用户名: 密码: 验证码:
大肠杆菌辐射损伤适应性机制及耐辐射球菌γ-射线诱导蛋白质组研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
辐射抗性微生物是一种重要的极端微生物资源,其对环境的适应性生长是微生物与外界环境相互作用的结果。耐辐射球菌(Deinococcus radiodurans)是目前所知的最抗辐射的生物之一,具有超强的辐射抗性和完善的DNA修复机制。关于辐射抗性微生物的起源与进化,人们虽然提出了各种假说,但都缺乏相应的实验证据,其起源与进化机制至今仍然是一个谜。
     本文研究主要以非辐射抗性菌株大肠杆菌(Escherichia coli)K-12为材料,通过83次γ射线辐射进化诱导,筛选得到具有一定辐射抗性能力的突变菌株,然后通过基因组序列比较、差异蛋白质组、部分基因的转录水平和蛋白质氧化损伤等方面的分析,研究大肠杆菌在电离辐射压力下的适应性进化机制。同时分析了耐辐射球菌(D.radiodurans)在γ射线辐射前后的细胞内外蛋白质组表达水平差异,探讨耐辐射球菌超强的辐射抗性与DNA损伤修复机理。
     1.首先以大肠杆菌(E.coli)K-12为起始菌株,在反复多次的γ射线电离辐射后筛选得到具有一定辐射抗性能力的细菌。对菌株IR58、IR21和IR51进行逆境生存率分析,结果表明IR58、IR21和IR51对γ射线辐射抗性能力增强,同时IR58和IR21对紫外线UV和丝裂霉素C也产生了一定的抗性。
     2.选取具有较强辐射抗性能力的菌株IR58和IR21,通过Solexa GenomeAnazyler系统进行基因组测序。将IR58和IR21的基因组序列与大肠杆菌K-12的标准基因组序列比较后发现,IR58和IR21基因组在辐射损伤的适应性进化过程中经历了大量的基因突变与DNA片段复制事件。在IR58和IR21中找到了正在进行的基因复制现象,这些基因在核苷酸水平上有很高的相似度,同时也找到了经过插入突变与删除等的“去功能化”作用后分化较厉害的序列。在IR58和IR21中有大量分散存在于基因组的SNP位点,来源于受外界环境损伤后基因序列内的单碱基置换。进一步分析发现在IR58菌株中,uvrB,mutM、lexA、hepA、danX等5个DNA修复和复制相关基因发生了碱基替换和插入删除突变,而在IR21菌株中,recC、recJ,dnaE,mutM、hepA和mutS等6个基因也发生了碱基替换和插入删除等突变。基因组比对的结果表明,IR58和IR21两个菌株发生了大量的点突变、基因分子复制重排和DNA片段的缺失等事件。
     3.利用二维液相色谱分离系统结合质谱鉴定方法分析了大肠杆菌K-12和IR58、IR21在γ射线诱导下蛋白质组表达水平差异。与K-12相比,有144个蛋白质在IR58和IR21中表达水平升高或降低的变化趋势是一致的,通过质谱分析后成功鉴定了39个蛋白。而有38个蛋白的变化趋势是不同的,通过质谱分析后成功鉴定15个蛋白。鉴定得到的这些蛋白归属于不同的生物学功能,其中有4个变化趋势相同的蛋白曾被报道与DNA修复机制相关。
     4.分析了辐射抗性菌株IR58和IR21中部分DNA修复相关基因的转录水平,发现参与切除修复途径的基因特别是uvrABC基因的转录水平都有不同程度的提高,参与同源重组途径的recA,ssb,recBCD和recFOR等相关基因的转录水平也有提高。同时使用DNPH法分析了细胞内蛋白质的氧化损伤程度,发现IR58和IR21在受到γ射线损伤后,氧化损伤的程度比野生株K-12要低,说明IR58和IR21细胞内保护蛋白质免受氧化损伤的能力提高了。
     5.为了研究耐辐射球菌的辐射抗性和DNA修复相关机制,应用蛋白质组学的分离和鉴定方法考察了耐辐射球菌胞内蛋白和胞外分泌蛋白在γ射线辐照诱导下表达水平差异。其中,胞内有26个蛋白质的表达水平有明显的增加,胞外有29个蛋白质发生了明显的表达水平变化。通过生物质谱鉴定得到部分蛋白质的信息,发现这些蛋白质在细胞中分别归属于不同的生物学功能,而且大部分蛋白质未曾报道与辐射抗性机制相关。对细胞内总蛋白表达谱分析发现有两个蛋白(SSB、PprA)曾报道与DNA修复相关,而有5个蛋白的功能是参与细胞的调控与信号转导。对胞外蛋白的鉴定与分析发现,有1个蛋白曾报道与DNA修复相关,有8个蛋白与细胞物质的转运和分泌相关。
Extremophiles have a number of potential applications,which would benefit from the use of radiation-resistant microorganisms.It begins from the flexibility of microorganisms to adapt to a wide spectrum of extreme environments.Deinococcus radiodurans is one of the most radiation-resistant organisms described to date.Studies show that the resistance is due to D.radiodurans's extremely proficient and accurate DNA repair process.Evolutionary hypothesis about the origin of radiation-resistant microorganisms seems to show a lack of experimental evidence.The origin and evolution of radiation-resistant microorganisms is still remaining unknown in large part.
     In this study,the founder strain was non-radiation resistant wild-type Escherichia coli K-12.Wild-type E.coli K-12 was exposed to 83 successive rounds ofγ-ray radiation,allowing for full recovery in between each exposure.Strains IR58 and IR21 selected from the final round of irradiated culture showed a dramatic increase in radiation resistance compared to its parental wild-type E.coli strain.In order to understand evolution mechanism during adaptation to irradiation,we applied the whole genome resequencing,comparative proteomics,gene transcription levels and protein oxidation analysis of IR58 and IR21.In order to reveal the mechanisms of extreme radioresistance and DNA repair in D.radiodurans,we also examined intracellular and extracellular proteome changes in D.radiodurans followingγ-irradiation.
     1.E.coli K12 was forced through cycles of rapid evolution by iterative exposures to doses ofγ-irradiation for 83 cycles.Three robust strains selected from the final round of irradiated culture were named IR58,IR21 and IR51.The three strains showed a dramatic increase in radiation resistance compared to its parental wild-type E.coli strain.IR58 and IR21 also showed a moderately resistant to UV and more resistant to mitomycin C.
     2.The whole genome of IR58 and IR21 were resequenced by the high-throughput Solexa Genome Anazylers sequencing system.Our comparative study revealed that IR58 and IR21 underwent numerous events including genetic mutation,gene duplication rearrangement and segment deletion during irradiation adaptive evolution.We found differentiation sequences had undergone many non-functionalization events in both IR58 and IR21,and also gene duplication. Numerous single nucleotide polymorphisms(SNPs)were dispersedly exist in whole genome of both IR58 and IR21.We also found that five genes(uvrB.mutM.lexA. hepA and danX)in IR58 and six genes(recC.recJ.dnaE.mutM.hepA and mutS)in IR21 occurred base substitution,insetion or deletion.Based on comparative genomic data,we propose that the whole genome of both IR58 and IR21 suffered numerous events during irradiation adaptive evolution,such as point mutations,gene duplication rearrangement and segment deletion.
     3.We developed the ProteomeLab PF-2D fractionation system to carry out large scales protein expression analysis of cell lysates from IR58,IR21 and K-12. Compared with wild-type K-12,expression level of 144 proteins had significantly changed in both IR58 and IR21.But 38 proteins were changed in different trends in IR58 and IR21.39 of 144 proteins and 15 of 38 proteins were identified using matrix-assisted laser desorption ionisation time of flight mass spectrometry after tryptic digestion.These proteins exhibited various cellular functions,and four of them were reported to relate to DNA repair.
     4.The transcription levels of genes related to DNA repair and replication were analyzed in IR58 and IR21.Compared with E.coli K-12,transcription levels of many important genes in IR58 and IR21 were increased,such as uvrABC,recA,ssb,recBCD and recFOR.Protein oxidative injury was analyzed using the 2,4-dinitrophenylhydrazine(DNPH)procedure.Afterγ-irradiation,IR58 and IR21 had lower protein carbonyl content compared with E.coli K-12.The results indicated that the ability to protect proteins in IR58 and IR21 might be well developed,thus becoming a survival factor with irradiation.
     5.In order to reveal the mechanisms of extreme radioresistance and DNA repair in D.radiodurans,we examined intracellular and extracellular proteome changes following T-irradiation using 2-D PAGE and silver staining.Among the identified proteins,most of them have not previously been reported to be relevant to radioresistance.Five proteins in intracellular proteome were classified in signal transduction and regulation,and two proteins(SSB,PprA)were reported to have concern to DNA repair.Seven in extracellular proteome are classified in transport and metabolism,and one is involved in intracellular trafficking and secretion.
引文
1.van den Burg,B.,Extremophiles as a source for novel enzymes.Current Opinion in Microbiology,2003.6(3):p.213-218.
    2.MacElroy,R.D.,Some comments on the evolution of extremophiles.1974.6:p.74-75.
    3.Pikuta,E.V.,T.Itoh,and R.B.Hoover,Anaerobic decomposition of cellulose by alkaliphilic microbial community of Owens Lake,California.Proceedings of SPIE,2005.5906:p.590604.
    4.Sugio,T.,C.Domatsu,O.Munakata,T.Tano,and K.Imai,Role of a ferric ion-reducing system in sulfur oxidation of Thiobacillus ferrooxidans.1985.p.1401-1406.
    5.Schleper,C.,G.Puhler,H.P.Klenk,and W.Zillig,Picrophilus oshimae and.1996.p.814-816.
    6.Brewer,W.H.,Note on the organisms of the geysers of California.Am.J.Sci,1866.92:p.429.
    7.Brock,T.D.and H.Freeze,Thermus aquaticus gen.n.and sp.n.,a Nonsporulating Extreme Thermophile.J Bacteriol,1969.98(1):p.289.
    8.Blochl,E.,R.Rachel,S.Burggraf,D.Hafenbradl,H.W.Jannasch,and K.O.Stetter,Pyrolobus fumarii,gen.and sp.nov.,represents a novel group of archaea,extending the upper temperature limit for life to 113℃.Extremophiles,1997.1(1):p.14-21.
    9.Cowan,D.A.,The upper temperature for life-where do we draw the line? Trends in Microbiology,2004.12(2):p.58-60.
    10.Morita,R.Y.,Psychrophilic bacteria.Bacteriol Rev,1975.39(2):p.144-67.
    11.Schmidt-Nielsen,S.,Ueber einige psychrophile Mikroorganismen undihr Vorkommen.1902.p.145-147.
    12.Gilichinsky,D.,E.Rivkina,C.Bakermans,V.Shcherbakova,L.Petrovskaya,S.Ozerskaya,N.Ivanushkina,G.Kochkina,K.Laurinavichuis,and S.Pecheritsina,Biodiversity of cryopegs in permafrost.FEMS Microbiol.Ecol,2005.53(1):p.117-128.
