用户名: 密码: 验证码:
钯催化氧气氧化带吸电子基团烯烃的反应研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
石油是世界上药品、农用化学品到大规模化学品等有机化工产业生产的主要原料。石油主要由还原型的碳氢化合物组成,因此它们的选择性氧化反应研究就成为化学工业中最重要的挑战性课题之一。钯催化氧气氧化反应的繁荣始于上世纪50年代末,即著名的PdCl_2/CuCl_2/O_2体系催化氧化乙烯制备乙醛的Wacker工艺的开创。从那以后,人们对钯催化氧气氧化反应的研究热情从未间断。
     钯催化的氧气氧化反应过程一般可分为两个步骤:1)Pd(II)对反应底物的氧化;2)O_2对Pd(0)的再氧化以实现催化剂的再生。对于成功的钯催化氧气氧化反应来说,关键问题在于:怎样使氧气高效地氧化还原态的Pd(0)物种。从热力学角度看,氧气可以氧化Pd(0)至Pd(II),但是从动力学角度看,Pd(0)有聚合形成没有活性的Pd金属块的趋向。怎样解决这样一个矛盾就衍生出现今各国科学家开发的各种各样的Pd催化O_2氧化反应的有效体系。一方面,在体系中加入助氧化剂作为中介体系,将氧气氧化还原态Pd(0)的热力学能垒通过助剂的氧化还原循环中介而分解成更小的一到多个能垒。通过这些中介形成同动力学方向上有利的Pd(0)失效聚合竞争反应的比较优势,而在整个氧化过程中,氧气仍然作为体系中唯一被最终消耗的氧化剂;另一方面,在体系中加入适当配体,增加反应过程中因催化氧化反应底物而生成的还原态Pd(0)的稳定性,使得O_2可以充分将其氧化而抑制Pd(0)的聚合失效。
     在此背景下,本论文成功研发了两组不同的无助剂钯催化氧气氧化体系Pd(II)/O_2/ scCO_2(MeOH)和Pd(II)/DMF/O_2,并通过对体系条件的控制,实现了一系列带吸电子基团烯烃的选择性氧化反应:
     1、在Pd(II)/O_2/scCO_2(MeOH)体系中,当使用过量MeOH,在较高氧气浓度和较低温度下,实现了带吸电子基团烯烃的缩醛化反应。该体系与先前需CuCl_2中介的催化体系相比,避免了大量氯离子的存在,有利于β-氢消除过程,因此有利于缩醛化反应,同时有效地抑制了Michael加成产物。
     2、在Pd(II)/O_2/scCO_2(MeOH)体系中,当使用适量MeOH,在较低氧气浓度和较高温度下,实现了带吸电子基团烯烃的三聚反应。这一方法具有重要合成意义,它突破了先前芳构化反应区域选择性以及底物为炔烃的局限性,只利用廉价易得的烯烃为原料,具有更高的潜在工业应用价值。
     3、在Pd(II)/DMF/O_2体系中,在严格除水的条件下,能够实现一系列α位带有羰基的末端烯烃,包括烷基烯烃和芳基烯烃在内的三聚反应,高区域选择性生成1,3,5-三取代苯衍生物。相比在Pd(II)/O_2/scCO_2(MeOH)体系中实现的末端烯烃三聚反应,由于助溶剂MeOH的缺失,使得体系没有缩醛副产物的生成,并且使用丙烯酸苯酯等芳基底物时,也避免了与MeOH的酯交换副反应,可以顺利得到中心对称的含有四个苯环的化合物。这些化合物在高分子化学领域具有非常重要的用途,是合成星形聚合物的前驱体。
     4、在Pd(II)/DMF/O_2体系中,在不除水的条件下,我们首创了利用二甲基甲酰胺DMF水解原位瞬时生成的PdCl_2(HNMe_2)_2催化炔酸酯和带吸电子基团烯烃,高选择性的发生[2+2+2]交叉三聚反应,以2:1的氧化偶联方式生成五取代苯衍生物的方法。此过程使得三聚方法中传统的炔烃替代物从特殊的带有易离去基团的烯烃发展为分子氧存在下的简单烯烃,并且先前烯烃单组份体系中不能发生三聚反应的烯烃,包括丙烯腈,丙烯酸,丙烯酰胺衍生物等,都可以顺利地与炔酯发生交叉三聚产物,并且芳构化产品的收率得到了较大的提高。
Petroleum feedstocks serve as the primary source of the world’s industrial organic chemicals, ranging from pharmaceuticals and agrochemicals to large-scale commodity products. Petroleum primarily consists of reduced hydrocarbons, and their selective oxidation chemistry remains one of the foremost challenges in the chemical industry. Since the discovery of the notably PdCl_2/CuCl_2/O_2 catalyzed Wacker oxidation which transfers terminal alkenes to corresponding aldehyde in the late 1950s, enthusiasm for the Pd catalyzed aerobic oxidation reactions has never stopped.
