons-Byrd A, Badylak SF. Degradation and remodeling of small intestinal submucosa in canine Achilles tendon repair. J Bone Joint Surg Am 2007;89(3):621-30.
    69. Bertone AL, Goin S, Kamei SJ, Mattoon JS, Litsky AS, Weisbrode SE, et al. Metacarpophalangeal collateral ligament reconstruction using small intestinal submucosa in an equine model. J Biomed Mater Res A 2008;84(1):219-29.
    70. Badylak S, Kokini K, Tullius B, Whitson B. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res 2001;99(2):282-7.
    71. Badylak S, Kokini K, Tullius B, Simmons-Byrd A, Morff R. Morphologic study of small intestinal submucosa as a body wall repair device. J Surg Res 2002;103(2):190-202.
    72. Wood JD, Simmons-Byrd A, Spievack AR, Badylak SF. Use of a particulate extracellular matrix bioscaffold for treatment of acquired urinary incontinence in dogs. J Am Vet Med Assoc 2005;226(7):1095-7.
    73. Lundy DS, Casiano RR, McClinton ME, Xue JW. Early results of transcutaneous injection laryngoplasty with micronized acellular dermis versus type-I thyroplasty for glottic incompetence dysphonia due to unilateral vocal fold paralysis. J Voice 2003;17(4):589-95.
    74. Brightman AO, Rajwa BP, Sturgis JE, McCallister ME, Robinson JP, Voytik-Harbin SL. Time-lapse confocal reflection microscopy of collagen fibrillogenesis and extracellular matrix assembly in vitro.Biopolymers 2000;54(3):222-34.
    75. Freytes DO, Martin J, Velankar SS, Lee AS, Badylak SF. Preparation and rheological characterization of a gel form of the porcine urinary bladder matrix. Biomaterials 2008;29(11):1630-7.
    76. Ratner BD. Biomaterials science: an introduction to materials in medicine. 2nd ed. Amsterdam: Elsevier Academic Press; 2004.
    77. Badylak SF, Valentin JE, Ravindra AK, McCabe GP, Stewart-Akers AM.Macrophage phenotype as a determinant of biologic scaffold remodeling. Tissue Eng Part A 2008. 14(11): 1835-42.
    78. Badylak SF, Gilbert TW. Immune response to biologic scaffold materials. Semin Immunol 2008;20(2):109-16.
    79. Valentin JE, Badylak JS, McCabe GP, Badylak SF. Extracellular matrix bioscaffolds for orthopaedic applications. A comparative histologic study. J Bone Joint Surg Am 2006;88(12):2673-86.
    80. Lee SJ, Lee IW, Lee YM, Lee HB, Khang G. Macroporous biodegradable natural/synthetic hybrid scaffolds as small intestine submucosa impregnated poly(D,L-lactide-co-glycolide) for tissueengineered bone. J Biomater Sci Polym Ed 2004;15(8):1003-17.
    81. Stankus JJ, Freytes DO, Badylak SF, Wagner WR. Hybrid nanofibrous scaffolds from electrospinning of a synthetic biodegradable elastomer and urinary bladder matrix. J Biomater Sci Polym Ed 2008;19(5):635-52.
    82. Freytes DO, Stoner RM, Badylak SF. Uniaxial and biaxial properties of terminally sterilized porcine urinary bladder matrix scaffolds. J Biomed Mater Res B Appl Biomater 2008;84(2):408-14.
    83. Gouk SS, Lim TM, Teoh SH, Sun WQ. Alterations of human acellular tissue matrix by gamma irradiation: histology, biomechanical property, stability, in vitro cell repopulation, and remodeling. J Biomed Mater Res B Appl Biomater 2008;84(1):205-17.
    84. Sun WQ, Leung P. Calorimetric study of extracellular tissue matrix degradation and instability after gamma irradiation. Acta Biomater 2008;4(4):817-26.
    85. Badylak SF, Kokini K, Tullius B, Whitson B. Strength over time of a resorbable bioscaffold for body wall repair in a dog model. J Surg Res 2001;99(2):282-7.
    86. Badylak SF, Arnoczky S, Plouhar P, Haut R, Mendenhall V, Clarke R, et al. Naturally occurring extracellular matrix as a scaffold for musculoskeletal repair. Clin Orthop 1999(367 Suppl.):s333-43.
    87. Dejardin LM, Arnoczky SP, Ewers BJ, Haut RC, Clarke RB. Tissue-engineered rotator cuff tendon using porcine small intestine submucosa. Histologic and mechanical evaluation in dogs. Am J Sports Med 2001;29(2):175-84.
    88. Liang R, Woo SL-Y, Takakura Y, Moon DK, Jia F, Abramowitch SD. Long-term effects of porcine small intestine submucosa on the healing of medial collateral ligament: a functional tissue engineering study. J Orthop Res 2006;24(4):811-9.
    89. Musahl V, Abramowitch SD, Gilbert TW, Tsuda E, Wang JH-C, Badylak SF, et al. The use of porcine small intestinal submucosa to enhance the healing of the medial collateral ligament - a functional tissue engineering study in rabbits. J Orthop Res 2004;22(1):214-20.
    90. Liang R, Woo SL, Nguyen TD, Liu PC, Almarza A. Effects of a bioscaffold on collagen fibrillogenesis in healing medial collateral ligament in rabbits. J Orthop Res 2008;26(8):1098-104.