    13.Holden,J.F.and M.W.W.Adams,Microbe-metal interactions in marine hydrothermal environments.Current Opinion in Chemical Biology,2003.7(2):p.160-165.
    14.Staley,J.T.and J.J.Gosink,Poles apart:Biodiversity and biogeography of sea ice bacteria.Annual review of microbiology,1999.53(1):p.189-215.
    15.Downie,A.W.and J.Cruickshank,The resistance of Streptococcus faecalis to acid and alkaline media.Br.J.Exp.Pathol,1928.9:p.171-73.
    16.Meek,C.S.and C.B.Lipman,The relation of the reaction and of salt content of the medium on nitrifying bacteria.The Journal of General Physiology,1922.5(2):p.195-204.
    17.Horikoshi,K.and T.Akiba,Alkalophilic Microorganisms:A New Microbial World.1982:Springer-Verlag.
    18.Tindall,B.J.,H.N.M.Ross,and W.D.Grant,Natronobacterium gen.nov.and Natronococcus gen.nov.,two new genera of haloalkaliphilic archaebacteria.Syst Appl Microbiol,1984.5(1):p.41-57.
    19.Lillo,J.G.and F.Rodriguez-Valera,Effects of Culture Conditions on Poly(beta-Hydroxybutyric Acid)Production by Haloferax mediterranei.Appl Environ Microbiol,1990.56(8):p.2517-2521.
    20.Yayanos,A.A.,A.S.Dietz,and R.Van Boxtel,Isolation of a deep-sea barophilic bacterium and some of its growth characteristics.Science,1979.205.
    21.Raj,H.D.,F.L.Duryee,AM.Deeney,C.H.Wang,A.W.Anderson,and P.R.Elliker,Utilization of carbohydrates and amino acids by Micrococcus radiodurans.Can J Microbiol,1960.6:p.289-98.
    22.Makarova,K.S.,L.Aravind,Y.I.Wolf,R.L.Tatusov,K.W.Minton,E.V.Koonin,and M.J.Daly,Genome of the extremely radiation-resistant bacterium Deinococeus radiodurans viewed from the perspective of comparative genomics.2001,Am Soc Microbiol.p.44-79.
    23.Rothschild,L.J.and R.L.Mancinelli,Life in extreme environments.Nature,2001.409:p.1092-1101.
    24.Allen,M.B.,Studies with cyanidium caldarium,an anomalously pigmented chlorophyte.Archives of Microbiology,1959.32(3):p.270-277.
    25.Schleper,C.,G.Piihler,B,Kuhlmorgen,and W.Zillig,Life at extremely low pH.Nature,1995.375(6534):p.741-742.
    26.Schleper,C.,G.Puehler,H.P.Klenk,and W.Zillig,Picrophilus oshimae and Picrophilus torridus fam.nov.,gen.nov.,sp.nov.,two species of hyperacidophilic,thermophilic,heterotrophic,aerobic Archaea.Int J Syst Bacteriol,1996.46(3):p.814-816.
    27.Dopson,M.,C.Baker-Austin,A.Hind,J.P.Bowman,and P.L.Bond,Characterization of Ferroplasma Isolates and Ferroplasma acidarmanus sp.nov.,Extreme Acidophiles from Acid Mine Drainage and Industrial Bioleaching Environments.Applied and Environmental Microbiology,2004.70(4):p.2079.
    28.Norris,P.R.and D.B.Johnson,Acidophilic microorganisms.Extremophiles:Microbial Life in Extreme Environments.,1998:p.133-153.
    29.Johnson,D.B.,Biodiversity and ecology of acidophilic microorganisms.FEMS Microbiol.Ecol,1998.27(4):p.307-317.
    30.Dopson,M.,C.Baker-Austin,P.R.Koppineedi,and P.L.Bond,Growth in sulfidic mineral environments:metal resistance mechanisms in acidophilic micro-organisms.Microbiology,2003.149(8):p.1959-1970.
    31.Barns,S.M.,R.E.Fundyga,M.W.Jeffries,and N.R.Pace,Remarkable Archaeal Diversity Detected in a Yellostone National Park Hot Spring Environment.Proc Natl Acad Sci USA,1994.91(5):p.1609-1613.
    32.Burggraf,S.,P.Heyder,and N.Eis,A pivotal Archaea group.Nature,1997.385(6619):p.780-780.
    33.Huber,H.,M.J.Hohn,K.O.Stetter,and R.Rachel,The phylum Nanoarchaeota:Present knowledge and future perspectives of a unique form of life.Research in Microbiology,2003.154(3):p.165-171.
    34.Woese,C.R.,Endosymbionts and mitochondrial origins.Journal of Molecular Evolution,1977.10(2):p.93-96.
    35.Stetter,J.R.,Chemical parameter spectrometry for monitoring hazardous gases and vapours.1985.
    36.Stetter,K.O.,Extremophiles and their adaptation to hot environments.FEBS Letters,1999.452(1-2):p.22-25.
    37.Bergerat,A.,B.de Massy,D.Gadelle,P.C.Varoutas,A.Nicolas,and P.Forterre,An atypical topoisomerase Ⅱ from archaea with implications for meiotic recombination.Nature,1997.386:p.414-417.
    38.Woese,C.R.,O.Kandler,and M.L.Wheelis,Towards a natural system of organisms:proposal for the domains Archaea,Bacteria,and Eucarya.Proc Natl Acad Sci USA,1990.87(12):p.4576-4579.
    39.Huber,H.and K.O.Stetter,Hyperthermophiles and their possible potential in biotechnology.Journal of Biotechnology,1998.64(1):p.39-52.
    40.Sakuraba,H.and T.Ohshima,Novel energy metabolism in anaerobic hyperthermophilic archaea:a modified Embden-Meyerhof pathway.J Biosci Bioeng,2002.93(5):p.441-8.
    41.Amend,J.P.and A.Teske,Expanding frontiers in deep subsurface microbiology.Palaeogeography,Palaeoclimatology.Palaeoecology,2005.219(1-2):p.131-155.
    42.Schuliger,J.W.,S.H.Brown,J.A.Baross,and R.M.Kelly,Purification and characterization of a novel amylolytic enzyme from ES 4,a marine hyperthermophilic archaeum.Molecular Marine Biology and Biotechnology,1993.2(2):p.76-87.
    43.Nagi,A.D.and L.Regan,An inverse correlation between loop length and stability in a four-helix-bundle protein.Folding and Design,1997.2(1):p.67-75.
    44.Haney,P.J.,J.H.Badger,C.L.Buldak,C.I.Reich,C.R.Woese,and G.J.Olsen,Nucleotide thermal adaptation analyzed by comparison of protein sequences from mesophilic and extremely thermophilic Methanococcus species.Proc.Natl.Acad.Sci.USA,1999.96:p.3578-3583.
    45.Yano,J.K.and T.L.Poulos,New understandings of thermostable and peizostable enzymes.Current Opinion in Biotechnology,2003.14(4):p.360-365.
    46.Pledger,R.J.,B.C.Crump,and J.A.Baross,A barophilic response by two hyperthermophilic,hydrothermal vent Archaea:An upward shift in the optimal temperature and acceleration of growth rate at supra-optimal temperatures by elevated pressure.FEMS Microbiol.Ecol,1994.14(3):p.233-242.
    47.Szewzyk,U.,R.Szewzyk,and T.A.Stenstrom,Thermophilic,anaerobic bacteria isolated from a deep borehole in granite in Sweden.Proc Natl Acad Sci USA,1994.91(5):p.1810-3.
    48.Kato,C.,L.Li,Y.Nogi,Y.Nakamura,J.Tamaoka,and K.Horikoshi,Extremely barophilic bacteria isolated from the Mariana Trench,Challenger Deep,at a depth of 11,000 meters.Appl Environ Microbiol,1998.64(4):p.1510-1513.
    49.Bartlett,D.H.,Pressure effects on in vivo microbial processes.Biochimica et Biophysica Acta (BBA)/Protein Structure and Molecular Enzymology,2002.1595(1-2):p.367-381.
    50.Takami,H.,A.Inoue,F.Fuji,and K.Horikoshi,Microbial flora in the deepest sea mud of the Mariana Trench.FEMS Microbiol.Lett,1997.152(2):p.279-85.
    51.Kato,C.,T.Sato,and K.Horikoshi,Isolation and properties of barophilic and barotolerant bacteria from deep-sea mud samples.Biodiversity and Conservation,1995.4(1):p.1-9.
    52.Kato,C.,N.Masui,and K.Horikoshi,Properties of obligately barophilic bacteria isolated from a sample of deep-sea sediment from the Izu-Bonin Trench.Journal of Marine Biotechnology,1996.4(2):p.96-99.
    53.Raymond,J.A.,C.W.Sullivan,and A.L.DeVries,Release of an ice-active substance by Antarctic sea ice diatoms.Polar Biology,1994.14(1):p.71-75.
    54.Raymond,J.A.,Distribution and partial characterization of ice-active molecules associated with sea-ice diatoms.Polar Biology,2000.23(10):p.721-729.
    55.Raymond,J.,Glycerol synthesis in the rainbow smelt Osmerus mordax.J Exp Biol,1995.198(Pt 12):p.2569-73.
    56.Franks,F.,Biophysics and biochemistry at low temperatures.1985:Cambridge University Press New York.
    57.Hoyoux,A.,V.Blaise,T.Collins,S.D'Amico,E.Gratia,A.L.Huston,J.C.Marx,G Sonan,Y.Zeng,and G.Feller,Extreme catalysts from low-temperature environments.J Biosci Bioeng,2004.98(5):p.317-330.
    58.Ray,B.,Impact of bacterial injury and repair in food microbiology:its past,present and future.Journal of Food Protection,1986.49:p.651-655.
    59.Feller,C.and C.Gerday,Psychrophilic enzymes:hot topics in cold adaptation.Nature Reviews Microbiology,2003.1(3):p.200-208.
    60.Jones,P.G.and M.Inouye,The cold-shock response-A hot topic.Molecular Microbiology,1994.11(5):p.811-818.
    61.Phadtare,S.,J.Alsina,and M.Inouye,Cold-shock response and cold-shock proteins.Current Opinion in Microbiology,1999.2(2):p.175-180.
    62.Goldenberg,D.,I.Azar,and A.B.Oppenheim,Differential mRNA stability of the cspA gene in the cold-shock response of Escherichia coli.Molecular Microbiology,1996.19(2):p.241-248.
    63.Yamanaka,K.,Cold shock response in Escherichia coli.J Mol Microbiol Biotechnol,1999.1(2):p.193-202.
    64.Graumann,P.L.and M.A.Marahiel,Cold shock response in Bacillus subtilis.J Mol Microbiol Biotechnol,1999.1(2):p.203-209.
    65.Detrich Iii,H.W.and S.K.Parker,Cold Adaptation of Microtubule Assembly and Dynamics:Structural Interpretation of Primary Sequence Changes Present in the {alpha} and {beta} Tubulins of Antarctic Fishes.Journal of Biologlcal Chemistry,2000:p.5699200.
    66.Oren,A.,Diversity of halophilic microorganisms:Environments,phylogeny,physiology,and applications.J Ind Microbiol Biotechnol,2002.28(1):p.56-63.
    67.Oren,A.,Diversity of halophilic microorganisms:Environments,phylogeny,physiology,and applications.Journal of Industrial Microbiology and Biotechnology,2002.28(1):p.56-63.
    68.Oren,A.,Halophilic Microorganisms and Their Environments.2002:Kluwer Academic Publishers.
    69.Roberts,M.F.,Organic compatible solutes of halotolerant and halophilic microorganisms.Saline Systems,2005.1(5):p.1746-1448.
    70.Ventosa,A.and J.J.Nieto,Biotechnological applications and potentialities of halophilic microorganisms.World Journal of Microbiology & Biotechnology,1995.11(1):p.85-94.
    71.Poolman,B.and E.Glaasker,Regulation of Compatible Solute Accumulation in Bacteria.Regulation,1998.29(2):p.397.
    72.Welsh,D.T.,Y.E.Lindsay,P.Caumette,J.Hannan,and R.A.Herbert,Identification of trehalose and glycine betaine as compatible solutes in the moderately halophilic sulfate reducing bacterium,Desulfovibrio halophilus.FEMS Microbiol.Lett,1996.140(2-3):p.203-207.
    73.Horikoshi,K.,Alkaliphiles:Some Applications of Their Products for Biotechnology.Microbiology and Molecular Biology Reviews,1999.63(4):p.735.
    74.Zhilina,T.N.and G.A.Zavarzin,Anaerobic chemotrophic alkaliphiles.Journey to diverse microbial worlds.Kluwer,Dordrecht,2000:p.191-208.
    75.Pikuta,E.,A.Lysenko,N.Chuvilskaya,U.Mendrock,H.Hippe,N.Suzina,D.Nikitin,G.Osipov,and K.Laurinavichius,Anoxybacillus pushchinensis gen.nov.,sp.nov.,a novel anaerobic,alkaliphilic,moderately thermophilic bacterium from manure,and description of Anoxybacillus flavitherms comb.nov.Int J Syst Evol Microbiol,2000.50(Pt 6):p.2109-17.
    76.Pikuta,E.,A.Lysenko,N.Suzina,G.Osipov,B.Kuznetsov,T.Tourova,V.Akimenko,and K.Laurinavichius,Desulfotomaculum alkaliphilum sp.nov.,a new alkaliphilic,moderately thermophilic,sulfate-reducing bacterium,Int J Syst Evol Microbiol,2000.50(Pt 1):p.25-33.
    77.Zhilina,T.N.,G.A.Zavarzin,F.A.Rainey,E.N.Pikuta,G.A.Osipov,and N.A.Kostrikina,Desulfonatronovibrio hydrogenovorans gen.nov.,sp.nov.,an alkaliphilic,sulfate-reducing bacterium.Int J Syst Evol Mierobiol,1997.47(1):p.144-149.
    78.Zhilina,T.N.,D.G.Zavarzina,J.Kuever,A.M.Lysenko,and G.A.Zavarzin,Desulfonatronum cooperativum sp.nov.,a novel hydrogenotrophic,alkaliphilic,sulfate-reducing bacterium,from a syntrophic culture growing on acetate,Int J Syst Evol Microbiol,2005.55(Pt 3):p.1001-6.
    79.Pikuta,E.V.,R.B.Hoover,A.K.Bej,D.Marsic,E.N.Detkova,W.B.Whitman,and P.Krader,Tindallia californiensis sp.nov.,a new anaerobic,haloalkaliphilic,spore-forming acetogen isolated from Mono Lake in California.Extremophiles,2003.7(4):p.327-334.
    80.Pikuta,E.V.,T.N.Zhilina,G.A.Zavarzin,N.A.Kostrikina,G.A.Osipov,and F.A.Rainey,Desulfonatronum lacustre gen.nov.,sp.nov.:a new alkaliphilic sulfate-reducing bacterium utilizing ethanol.Microbiology,1998.67:p.105-113.
    81.Kuever,J.,F.A.Rainey,and F.Widdel,Family IV.Desulfonatronumaceae fam.nov.Bergey's Manual of Systematic Bacteriology,2nd edn.vol.&emsp14,2005.2.
    82.Abe,F.and K.Horikoshi,The biotechnological potential of piezophiles.Trends in Biotechnology,2001.19(3):p.102-108.
    83.Zavarzin,G.A.,T.N.Zhilina,and V.V.Kevbrin,The alkaliphilic microbial community and its functional diversity.Microbiology,1999.68(5):p.579-599.
    84.Krulwich,T.A.and A.A.Guffanti,Proton-coupled bioenergetic processes in extremely alkaliphilic bacteria.Journal of Bioenergetics and Biomembranes,1992.24(6):p.587-599.
    85.Anderson,A.W.,H.C.Nordan,R.F.Cain,G.Parrish,and D.Duggan,Studies on a radio-resistant micrococcus.I.Isolation,morphology,cultural characteristics,and resistance to gamma radiation.Food Technol,1956.10(3):p.575-578.
    86.Makarova,K.S.,L.Aravind,Y.I.Wolf,R.L.Tatusov,K.W.Minton,E.V.Koonin,and M.J.Daly,Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics.Microbiology and Molecular Biology Reviews,2001.65(1):p.44-79.
    87.Gancarz,A.J.,U-Pb age(2,05.10 9 years)of the Oklo uranium deposit.Proceedings,Les reacteurs de fission naturels:Vienna,1978:p.513-520.
    88.Mattimore,V.and J.R.Battista,Radioresistance of Deinoeoccus radiodurans:functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation.J Bacteriol,1996.178(3):p.633-7.
    89.Cox,M.M.and J.R.Battista,Deinococcus radiodurans-the consummate survivor.Nat Rev Microbiol,2005.3(11):p.882-92.
    90.Sghaier,H.,I.Narumi,K.Satoh,H.Ohba,and H.Mitomo,Problems with the current deinococcal hypothesis:an alternative theory.Theory Biosei,2007.126(1):p.43-5.
    91.Hastings,J.W.,W.H.Holzapfel,and J.G.Niemand,Radiation resistance of laetobacilli isolated from radurized meat relative to growth and environment Appl.Environ.Microbiol,1986.52(4).
    92.Lacroix,M.and R.Lafortune,Combined effects of gamma irradiation and modified atmosphere packaging on bacterial resistance in grated carrots(Daucus carota).Radiation Physics and Chemistry,2004.71(1-2):p.79-82.
    93.De Champs,C.,S.Le Seaux,J.J.Dubost,S.Boisgard,B.Sauvezie,and J.Sirot,Isolation of Pantoea agglomerans in two cases of septic monoarthritis after plant thorn and wood sliver injuries.Journal of Clinical Microbiology,2000.38(1):p.460-461.
    94.Albuquerque,L.,C.Simoes,M.F.Nobre,N.M.Pino,J.R.Battista,M.T.Silva,F.A.Rainey,and M.S.da Costa,Truepera radiovictrix gen.nov.,sp.nov.,a new radiation resistant species and the proposal of Trueperaeeae faro.nov.FEMS Microbiology Letters,2005.247(2):p.161-169.
    95.Anellis,A.,D.Berkowitz,and D.Kemper,Comparative resistance of non-sporogenic bacteria to low-temperature gamma irradiation.Applied microbiology,1973.25:p.517-523.
    96.Billi,D.,E.I.Friedmann,K.G Hofer,M.G.Caiola,and R.Ocampo-Friedmann,Ionizing-radiation resistance in the desiccation-tolerant cyanobacterium Chroococcidiopsis.Appl Environ Microbiol,2000.66(4):p.1489-1492.
    97.Saffary,R.,R.Nandakumar,D.Spencer,F.T.Robb,J.M.Davila,M.Swartz,L.Ofman,R.J.Thomas,and J.DiRuggiero,Microbial survival of space vacuum and extreme ultraviolet irradiation:strain isolation and analysis during a rocket flight.FEMS Microbiol.Lett,2002.215(1):p.163-168.
    98.Hader,D.P.,Effects of solar UV-B radiation on aquatic ecosystems.Advances in Space Research,2000.26(12):p.2029-2040.
    99.Wittich,R.M,H.Wilkes,V.Sinnwell,W.Francke,and P.Fortnagel,Metabolism of dibenzo-p-dioxin by Sphingomonas sp.strain RW1.Applied and Environmental Microbiology,1992.58(3):p.1005.
    100.Blaustein,A.R.,P.D.Hoffman,D.G.Hokit,J.M.Kiesecker,S.C.Walls,and J.B.Hays,UV repair and resistance to solar UV-B in amphibian eggs:a link to population declines? Proc Natl Aead Sci USA,1994.91(5):p.1791-5.
    101.Rainey,F.A.,K.Ray,M.Ferreira,B.Z.Gatz,M.F,Nobre,D.Bagaley,B.A.Rash,M.J.Park,AM.Earl,and N.C.Shank,Extensive diversity of ionizing-radiation-resistant bacteria recovered from Sonoran Desert soil and description of nine new species of the genus Deinococcus obtained from a single soil sample.Appl Environ Mierobiol,2005.71(9):p.5225-35.
    102.Levin-Zaidman,S.,J.Englander,E.Shimoni,A.K.Sharma,K.W.Minton,and A.Minsky,Ringlike structure of the Deinococcus radiodurans genome: a key to radioresistance? Science, 2003. 299(5604): p. 254-6.
    103. Zimmerman, J.M. and J.R. Battista, A ring-like nucleoid is not necessary for radioresistance in the Deinococcaceae. BMC Microbiol, 2005. 5(1): p. 17.
    104. Gao, G., H. Lu, L. Yin, and Y. Hua, Ring-like nucleoid does not play a key role in radioresistance of Deinococcus radiodurans. Sci China C Life Sci, 2007. 50(4): p. 525-9.
    105. Daly, M.J. and K.W. Minton, Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J Bacteriol, 1995. 177(19): p. 5495-505.
    106. Battista, J.R., Against all odds: the survival strategies of Deinococcus radiodurans. Annu Rev Microbiol, 1997. 51:p. 203-24.
    107. Earl, A.M., S.K. Rankin, K.P. Kim, O.N. Lamendola, and J.R. Battista, Genetic evidence that the uvsE gene product of Deinococcus radiodurans Rl is a UV damage endonuclease. J Bacteriol 2002. 184(4): p. 1003-9.