    91. Woo SL-Y, Takakura Y, Liang R, Jia F, Moon DK. Treatment with bioscaffold enhances the fibril morphology and the collagen composition of healing medial collateral ligament in rabbits. Tissue Eng 2006;12(1):159-66.
    92. Kropp BP, Sawyer BD, Shannon HE, Rippy MK, Badylak SF, Adams MC, et al. Characterization of small intestinal submucosa regenerated canine detrusor: assessment of reinnervation in vitro, compliance and contractility. J Urol 1996;156(2 Pt. 2):599-607.
    93. Badylak SF, Vorp DA, Spievack AR, Simmons-Byrd A, Hanke J, Freytes DO, et al. Esophageal reconstruction with ECM and muscle tissue in a dog model. J Surg Res 2005;128(1):87-97.
    94. Kochupura PV, Azeloglu EU, Kelly DJ, Doronin SV, Badylak SF, Krukenkamp IB, et al. Tissue-engineered myocardial patch derived from extracellular matrix provides regional mechanical function.Circulation 2005;112(9 Suppl.):I144-9.
    95. Record RD, Hillegonds D, Simmons C, Tullius R, Rickey FA,Elmore D, et al. In vivo degradation of 14C-labeled small intestinal submucosa (SIS) when used for urinary bladder repair. Biomaterials 2001;22(19):2653-9.
    96. Hodde JP, Badylak SF, Shelbourne KD. The effect of range of motion on remodeling of small intestinal submucosa (SIS) when used as an Achilles tendon repair material in the rabbit. Tissue Eng 1997;3(1):27-37.
    97. Gilbert TW, Stewart-Akers AM, Sydeski J, Nguyen TD, Badylak SF, Woo SL-Y. Gene expression by fibroblasts seeded on small intestinal submucosa and subjected tocyclic stretching. Tissue Eng 2007;13(6):1313-23.
    98. Kim SG, Akaike T, Sasagaw T, Atomi Y, Kurosawa H. Gene expression of type I and type III collagen by mechanical stretch in anterior cruciate ligament cells. Cell Struct Funct 2002;27(3):139-44.
    99. Loesberg WA, Walboomers XF, van Loon JJ, Jansen JA. The effect of combined cyclic mechanical stretching and microgrooved surface topography on the behavior of fibroblasts. J Biomed Mater Res A 2005;75(3):723-32.
    100. Yang G, Crawford RC, Wang JH-C. Proliferation and collagen production of human patellar tendon fibroblasts in response to cyclic uniaxial stretching in serum-free conditions. J Biomech 2004;37(10):1543-50.
    101. Niyibizi C, Kavalkovich K, Yamaji T, Woo SL-Y. Type V collagen is increased during rabbit medial collateral ligament healing. Knee Surg Sports Traumatol Arthrosc 2000;8(5):281-5.
    102. Birk DE. Type V collagen: heterotypic type I/V collagen interactions in the regulation of fibril assembly. Micron 2001;32(3):223-37.
    103. Birk DE, Mayne R. Localization of collagen types I, III and V during tendon development. Changes in collagen types I and III are correlated with changes in fibril diameter. Eur J Cell Biol 1997;72(4):352-61.
    104. Lapiere CM, Nusgens B, Pierard GE. Interaction between collagen type I and type III in conditioning bundles organization. Connect Tissue Res 1977;5(1):21-9.
    105. Androjna C, Spragg RK, Derwin KA. Mechanical conditioning of cell-seeded small intestine submucosa: a potential tissue-engineering strategy for tendon repair. Tissue Eng 2007;13(2):233-43.
    106. Badylak SF, Park K, Peppas N, McCabe G, Yoder M. Marrowderived cells populate scaffolds composed of xenogeneic extracellular matrix. Exp Hematol 2001;29(11):1310-8.
    107. Almarza AJ, Yang G, Woo SL, Nguyen T, Abramowitch SD.Positive changes in bone marrow-derived cells in response to culture on an aligned bioscaffold. Tissue Eng Part A 2008;14(9):1489-95.
    108. Brennan EP, Reing J, Chew D, Myers-Irvin JM, Young EJ, Badylak SF. Antibacterial activity within degradation products of biological scaffolds composed of extracellularmatrix. Tissue Eng 2006;12(10):2949-55.
    109. Li F, Li W, Johnson S, Ingram D, Yoder M, Badylak SF. Lowmolecular-weight peptides derived from extracellular matrix as chemoattractants for primary endothelial cells. Endothelium 2004;11(3-4):199-206.
    110. Reing JE, Zhang L, Myers-Irvin J, Cordero KE, Freytes DO, Heber-Katz E, et al. Degradation products of extracellular matrix affect cell migration and proliferation. 2009. 15(3): 605-14
    111. Sarikaya A, Record R, Wu CC, Tullius B, Badylak SF, Ladisch M.Antimicrobial activity associated with extracellular matrices. Tissue Eng 2002;8(1):63-71.
    112. Chan RW, Titze IR. Viscosities of implantable biomaterials in vocal fold augmentation surgery. Laryngoscope 1998;108(5):725-31.
    113. Klemuk SA, Titze IR. Viscoelastic properties of three vocal-fold injectable biomaterials at low audio frequencies. Laryngoscope 2004;114(9):1597-603.S.F. Badylak et al. / Acta Biomaterialia 5 (2009) 1-13 13

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700