    108. Zahradka, K., D. Slade, A. Bailone, S. Sommer, D. Averbeck, M. Petranovic, A.B. Lindner, and M. Radman, Reassembly of shattered chromosomes in Deinococcus radiodurans. Nature, 2006. 443(7111): p. 569-73.
    109. Kim, J.I. and M.M. Cox, The RecA proteins of Deinococcus radiodurans and Escherichia coli promote DNA strand exchange via inverse pathways. Proc Natl Acad Sci U S A, 2002. 99(12): p. 7917-21.
    110. Kim, J.I., A.K. Sharma, S.N. Abbott, E.A. Wood, D.W. Dwyer, A. Jambura, K.W. Minton, R.B. Inman, M.J. Daly, and M.M. Cox, RecA Protein from the extremely radioresistant bacterium Deinococcus radiodurans: expression, purification, and characterization. J Bacteriol, 2002. 184(6): p. 1649-60.
    111. Song, D., H. Li, J. Wang, J. Yao, and Z. Yu, [The effect of N+ implantation on SOD activity of Deinococcus radiodurans and induction of Mn-SOD], Wei Sheng Wu Xue Bao, 1999. 39(4): p. 362-6.
    112. Daly, M.J., E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, M. Zhai, R.D. Leapman, B. Lai, B. Ravel, S.M. Li, K.M. Kemner, and J.K. Fredrickson, Protein oxidation implicated as the primary determinant of bacterial radioresistance. P LoS Biol, 2007. 5(4): p. e92.
    113. Tian, B., Z. Xu, Z. Sun, J. Lin, and Y. Hua, Evaluation of the antioxidant effects of carotenoids from Deinococcus radiodurans through targeted mutagenesis, chemiluminescence, and DNA damage analyses. Biochim Biophys Acta, 2007. 1770(6): p. 902-11.
    114. Tian, B., Y. Wu, D. Sheng, Z. Zheng, G. Gao, and Y. Hua, Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans. Luminescence, 2004. 19(2): p. 78-84.
    115. Ghosal, D., M.V. Omelchenko, E.K. Gaidamakova, V.Y. Matrosova, A. Vasilenko, A. Venkateswaran, M. Zhai, H.M. Kostandarithes, H. Brim, and K.S. Makarova, How radiation kills cells: survival of Deinococcus radiodurans and Shewanella oneidensis under oxidative stress. FEMS Microbiol. Rev, 2005. 29: p. 361-375.
    116. Pikuta, E.V., R.B. Hoover, A.K. Bej, D. Marsic, W.B. Whitman, P.E. Krader, and J. Tang, Trichococcus patagoniensis sp. nov., a facultative anaerobe that grows at-5 {degrees} C, isolated from penguin guano in Chilean Patagonia. Int J Syst Evol Microbiol, 2006. 56(Pt 9): p. 2055-62.
    117. Potera, C., What is radiation's true target? Environ Health Perspect, 2007. 115(8): p. A402.
    118. Murray, R.G.E. and C.F. Robinow, Cytological studies of a tetradforming coccus. Vllth International Congress of Microbiology, 1958. 427.
    119. Pavlov, A.K., V.L. Kalinin, A.N. Konstantinov, V.N. Shelegedin, and A.A. Pavlov, Hypothesis Paper. ASTROBIOLOGY, 2006. 6(6).
    120. Pavlov, A., Age of liquid water on Mars and Martian bugs on Earth1! Where to look for Martian life?, in European Geophysical Society December 18, 2003
    121. Diaz, B. and D. Schulze-Makuch, Microbial Survival Rates of Escherichia coli and Deinococcus radiodurans Under Low Temperature, Low Pressure, and UV-Irradiation Conditions, and Their Relevance to Possible Martian Life. ASTROBIOLOGY, 2006. 6(2).
    122. Morrison, D. Habitable Conditions on the Early Earth. January 24, 2006 [cited.
    123. Ferreira, A.C., M.F. Nobre, E. Moore, F.A. Rainey, J.R. Battista, and M.S. da Costa, Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus. Extremophiles, 1999. 3(4): p. 235-238.
    124. Mileikowsky, C, F.A. Cucinotta, J.W. Wilson, B. Gladman, G Horneck, L. Lindegren, J. Melosh, H. Rickman, M. Valtonen, and J.Q. Zheng, Natural Transfer of Viable Microbes in Space 1. From Mars to Earth and Earth to Mars. Icarus, 2000. 145(2): p. 391-427.
    125. McKay, D.S., J.K. Smith, H.T. Klein, W.S. Moseby, GD. Golden, and D.V. Dell, Search for Past Life on Mars. Science, 1996. 273(16): p. 8.
    126. Levin, G.V., Modern Myths Concerning Life on Mars. Electroneurobiologia, 2006. 14(5): p. 3-25.
    127. Abyzov, S.S., N.S. Duxbury, N.E. Bobin, M. Fukuchi, R.B. Hoover, H. Kanda, I.N. Mitskevich, A.L. Mulyukin, T. Naganuma, and M.N. Poglazova, Super-long anabiosis of ancient microorganisms in ice and terrestrial models for development of methods to search for life on Mars, Europa and other planetary bodies. Advances in Space Research, 2006. 38(6): p. 1191-1197.
    128. Levin, G.V., Analysis of evidence of Mars life, eprint arXiv: 0705.3176,2007.
    129. Radiation, U.N.S.C.o.t.E.o.A., Ionizing Radiation: Sources and Biological Effects. 1982, United Nations Publication, United Nations, New York.: United Nations.
    130. White, O., J.A. Eisen, J.F. Heidelberg, E.K. Hickey, J.D. Peterson, R.J. Dodson, D.H. Haft, M.L. Gwinn, W.C. Nelson, D.L. Richardson, K.S. Moffat, H. Qin, L. Jiang, W. Pamphile, M. Crosby, M. Shen, J.J. Vamathevan, P. Lam, L. McDonald, T. Utterback, C. Zalewski, K.S. Makarova, L. Aravind, M.J. Daly, K.W. Minton, R.D. Fleischmann, K.A. Ketchum, K.E. Nelson, S. Salzberg, H.O. Smith, J.C. Venter, and C.M. Fraser, Genome sequence of the radioresistant bacterium Deinococcus radiodurans Rl. Science, 1999. 286(5444): p. 1571-7.
    131. Makarova, K.S., L. Aravind, Y.I. Wolf, R.L. Tatusov, K.W. Minton, E.V. Koonin, and M.J. Daly, Genome of the extremely radiation-resistant bacterium Deinococcus radiodurans viewed from the perspective of comparative genomics. Microbiol Mol Biol Rev, 2001. 65(1): p. 44-79.
    132. Hua, Y, I. Narumi, G Gao, B. Tian, K. Satoh, S. Kitayama, and B. Shen, PprI: a general switch responsible for extreme radioresistance of Deinococcus radiodurans. Biochem Biophys Res Commun, 2003. 306(2): p. 354-60.
    133. Makarova, K.S., L. Aravind, M.J. Daly, and E.V. Koonin, Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans. Genetica, 2000. 108(1): p. 25-34.
    134. Makarova, K.S., A.A. Mironov, and M.S. Gelfand, Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol, 2001. 2(4): p. RESEARCH0013.
    135. Makarova, K.S., Y.I. Wolf, O. White, K. Minton, and M.J. Daly, Short repeats and IS elements in the extremely radiation-resistant bacterium Deinococcus radiodurans and comparison to other bacterial species. Res Microbiol, 1999. 150(9-10): p. 711-24.
    1.Darwin,C.,On the origin of species by means of natural selection or the preservation of favoured races in the struggle for life[reprinted 1964].1859:Cambridge(MA):Harvard University.
    2.Fisher,R.A.,The genetical theory of natural selection.Clarendon.1930,Oxford.
    3.Gould,S.J.,Wonderful Life:The Burgess Shale and the Nature of History.1990:WW Norton &Company.
    4.Conway Morris,S.,The Crucible of Creation:Oxford University Press.New York,1998.276.
    5.Password,F.and I.S.I.View,The experimental evolution of specialists,generalists,and the maintenance of diversity.Journal of Evolutionary Biology,2002.15(2):p.173-190.
    6.Bennett,A.F.and R.E.Lenski,Experimental Evolution and Its Role in Evolutionary Physiology.American Zoologist,1999.39(2):p.346-362.
    7.Dykhuizen,D.E.,Experimental Studies of Natural Selection in Bacteria.Annual Review of Ecology and Systematics,1990.21(1):p.373-398.
    8.Bennett,A.F.,Experimental evolution and the Krogh Principle:generating biological novelty for functional and genetic analyses.Physiological and Biochemical Zoology,2003.76:p.1-11.
    9.Gibbs,A.G.,Laboratory selection for the comparative physiologist.Journal of Experimental Biology 1999.202,:p.2709-2718.
    10.Zhong,S.,A.Khodursky,D.E.Dykhuizen,and A.M.Dean,Evolutionary genomics of ecological specialization.Proc Natl AcadSci USA,2004.101(32):p.11719-11724.
    11.Elena,S.F.and R.E.Lenski,Evolution experiments with microorganisms:the dynamics and genetic bases of adaptation.Nature Reviews Genetics,2003.4:p.457-469.
    12.Swallow,J.G.and J.T.Garland,Selection experiments as a tool in evolutionary and comparative physiology:insights into complex traits-An introduction to the symposium.Integrative and Comparative Biology,2005.45:p.387-390.
    13.Elena,S.F.and R.E.Lenski,Evolution experiments with microorganisms:the dynamics and genetic bases of adaptation.Nature Reviews Genetics,2003.4:p.457-469.
    14.Cooper,V.S.and R.E.Lenski,The population genetics of ecological specialization in evolving Escherichia coli populations.Nature,2000.407(6805):p.689-90.
    15.Cooper,V.S.,D.Schneider,M.Blot,and R.E.Lenski,Mechanisms Causing Rapid and Parallel Losses of Ribose Catabolism in Evolving Populations of Escherichia coli B.Journal of Bacteriology,2001.183(9):p.2834.
    16.Schneider,D.,E.Duperchy,E.Coursange,R.E.Lenski,and M.Blot,Long-Term Experimental Evolution in Escherichia coli.Ⅸ.Characterization of Insertion Sequence-Mediated Mutations and Rearrangements.Genetics,2000.156(2):p.477-488.
    17.Wichman,H.A.,Experimental evolution recapitulates natural evolution.Philosophical Transactions:Biological Sciences,2000.355(1403):p.1677-1684.
    18.Fong,S.S.,A.R.Joyce,and B.O.Patsson,Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states.Genome Res.,2005.15(10):p.1365-1372.
    19.Honisch,C.,A.Raghunathan,C.R.Cantor,B.O.Palsson,and D.van den Boom,High-throughput mutation detection underlying adaptive evolution of Escherichia coli-K12.Genome Res.,2004.14(12):p.2495-2502.
    20.Hua,Q.,A.R.Joyce,B.O.Palsson,and S.S.Fong,Metabolic Characterization of Escherichia coli Strains Adapted to Growth on Lactate.Appl.Envir.Microbiol.,2007.73(14):p.4639-4647.
    21.Lenski,R.E.,M.R.Rose,S.C.Simpson,and S.C.Tadler,Long-Term Experimental Evolution in Escherichia coll.I.Adaptation and Divergence During 2,000 Generations.The American Naturalist,1991.138(6):p.1315-1341.
    22.Bennett,A.F.,R.E.Lenski,and J.E.Mittler,Evolutionary Adaptation to Temperature.I.Fitness Responses of Escherichia coil to Changes in its Thermal Environment.Evolution,1992.46(1):p.16-30.
    23.Vasi,F.,M.Travisano,and R.E.Lenski,Long-Term Experimental Evolution in Escherichia coli.Ⅱ.Changes in Life-History Traits During Adaptation to a Seasonal Environment.The American Naturalist,1994.144(3):p.432-456.
    24.Lenski,R.E.and M.Travisano,Dynamics of Adaptation and Diversification:A 10,000-Generation Experiment with Bacterial Populations.Tempo and Mode in Evolution:Genetics and Paleontology 50Years After Simpson,1995.
    25.Pelosi,L.,L.Kuhn,D.Guetta,J.Garin,J.Geiselmann,R.E.Lenski,and D.Schneider,Parallel Changes in Global Protein Profiles During Long-Term Experimental Evolution in Escherichia coli.Genetics,2006.173(4):p.1851-1869.
    26.Woods,R.,D.Schneider,C.L.Winkworth,M.A.Riley,and R.E.Lenski,Tests of parallel molecular evolution in a long-term experiment with Escherichia coli.PNAS,2006.103(24):p.9107-9112.
    27.Lenski,R.E.,M.R.Rose,S.C.Simpson,and S.C.Tadler,Long-term experimental evolution in Escherichia coli.I.Adaptation and divergence during 2,000 generations.American Naturalist,1991.138:p.1315-1341.
    28.Lenski,R.E.,Phenotypic and genomic evolution during a 20,000-generation experiment with the bacterium Escherichia coli.Plant Breeding Reviews,2004.24:p.225-265.
    29.Sleight,S.C.,N.S.Wigginton,and R.E.Lenski,Increased susceptibility to repeated freeze-thaw cycles in Escherichia coli following long-term evolution in a benign environment.BMC Evolutionary Biology,2006.6(1):p.104.
    30.Sleight,S.C.and R.E.Lenski,Evolutionary Adaptation to Freeze-Thaw-Growth Cycles in Escherichia coli.Physiol Biochem Zool,2007.80(4):p.370-85.
    1.Maxam,A.M.and W.Gilbert,A New Method for Sequencing DNA.Proc Natl Acad Sci USA,1977.74(2):p.560-564.
    2.Sanger,F.,G.M.Air,B.G.Barrell,N.L.Brown,A.R.Coulson,C.A.Fiddes,C.A.Hutchison,P.M.Slocombe,and M.Smith,Nucleotide sequence of bacteriophage phi X174 DNA.Nature,1977.265(5596):p.687-695.
    3.Sanger,F.,S,Nicklen,and A.R.Coulson,DNA Sequencing with Chain-Terminating Inhibitors.Proc.Natl.Acad.Sci.USA,1977.74(12):p.5463-5467.
    4.Sanger,F.,A.R.Coulson,B.G.Barrell,A.J.Smith,and B.A.Roe,Cloning in single-stranded bacteriophage as an aid to rapid DNA sequencing.J Mol Biol,1980.143(2):p.161-78.
    5.Collins,F.S.,E.S.Lander,J.Rogers,and R.H.Waterston,Finishing the euchromatic sequence of the human genome.Nature,2004.431(21):p.931-945.
    6.McCarroll,S.A.,T.N,Hadnott,G.H.Perry,P.C.Sabeti,M.C.Zody,J.C.Barrett,S.Dallaire,S.B.Gabriel,C.Lee,and M.J.Daly,International HapMap Consortium Common deletion polymorphisms in the human genome.Nat Genet,2006.38:p.86-92.
    7.Seo,T.S.,X.Bai,D.H.Kim,Q.Meng,S.Shi,H.Ruparel,Z.Li,N.J.Turro,and J.Ju,Four-color DNA sequencing by synthesis on a chip using photocleavable fluorescent nucleotides.Proc Natl Acad Sci USA,2005.102(17):p.5926-5931.
    8.Margulies,M.,M.Egholm,W.E.Altman,S.Attiya,J.S.Bader,L.A.Bemben,J.Berka,M.S.Braverman,Y.J.Chen,and Z.Chen,Genome sequencing in microfabricated high-density picolitre reactors.Nature,2005.437(7057):p.376-380.
    9.Goff,S.A.,D.Ricke,T.H.Lan,G.Presting,R.Wang,M.Dunn,J.Glazebrook,A.Sessions,P.Oeller,and H.Varma,A Draft Sequence of the Rice Genome(Oryza sativa L.ssp.japonica).Science,2002.296(5565):p.92-100.
    10.Wright,S.I.,I.V.Bi,S.G Schroeder,M.Yamasaki,J.F.Doebley,M.D.McMullen,and B.S.Gaut,The Effects of Artificial Selection on the Maize Genome,2005,American Association for the Advancement of Science, p. 1310-1314.
    11. Palmer, L.E., P.D. Rabinowicz, A.L. O'Shaughnessy, V.S. Balija, LU. Nascimento, S. Dike, M. de la Bastide, R.A. Martienssen, and W.R. McCombie, Maize Genome Sequencing by Methylation Filtration. Science, 2003. 302(5653): p. 2115.
    12. Redon, R., S. Ishikawa, K.R. Fitch, L. Feuk, GH. Perry, T.D. Andrews, H. Fiegler, M.H. Shapero, A.R. Carson, and W. Chen, Global variation in copy number in the human genome. Nature, 2006. 444: p. 444-454.
    13. Smith, T.P., R.A. Godtel, and R.T. Lee, PCR-based setup for high-throughput cDNA library sequencing on the ABI 3700 automated DNA sequencer. Biotechniques, 2000. 29(4): p. 698-700.
    14. Sanger, F., A.R. Coulson, GF. Hong, D.F. Hill, and GB. Petersen, Nucleotide sequence of bacteriophage lambda DNA. J Mol Biol, 1982. 162: p. 729-773.
    15. Ward, D.M., Evaluation and validation of the ABI 3700, ABI 3100, and the MegaBACE 1000 capillary array electrophoresis instruments for use with short tandem repeat microsatellite typing in a forensic environment Electrophoresis, 2004. 25: p. 2227-2241.
    16. Heiner, C.R., K..L. Hunkapiller, S.M. Chen, J.I. Glass, and E.Y. Chen, Sequencing Multimegabase-Template DNA with BigDye Terminator Chemistry. Genome Research.
    17. Rosenblum, B.B., LG Lee, S.L Spurgeon, S.H. Khan, S.M. Menchen, C.R. Heiner, and S.M. Chen, New dye-labeled terminators for improved DNA sequencing patterns. Nucleic Acids Research. 25(22): p. 4500-4504.
    18. Ahmadian, A., M. Ehn, and S. Hober, Pyrosequencing: history, biochemistry and future. Clin Chim Acta, 2006. 363(1-2): p. 83-94.
    19. Hyman, E.D., A new method of sequencing DNA. Analytical biochemistry, 1988.174(2): p. 423-436.
    20. Ronaghi, M., S. Karamohamed, B. Pettersson, M. Uhlen, and P. Nyren, Real-Time DNA Sequencing Using Detection of Pyrophosphate Release. Analytical Biochemistry, 1996. 242(1): p. 84-89.
    21. Ronaghi, M. and M. Uhl?n, DNA SEQUENCING: A Sequencing Method Based on Real-Time Pyrophosphate. Science, 1998. 281(5375): p. 363.
    22. Brenner, S., Compositions for sorting polynucleotides. 2007, Google Patents.
    23. Hughes, S. and J.L. Jones, The use of multiple displacement amplified DNA as a control for methylation specific PCR, pyrosequencing, bisulfite sequencing and methylation-sensitive restriction enzyme PCR. BMC Mol Biol, 2007. 8: p. 91.
    24. Marcy, Y, T. Ishoey, R.S. Lasken, T.B. Stockwell, B.P. Walenz, A.L. Halpern, K.Y. Beeson, S.M. Goldberg, and S.R. Quake, Nanoliter reactors improve multiple displacement amplification of genomes from single cells. PLoS Genet, 2007. 3(9): p. 1702-8.
    25. Mashayekhi, F. and M. Ronaghi, Analysis of read length limiting factors in Pyrosequencing chemistry. Anal Biochem, 2007. 363(2): p. 275-87.
    26. Ronaghi, M., Improved performance of pyrosequencing using single-stranded DNA-binding protein. Anal Biochem, 2000. 286(2): p. 282-8.
    27. Ching, A. and A. Rafalski, Rapid genetic mapping of ESTs using SNP pyrosequencing and indel analysis. Cell Mol Biol Lett, 2002. 7(2B): p. 803-10.
    28. Gharizadeh, B., T. Nordstrom, A. Ahmadian, M. Ronaghi, and P. Nyren, Long-read pyrosequencing using pure 2'-deoxyadenosine-5'-O'-(1-thiotriphosphate) Sp-isomer. Anal Biochem, 2002. 301(1): p. 82-90.
    29. Bentley, L, K. Nakabayashi, D. Monk, C. Beechey, J. Peters, Z. Birjandi, F.E. Khayat, M. Patel, M.A. Preece, P. Stanier, S.W. Scherer, and GE. Moore, The imprinted region on human chromosome 7q32 extends to the carboxypeptidase A gene cluster: an imprinted candidate for Silver-Russell syndrome. J Med Genet, 2003. 40(4): p. 249-56.
    30. Rahim, A., C. Coutelle, and R. Harbottle, High-throughput Pyrosequencing of a phage display library for the identification of enriched target-specific peptides. Biotechniques, 2003. 35(2): p. 317-20,322, 324.
    31. Agah, A., M. Aghajan, F. Mashayekhi, S. Amini, R.W. Davis, J.D. Plummer, M. Ronaghi, and P.B. Griffin, A multi-enzyme model for Pyrosequencing. Nucleic Acids Res, 2004. 32(21): p. e166.
    32. Dupont, J.M., J. Tost, H. Jammes, and I.G Gut, De novo quantitative bisulfite sequencing using the pyrosequencing technology. Anal Biochem, 2004. 333(1): p. 119-27.
    33. Ehn, M., N. Nourizad, K. Bergstrom, A. Ahmadian, P. N'yren, J. Lundeberg, and S. Hober, Toward pyrosequencing on surface-attached genetic material by use of DNA-binding luciferase fusion proteins. Anal Biochem, 2004. 329(1): p. 11 -20.
    34. Eriksson, J., B. Gharizadeh, T. Nordstrom, and P. Nyren, Pyrosequencing trade mark technology at elevated temperature. Electrophoresis, 2004. 25(1): p. 20-7.
    35. Lindqvist, M., S. Haglund, S. Aimer, C. Peterson, J. Taipalensu, E. Hertervig, E. Lyrenas, and P. Soderkvist, Identification of two novel sequence variants affecting thiopurine methyltransferase enzyme activity. Pharmacogenetics, 2004. 14(4): p. 261-5.
    36. Yang, A.S., M.R. Estecio, K. Doshi, Y. Kondo, E.H. Tajara, and J.P. Issa, A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res, 2004. 32(3): p. e38.
    37. Jin, Q., Z. Yuan, J. Xu, Y. Wang, Y. Shen, W. Lu, J. Wang, H. Liu, J. Yang, and F. Yang, Genome sequence of Shigella flexneri 2a: insights into pathogenicity through comparison with genomes of Escherichia coli K12 and 0157. Nucleic Acids Research, 2002. 30(20): p. 4432-4441.
    38. Yang, F., J. Yang, X. Zhang, L. Chen, Y. Jiang, Y. Yan, X. Tang, J. Wang, Z. Xiong, and J. Dong, Genome dynamics and diversity of Shigella species, the etiologic agents of bacillary dysentery. Nucleic Acids Research, 2005. 33(19): p. 6445-6458.
    39. Yang, J., J. Wang, Z.J. Yao, Q. Jin, Y. Shen, and R. Chen, GenomeComp: a visualization tool for microbial genome comparison. Journal of Microbiological Methods, 2003. 54(3): p. 423-426.
    40. Lynch, M. and J.S. Conery, The Evolutionary Fate and Consequences of Duplicate Genes. Science, 2000. 290(5494): p. 1151-1155.
    41. Kunin, V. and C.A. Ouzounis, The Balance of Driving Forces During Genome Evolution in Prokaryotes. Genome Research, 2003. 13: p. 1589-1594.
    42. Perutka, J., W. Wang, D. Goerlitz, and A.M. Lambowitz, Use of Computer-designed Group II Introns to Disrupt Escherichia coli DExH/D-box Protein and DNA Helicase Genes. Journal of Molecular Biology, 2004. 336(2): p. 421-439.
    43. Postow, L., C.D. Hardy, J. Arsuaga, and N.R. Cozzarelli, Topological domain structure of the Escherichia coli chromosome. Genes & Development, 2004. 18(14): p. 1766.
    44. Sasaki, ML, T. Fujiyoshi, K. Shimada, and Y. Takagi, Fine structure of the recB and recC gene region of Escherichia coli. Biochem Biophys Res Commun, 1982. 109(2): p. 414-22.
    45. Dallmann, H.G, R.L. Thimmig, and C.S. McHenry, DnaX Complex of Escherichia coli DNA Polymerase III Holoenzyme. Journal of Biological Chemistry, 2005. 280(9): p. 7890-7900.
    46. Yamagata, A.. Y. Kakuta, R. Masui, and K. Fukuyama, The crystal structure of exonuclease RecJ bound to Mn 2 ion suggests how its characteristic motifs are involved in exonuclease activity. Proc Natl Acad Sct U S A, 2002. 99(9): p. 5908-5912.
    47. Butland, G., J.M. Peregrin-Alvarez, J. Li, W. Yang, X. Yang, V. Canadien, A. Starostine, D. Richards, B. Beattie, and N. Krogan, Interaction network containing conserved and essential protein complexes in Escherichia coli.Nature,2005.433(7025):p.531-537.
    48.Kellis,M.,B.W.Birren,and E.S.Lander,Proof and evolutionary analysis of ancient genome duplication in the yeast Saccharomyces cerevisiae.Nature,2004.428(6983):p.617-624.
    49.Chapman,B.A.,J.E.Bowers,S.R.Schulze,and A.H.Paterson,A comparative phylogenetic approach for dating whole genome duplication events.Bioinformatics,2004.20(2):p.180-185.
    50.Humayun,M.Z.,SOS and Mayday:multiple inducible mutagenic pathways in Escherichia coli.Molecular Microbiology,1998.30(5):p.905-910.
    51.Bianco,P.R.,L.R.Brewer,M.Corzett,R.Balhom,Y.Yeh,S.C.Kowalczykowski,and R.J.Baskin,Processive translocation and DNA unwinding by individual RecBCD enzyme molecules.Nature,2001.409(6818):p.374-8.
    52.White,O.,J.A.Eisen,J.F.Heidelberg,E.K.Hickey,J.D.Peterson,R.J.Dodson,D.H.Haft,M.L.Gwinn,W.C.Nelson,and D.L.Richardson,Genome Sequence of the Radioresistant Bacterium Deinococcus radiodurans R1.Science,1999.286(5444):p.1571.
    53.Jansen,R.,J.D.A.Embden,W.Gaastra,and L.M.Schouls,Identification of genes that are associated with DNA repeats in prokaryotes.Molecular Microbiology,2002.43(6):p.1565-1575.
    54.Ellington,M.J.,D.M.Livermore,T.L.Pitt,L.M.C.Hall,and N.Woodford,Development of extended-spectrum activity in TEM-lactamases in hyper-mutable,mutS Escherichia coli.Clinical Microbiology & Infection,2006.12(8):p.800-803.
    55.Arber,W.,Genetic variation:molecular mechanisms and impact on microbial evolution.FEMS Microbiology Reviews,2000.24(1):p.1-7.
    56.Trevors,J.T.,Evolution of bacterial genomes.Antonie van Leeuwenhoek,1997.71(3):p.265-270.
    57.Levin,B.R.and C.T.Bergstrom,Bacteria are different:observations,interpretations,speculations,and opinions about the mechanisms of adaptive evolution in prokaryotes.Proc Natl Acad Sci US A,2000.97(13):p.6981-5.
    58.Kolsto,A.B.,Dynamic bacterial genome organization.Molecular Microbiology,1997.24(2):p.241-248.
    59.Dybvig,K.,DNA rearrangements and phenotypic switching in prokaryotes.Mol Microbiol,1993.10(3):p.465-71.
    60.Tillier,E.R.M.and R.A.Collins,Genome rearrangement by replication-directed translocation.Nature Genetics,2000.26:p.195-197.
    61.Hughes,D.,Evaluating genome dynamics:the constraints on rearrangements within bacterial genomes.Genome Biol,2000.1(6):p.1-0006.8.
    62.Gerrish,P.J.and R.E.Lenski,The fate of competing beneficial mutations in an asexual population.Genetica,1998.102:p.127-144.
    63.Hall,B.G.,Adaptive mutagenesis:a process that generates almost exclusively beneficial mutations.Genetica,1998.102:p.109-125.
    64.Fraser,C.M.,J.Eisen,R.D.Fleischmann,K.A.Ketchum,and S.Peterson,Comparative genomics and understanding of microbial biology.Emerg Infect Dis,2000.6(5):p.505-12.
    65.Lawrence,J.G.,Gene transfer,speciation,and the evolution of bacterial genomes.Current Opinion in Microbiology,1999.2(5):p.519-523.
    66.Mira,A.,H.Ochman,and N.A.Moran,Deletional bias and the evolution of bacterial genomes.Trends in Genetics,2001.17(10):p.589-596.
    67.Andersson,S.G.E.and C.G.Kurland,Reductive evolution of resident genomes.Trends in Microbiology,1998.6(7):p.263-268.
    1.Wasinger,V.C.,S.J.Cordwell,A.Cerpa-Poljak,J.X.Yan,A.A.Gooley,M.R.Wilkins,M.W.Duncan,R.Harris,K.L.Williams,and I.Humphery-Smith,Progress with gene-product mapping of the Mollicutes:Mycoplasma genitalium.Electrophoresis,1995.16(7):p.1090-4.
    2.Pandey,A.and M.Mann,Proteomics to study genes and genomes.Nature,2000.405(6788):p.837-846.
    3.Shevchenko,A.,M.Wilm,O.Vorm,and M.Mann,Mass Spectrometric Sequencing of Proteins from Silver-Stained Polyacrylamide Gels.Protein Sci,1995.3:p.2435-2446.
    4.Aebersold,R.and M.Mann,Mass spectrometry-based proteomics.Nature,2003.422:p.198-207.
    5.O'Farrell,P.H.,High resolution two-dimensional electrophoresis of proteins.Journal of Biological Chemistry,1975.250(10):p.4007-4021.
    6.O'Farrell,P.Z.,H.M.Goodman,and P.H.O'Farrell,High resolution two-dimensional electrophoresis of basic as well as acidic proteins.Cell,1977.12(4):p.1133-1141.
    7.Lubman,D.M.,M.T.Kachman,H.Wang,S.Gong,F.Yan,R.L.Hamler,K.A.O'Neil,K.Zhu,N.S.Buchanan,and T.J.Barder,Two-dimensional liquid separations-mass mapping of proteins from human cancer cell lysates.J Chromatogr B A nalyt Technol biomed Life Sci,2002.782(1-2):p.183-196.
    8.Simonian,M.H.and E.Betgovargez,Proteome Analysis of Human Plasma with the ProteomeLab PF 2D System.Beckman Coulter,Inc.Application Information Bulletin A-1963A,2003.
    9.Wang,H.and S.Hanash,Multi-dimensional liquid phase based separations in proteomics.J Chromatogr B Analyt Technol biomed Life Sci,2003.787(1):p.11-18.
    10.Stoll,D.R.,X.Li,X.Wang,P.W.Carr,S.E.Porter,and S.C.Rutan,Fast,comprehensive two-dimensional liquid chromatography.J Chromatogr A,2007.1168(1-2):p.3-43;discussion 2.
    11.Lubman,D.M.,A protein molecular weight map of ES2 clear cell ovarian carcinoma cells using a two-dimensional liquid separations/mass mapping technique.Electrophoresis,2002.23:p.3168-3181.
    12.Dugo,P.,F.Cacciola,T.Kumm,G.Dugo,and L.Mondello,Comprehensive multidimensional liquid chromatography:Theory and applications.J ChromatogrA,2008.1184(1-2):p.353-368.
    13.Francois,I.,A.de Villiers,B.Tienpont,F.David,and P.Sandra,Comprehensive two-dimensional liquid chromatography applying two parallel columns in the second dimension.J Chromatogr A,2008.1178(1-2):p.33-42.
    14.Chahal,F.C.,J.Entwistle,N.Glover,and G.C.MacDonald,A targeted proteomic approach for the identification of tumor-associated membrane antigens using the ProteomeLab PF-2D in tandem with mass spectrometry.Biochemical and Biophysical Research Communications,2006.348(3):p.1055-1062.
    15.Chen,E.I.,J.Hewel,B.Felding-Habermann,and J.R.Yates,Large Scale Protein Profiling by Combination of Protein Fractionation and Multidimensional Protein Identification Technology (MudPIT)~*.Molecular & Cellular Proteomies,2006.5(1):p.53-56.
    16.Cu,M.,M.H.Simonian,E.Betgovargez,W.K.Roby,and J.G Threadgill,Using the Biomek FX Laboratory Automation Workstation to Interface the ProteomeLab PF 2D System with the MALDI-TOF MS for Multidimensional Proteome Profiling.Beckman Coulter.Inc.Application Information Bulletin A-1963A,2004.
    17.Kachman,M.T.,H.Wang,D.R.Schwartz,K.R.Cbo,and D.M.Lubman,A 2-D Liquid Separations/Mass Mapping Method for Interlysate Comparison of Ovarian Cancers.2000.p.679-686.
    18.Pol,J.and T.Hyotylainen,Comprehensive two-dimensional liquid chromatography coupled with mass spectrometry.Anal Bioanal Chem,2008.
    19.Linke,T.,A.C.Ross,and E.H.Harrison,Proteomic analysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.Journal of Chromatography 2006.1123(2):p.160-169.
    20.Smith,P.K.,R.I.Krohn,G.T.Hermanson,A.K.Mallia,F.H.Gartner,M.D.Provenzano,E.K.Fujimoto,N.M.Gorke,B.J.Olson,and D.C.Klenk,Measurement of protein content using bicinchonic acid.Analytical Biochemistry,1985.150:p.76-85.
    21.Linke,T.,A.C.Ross,and E.H.Harrison,Proteomic analysis of rat plasma by two-dimensional liquid chromatography and matrix-assisted laser desorption ionization time-of-flight mass spectrometry.Journal of Chromatography,2006.1123(2):p.160-169.
    22.Park,K.H.,J.J.LiPuma,and D.M.Lubman,Comparative proteomic analysis of B.cenocepacia using two-dimensional liquid separations coupled with mass spectrometry.Analytica Chimica Acta,2007.592(1):p.91-100.
    23.Kowalczykowski,S.C.,D.A.Dixon,A.K.Eggleston,S.D.Lauder,and W.M.Rehrauer,Biochemistry of homologous recombination in Escherichia coll.Microbiological reviews,1994.58(3):p.401-465.
    24.Moolenaar,G.F.,C.A.van Sluis,C.Backendorf,and R van de Putte,Regulation of the Escherichia cali excision repair gene uvrC.Overlap between the uvrC structural gene and the region coding for a 24 kD protein.Nucleic Acids Research,1987.15(10):p.4273-4306.
    25.Verhoeven,E.E.A.,M.van Kesteren,G.F.Moolenaar,R.Visse,and N.Goosen,Catalytic Sites for 3'and 5'Incision of Escherichia coil Nucleotide Excision Repair Are Both Located in UvrC.Journal of Biological Chemistry,2000.275(7):p.5120-5123.
    26.Ali,J.A.and T.M.Lohman,Kinetic Measurement of the Step Size of DNA Unwinding by Escherichia cali UvrD Helicase.Science,1997.275(5298):p.377.
    27.Voloshin,O.N.,F.Vanevski,P.P.Khil,and R.D.Camerini-Otero,Characterization of the DNA Damage-inducible Helicase DinG from Escherichia coli~*.Journal of Biological Chemistry,2003.278(30):p.28284-28293.
    1.Daubaras,D.and A.M.Chakrabarty,The environment,microbes and bioremediation:microbial activities modulated by the environment.Biodegradation,1992.3(2):p.125-135.
    2.Allen,E.E.and J.F.Banfield,Community genomics in microbial ecology and evolution.Nature Reviews Microbiology,2005.3(6):p.489-498.
    3.Elena,S.F.and R.E.Lenski,Evolution experiments with microorganisms:The dynamics and genetic bases of adaptation.Nature Reviews:Genetics,2003.4(6):p.457-469.
    4.Sancar,A.,DNA Excision Repair.Annual Review of Biochemistry,1996.65(1):p.43-81.
    5.Samson,L.and J.Cairns,A new pathway for DNA repair in Escherichia coli.Nature,1977.267(5608):p.281-283.
    6.Schaaper,R.M.,Base selection,proofreading,and mismatch repair during DNA replication in Escherichia coli.Journal of Biological Chemistry,1993.268(32):p.23762-23765.
    7.Zell,R.and H.J.Fritz,DNA mismatch-repair in Escherichia coli counteracting the hydrolytic deamination of 5-methyl-cytosine residues.EMBO Journal,1987.6(6):p.1809-1815.
    8.Kuzminov,A.,Recombinational Repair of DNA Damage in Escherichia coli and Bacteriophage lambda.Microbiology and Molecular Biology Reviews,1999.63(4):p.751.
    9.Aravind,L.,D.R.Walker,and E.V.Koonin,Conserved domains in DNA repair proteins and evolution of repair systems.Nucleic Acids Research 27(5):p.1223-1242.
    10.Tian,B.,Y.Wu,D.Sheng,Z.Zheng,G.Gao,and Y.Hua,Chemiluminescence assay for reactive oxygen species scavenging activities and inhibition on oxidative damage of DNA in Deinococcus radiodurans.Luminescence,2004.19(2):p.78-84.
    11.Markillie,L.M.,S.M Varnum,R Hradecky,and K.K.Wong,Targeted Mutagenesis by Duplication Insertion in the Radioresistant Bacterium Deinococcus radiodurans:Radiation Sensitivities of Catalase (katA)and Superoxide Dismutase(sodA)Mutants.Journal of Bacteriology,1999.181(2):p.666.
    12.Carlioz,A.and D.Touati,Isolation of superoxide dismutase mutants in Escherichia coli:is superoxide dismutase necessary for aerobic life? EMBO J,,1986.5(3):p.623-30.
    13.References,S.,S.Farr,R.D'Ari,and D.Touati,Oxygen-dependent mutagenesis in Escherichia coli lacking superoxide dismutase.Proc Natl Acad Sci US A,1986.83(21):p.8268-8272.
    14.Raju,S.V.Y.,L.A.Barouch,and J.M.Hare,Nitric Oxide and Oxidative Stress in Cardiovascular Aging.Science,2005.21.
    15.Sohal,R.S.and R.Weindruch,Oxidative stress,caloric restriction,and aging.Science,1996.273(5271):p.59-63.
    16.Finkel,T.and N.J.Holbrook,Oxidants,oxidative stress and the biology of ageing.Nature,2000.408:p.239-247.
    17.Chevion,M.,E.Berenshtein,and E.R.Stadtman,Human studies related to protein oxidation:protein carbonyl content as a marker of damage.Free Radic Res,,2000.33:p.S99-108.
    18.Stadtman,E.R.and R.L.Levine,Protein Oxidation.Annals of the New York Academy of Sciences,2000.899(1):p.191.
    19.Dalle-Donne,I.,R.Rossi,D.Giustarini,A.Milzani,and R.Colombo,Protein carbonyl groups as biomarkers of oxidative stress.Clinica Chimica Acta,2003.329(1-2):p.23-38.
    20.Staal,F.J.,M.T.Anderson,G.E.Staal,L.A.Herzenberg,C.Gitler,and L.A.Herzenberg,Redox regulation of signal transduction:tyrosine phosphorylation and calcium influx.Proc Natl Acad Sci US A,1994.91(9):p.3619-3622.
    21.Nakamura,K.,T Hori,N.Sato,K.Sugie,T.Kawakami,and J.Yodoi,Redox regulation of a src family protein tyrosine kinase p561ck in T cells.Oncogene,1993.8(11):p.3133-9.
    22.Sun,X.,P.Majumder,H.Shioya,F.Wu,S.Kumar,R.Weichselbaum,S.Kharbanda,and D.Kufe,Activation of the Cytoplasmic c-Abl Yyrosine Kinase by Reactive Oxygen Species.Journal of Biological Chemistry,2000.275(23):p.17237-17240.
    23.Adams,S.,P.Green,R.Claxton,S.Simcox,M.V.Williams,K.Walsh,and C.Leeuwenburgh,Reactive carbonyl formation by oxidative and non-oxidative pathways.Front Biosci,2001.6:p.A17-24.
    24.Morte,M.I.,A.M.Rodrigues,D.Soares,A.S.Rodrigues,S.Gamboa,and J.Ramalho-Santos,The quantification of lipid and protein oxidation in stallion spermatozoa and seminal plasma:Seasonal distinctions and correlations with DNA strand breaks,classical seminal parameters and stallion fertility.Anita Reprod sci,2007.
    25.Wong,K.K.,S.Chang,S.R.Weiler,S.Ganesan,J.Chaudhuri,C.Zhu,S.E.Artandi,K.L.Rudolph,G.J.Gottlieb,and L.Chin,Telomere dysfunction impairs DNA repair and enhances sensitivity to ionizing radiation.Nature Genetics,2000.26:p.85-88.
    26.Lombard,D.B.,K.E Chua,R.Mostoslavsky,S.Franco,M.Gostissa,and EW.Alt,DNA Repair,Genome Stability,and Aging.Cell,2005.120(4):p.497-512.
    27.Cox,M.M.,Recombinational DNA Repair in Bacteria and the RecA Protein.Progress in Nucleic Acid Research and Molecular Biology,1999.
    28.Cox,M.M.,Recombinational DNA repair of damaged replication forks in Escherichia coli:Questions.Annual Review of Genetics,2001.35(1):p.53-82.
    29.Fridovich,I.,The biology of oxygen radicals.Science,1978.201(4359):p.875-880.
    30.Kikugawa,K.,Involvement of free radicals in the formation of heterocyclic amines and prevention by antioxidants.Cancer Letters,1999.143(2):p.123-126.
    31.Azzam,E.I.,S.M.de Toledo,and J.B.Little,Oxidative metabolism,gap junctions and the ionizing radiation-induced bystander effect.Oncogene,2003.22:p.7050-7057.
    32.Brunelle,J.K.,E.L.Bell,N.M.Quesada,K.Vercauteren,V.Tiranti,M.Zeviani,R.C.Scarpulla,and N.S.Chandel,Oxygen sensing requires mitochondrial ROS but not oxidative phosphorylation.Cell Metabolism,2005.1(6):p.409-414.
    33.Lee,J.H.,I.Y.Choi,I.S.Kil,S.Y.Kim,E.S.Yang,and J.W.Park,Protective role of superoxide dismutases against ionizing radiation in yeast.BBA-General Subjects,2001.1526(2):p.191-198.
    34.Repine,J.E.,R.B.Fox,and E.M.Berger,Hydrogen peroxide kills Staphylococcus aureus by reacting with staphylococcal iron to form hydroxyl radical.Journal of Biological Chemistry,1981.256(14):p.7094-7096.
    35.Levine,R.L.,D.Garland,C.N.Oliver,A.Amici,I.Climent,A.G.Lenz,B.W.Ahn,S.Shaltiel,and E.R.Stadtman,Determination of carbonyl content in oxidatively modified proteins.Methods Enzymol,1990.186:p.464-78.
    36.Levine,R.L.,J.A.Williams,E.R.Stadtman,and E.Shacter,Carbonyl assays for determination of oxidatively modified proteins.Methods Enzymol,1994.233:p.346-57.
    37.Daly,M.J.,E.K.Gaidamakova,V.Y.Matrosova,A.Vasilenko,M.Zhai,R.D.keapman,B.Lai,B.Ravel,S.M.Li,K.M.Kemner,and J.K.Fredrickson,Protein oxidation implicated as the primary determinant of bacterial radioresistance.PLoS Biol,2007.5(4):p.e92.
    38.Daly,M.J.,Modulating radiation resistance:Insights based on defenses against reactive oxygen species in the radioresistant bacterium Deinococcus radiodurans.Clin Lab Med,2006.26(2):p.491-504,.
    1.Sale,J.E.,Radiation resistance:resurrection by recombination.Curr Biol,2007.17(1):p.R12-4.
    2.Zahradka,K.,D.Slade,A.Bailone,S.Sommer,D.Averbeck,M.Petranovic,A.B.Lindner,and M.Radman,Reassembly of shattered chromosomes in Deinococcus radiodurans.Nature,2006.443(7111):p.569-73.
    3.White,O.,J.A.Eisen,J.E Heidelberg,E.K.Hickey,J.D.Peterson,R.J.Dodson,D.H.Haft,M.L.Gwinn,W.C.Nelson,D.L.Richardson,K.S.Moffat,H.Qin,L.Jiang,W.Pamphile,M.Crosby,M.Shen,J.J.Vamathevan,P Lam,L.McDonald,T.Utterback,C.Zalewski,K.S.Makarova,L.Aravind,M.J.Daly,K.W.Minton,R.D.Fleischmann,K.A.Ketchum,K.E.Nelson,S.Salzberg,H.O.Smith,J.C.Venter,and C.M.Fraser,Genome sequence of the radioresistant bacterium Deinococcus radiodurans RI.Science,1999.286(5444):p.1571-7.
    4.Xu,G,L.Wang,H.Chen,H.Lu,N.Ying,B.Tian,and Y.Hua,RecO is essential for DNA damage repair in Deinococcus radiodurans.J Bacteriol,2008.190(7):p.2624-8.
    5.Wang,L.,G.Xu,H.Chen,Y.Zhao,N.Xu,B.Tian,and Y.Hua,DrRRA:a novel response regulator essential for the extreme radioresistance of Deinococcus radiodurans.Mol Microbiol,2008.67(6):p.1211-22.
    6.Wagner,J.R.,J.Zhang,D.von Stetten,M.Gunther,D.H.Murgida,M.Andrea Morginski,J.M.Walker,K.T Forest,P.Hildebrandt,and R.D.Vierstra,Mutational analysis of deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes.J Biol Chem,2008.
    7.Chen,H.,G Xu,Y.Zhao,B.Tian,H.Lu,X.Yu,Z.Xu,N.Ying,S.Hu,and Y.Hua,A Novel OxyR Sensor and Regulator of Hydrogen Peroxide Stress with One Cysteine Residue in Deinococcus radiodurans.PLoS ONE,2008.3(2):p.el 602.
    8.Gladyshev,E.and M.Meselson,Extreme resistance of bdelloid rotifers to ionizing radiation.Proc Natl AcadSci USA,2008.I05(13):p.5139-44.
    9.Hua,X.,L.Huang,B.Tian,and Y.Hua,Involvement of recQ in the ultraviolet damage repair pathway in Deinococcus radiodurans.Mutat Res,2008.
    10.Khaimar,N.P.,V.A.Kamble,and H.S.Misra,RecBC enzyme overproduction affects UV and gamma radiation survival of Deinococcus radiodurans.DNA Repair(AmsO,2008.7(1):p.40-7.
    11.Liu,X.,J.Wu,W.Zhang,S.Ping,W.Lu,M.Chen,and M.Lin,Resistance of Deinococcus radiodurans to Mutagenesis Is Facilitated by Pentose Phosphate Pathway in the routS1 Mutant Background.Curr Microbiol,2008.
    12.Ohtani,N.,M.Tomita,and M.Itaya,Junction ribonuclease:ribonuclease Hll ortholog from Thermus thermophilus HB8 prefers RNA-DNA junction to RNA/DNA heteroduplex. Biochem J, 2008.
    13. Rajpurohit, Y.S., R. Gopalakrishnan, and H.S. Misra, Involvement of a protein kinase activity inducer in DNA double strand break repair and radioresistance of Deinococcus radiodurans. J Bacteriol, 2008.
    14. Cox, M.M. and J.R. Battista, Deinococcus radiodurans - the consummate survivor. Nat Rev Microbiol, 2005. 3(11): p. 882-92.
    15. Holloman, W.K., J. Schirawski, and R. Holliday, Towards understanding the extreme radiation resistance of Ustilago maydis. Trends Microbiol, 2007. 15(12): p. 525-9.
    16. Cordwell, S.J., M.R. Wilkins, A. Cerpa-Poljak, A.A. Gooley, M. Duncan, K.L. Williams, and I. Humphery-Smith, Cross-species identification of proteins separated by two-dimensional gel electrophoresis using matrix-assisted laser desorption ionisation/time-of-flight mass spectrometry and amino acid composition. Electrophoresis, 1995. 16(3): p. 438-43.
    17. Boguth, G, A. Harder, B. Scheibe, R. Wildgruber, and W. Weiss, The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis, 2000. 21: p. 1037-1053.
    18. Wilkins, M.R., C. Pasquali, R.D. Appel, K. Ou, O. Golaz, J.C. Sanchez, J.X. Yan, A.A. Gooley, G Hughes, and 1. Humphery-Smith, From proteins to proteomes: Large scale protein identification by two-dimensional electrophoresis and amino acid analysis. Biol Technology, 1996. 14(1): p. 61-65.
    19. Hansen, M.T., Four proteins synthesized in response to deoxyribonucleic acid damage in Micrococcus radiodurans. Journal of Bacteriology, 1980. 141(1): p. 81.
    20. Tanaka, A., H. Hirano, M. Kikuchi, S. Kitayama, and H. Watanabe, Changes in cellular proteins of Deinococcus radiodurans following gamma-irradiation. Radiat Environ Biophys, 1996. 35(2): p. 95-9.
    21. Smith, R.D., G.A. Anderson, M.S. Lipton, L. Pasa-Tolic, Y. Shen, T.P. Conrads, T.D. Veenstra, and H.R. Udseth, An accurate mass tag strategy for quantitative and high-throughput proteome measurements. Proteomics, 2002. 2(5): p. 513-23.
    22. Tanaka, M., A.M. Earl, H.A. Howell, M.J. Park, J.A. Eisen, S.N. Peterson, and J.R. Battista, Analysis of Deinococcus radiodurans's transcriptional response to ionizing radiation and desiccation reveals novel proteins that contribute to extreme radioresistance. Genetics, 2004. 168(1): p. 21-33.
    23. Zhang, C., J. Wei, Z. Zheng, N. Ying, D. Sheng, and Y. Hua, Proteomic analysis of Deinococcus radiodurans recovering from gamma-irradiation. Proteomics, 2005. 5(1): p. 138-43.
    24. Ying, N., Z. Zheng, H. Xu, B. Tian, and Y. Hua, Extracellular proteome changes of Deinococcus radiodurans under y-irradiation stress conditions. Protein Peptide Letters, 2008. in publish.
    25. Witte, G., C. Urbanke, and U. Curth, Single-stranded DNA-binding protein of Deinococcus radiodurans: a biophysical characterization. Nucleic Acids Res, 2005. 33(5): p. 1662-70.
    26. Bernstein, D.A., J.M. Eggington, M.P. Killoran, A.M. Misic, M.M. Cox, and J.L. Keck, Crystal structure of the Deinococcus radiodurans single-stranded DNA-binding protein suggests a mechanism for coping with DNA damage. Proc Natl Acad Sci U S A , 2004. 101 (23): p. 8575-80.
    27. Narumi, I., K. Satoh, S. Cui, T. Funayama, S. Kitayama, and H. Watanabe, PprA: a novel protein from Deinococcus radiodurans that stimulates DNAligation. Mol Microbiol, 2004. 54(1): p. 278-85.
    28. Kobayashi, Y, I. Narumi, K. Satoh, T. Funayama, M. Kikuchi, S. Kitayama, and H. Watanabe, Radiation response mechanisms of the extremely radioresistant bacterium Deinococcus radiodurans. Biol Sci Space, 2004. 18(3): p. 134-5.
    29. Ohba, H., K. Satoh, T. Yanagisawa, and I. Narumi, The radiation responsive promoter of the Deinococcus radiodurans pprA gene. Gene, 2005. 363: p. 133-41.
    30. Murakami, M., 1. Narumi, K. Satoh, A. Furukawa, and I. Hayata, Analysis of interaction between DNA and Deinococcus radiodurans PprA protein by atomic force microscopy. Biochim Biophys Acta, 2006. 1764(1): p. 20-3.
    31. Makarova, K.S., L. Aravind, M.J. Daly, and E.V Koonin, Specific expansion of protein families in the radioresistant bacterium Deinococcus radiodurans.Genetica,2000.108(1):p.25-34.
    32.Hua,Y.,I.Narumi,(2 Gao,B.Tian,K.Satoh,S.Kitayama,and B.Shen,PprI:a general switch responsible for extreme radioresistance of Deinococcus radiodurans.Biochem Biophys Res Commun,2003.306(2):p.354-60.
    33.Longtin,R.,Deinoccocus radiodurans:getting a better fix on DNA repair.J Natl Cancer Inst,2003.95(17):p.1270-1.
    34.Brim,H.,A.Venkateswaran,H.M.Kostandarithes,J.K.Fredrickson,and M.J.Daly,Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments.Appl Environ Microbiol,2003.69(8):p.4575-82.
    35.Fredrickson,J.K.,J.M.Zachara,D.L.Balkwill,D.Kennedy,S.M.Li,H.M.Kostandarithes,M.J.Daly,M.F.Romine,and F.J.Brockman,Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site,washington state.Appl Environ Microbiol,2004.70(7):p.4230-41.
    36.Lange,C.C.,L.E Wackett,K.W.Minton,and M.J.Daly,Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments.Nat Biotechnol,1998.16(10):p.929-33.
    37.Brim,H.,S.C.McFarlan,J.K.Fredrickson,K.W.Minton,M.Zbai,L.E Wackett,and M.J.Daly,Engineering Deinococcus radiodurans for metal remediation in radioactive mixed waste environments.Nat Biotechnol,2000.18(1):p.85-90.
    38.Appukuttan,D.,A.S.Rao,and S.K.Apte,Engineering of Deinococcus radiodurans RI for bioprecipitation of uranium from dilute nuclear waste.Appl Environ Microbiol,2006.72(12):p.7873-8.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700