     Pd catalyzed aerobic oxidation is generally divided into two steps: 1) selective oxidation of the organic substrate by the oxidized catalyst and 2) efficient dioxygen-coupled reoxidation of the reduced catalyst. The key to the success of Pd catalyzed aerobic oxidation is to solve the fundamentally key problem: how to effectively get the reduced catalyst spieces Pd (0) oxidized to Pd (II) by molecular oxygen. Thermodynamically, molecular oxygen is capable of oxidizing reduced Pd (0) spieces to active Pd (II) catalyst, however, direct aerobic oxidation of palladium often cannot compete with kinetically aggregation of the Pd (0) spieces into inactive bulk metal. How to solve such a contradiction derivativats the two strategies for palladium catalyzed aerobic oxidation. One is to add cocatalyst systems to break down the thermodynamic energy barrier of oxidation of Pd (0) by molecular oxygen into smaller ones; The other is to add a Ligand system which will stable the Pd(0) spieces and hold back its aggregation.
     In this contest, we have developed two different Palladium catalyzed aerobic oxidation systems with molecular oxygen as the sole oxidatant: PdII/O_2/scCO_2(MeOH) system and PdII/DMF/O_2 system, and product control of palladium-catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups can be achieved through modifying the catalytic system conditions:
     1, PdII/O_2/scCO_2 (MeOH) system, when using excess MeOH, higher pressure of oxygen and lower temperature, acetalization of olefin with electron withdrawing groups can be achieved. Compared with previous catalytic system with CuCl_2 as a cocatalyst, it successfully avoids the presence of a large number of chloride ions, which is beneficial to the process ofβ-hydride elimination, thereby facilitating the formation of acetals, and also effectively inhibited the Michael addition product.
     2, PdII/O_2/scCO_2 (MeOH) system, when using appropriate dosage of MeOH, lower pressure of oxygen and higher temperature, cyclotrimerization of terminal olefin with electron -withdrawing groups can be achieved. This approach is of great synthetic significance, it broke through the regioselectivity and substrate limitations for cyclotrimerization of alkynes. It only uses the cheap and readily available olefins as raw materials and posess a higher potential value in industry application.
     3, PdII/DMF/O_2 system, when the reaction system was strictly dryed, cyclotrimerization ofα-carbonyl terminal olefin can be achieved. Both the alkyl and aryl olefins can be cyclotrimerized to 1,3,5-trisubstituted benzene derivatives. Compared to the PdII/O_2/scCO_2 (MeOH) system, the lack of MeOH avoids the acetalization and transesterification. These 1,3,5-trisubstituted benzene derivatives are very important initiators in the field of polymer chemistry to the synthesis of well-defined star polymers.
     4, PdII/DMF/O_2 system, when the reaction system was not dried, we have established an in situ DMF hydrolysis producing PdCl_2(HNMe_2)_2 to catalyze highly selective 2: 1 cross [2+2 +2] cycloaddition of alkynoates and alkenes with electron-withdrawing groups under molecular oxygen to synthesize pentakis-substituted benzenes. This methodology not only makes an extension of alkyne surrogates from special alkenes with leaving groups to simple alkenes under molecular oxygen, but also makes the olefins which can not cyclotrimerize in the the previous one-component system, including acrylonitrile, acrylic acid, and acrylamide derivatives, oxidatively coupled with alkynoates to smoothly yield aromatic products in good to excellent yields.
引文
[1] Weissermel, K.; Arpe, H. J. Industrial Organic Chemistry [M]. 3rd ed., VCH, New York, 1997
    [2] Henry, P. M. Palladium Catalyzed Oxidation of Hydrocarbons [M]. Kluwer, Boston, 1980
    [3] Tsuji, J. Palladium Reagents and Catalysts [M]. Wiley, New York, 1995
    [4] Smidt, J.; Hafner, W.; Jira, R.; Sedlmeier, J.; Sieber, R.; Ruttinger, R.; Kojer, H. Catalytic reactions of olefins on compounds of the platinum group [J]. Angew. Chem., 1959, 71: 176-182
    [5] Beletskaya, I. P.; Cheprakov, A. V. The Heck Reaction as a Sharpening Stone of Palladium Catalysis [J]. Chem. Reviews., 2000, 100: 3009-3066
    [6] Stahl, S. S. Palladium Oxidase Catalysis: Selective Oxidation of Organic Chemicals by Direct Dioxygen-Coupled Turnover [J]. Angew. Chem. Int. Ed., 2004, 43: 3400-3420
    [7] Zeni, G.; Larock, R. C. Synthesis of Heterocycles via PalladiumΠ-Olefin andΠ-Alkyne Chemistry [J]. Chem. Rev., 2004, 104: 2285-2309
    [8] Hartley, F. R. The Chemistry of Platinum and Palladium [M]. Applied Science, London, 1972
    [9] Hosokawa, T.; Miyagi, S.; Murahashi, S.; Sonoda, A. Oxidative cyclization of 2-allylphenols by palladium(II) acetate: Changes in product distribution J. Org. Chem. 1978, 43, 2752-2757.
    [10] Kharasch, M. S.; Seyler, R. C.; Mayo, R. R. Co.ovrddot.ordination compounds of palladous chloride [J]. J. Am. Chem. Soc., 1938, 60: 882-884
    [11] Wang, Z. Y.; Jiang, H. F.; Qi, C. R.; Wang, Y. G.; Dong, Y. S.; Liu, H. L. PS-BQ: an efficient polymer-supported cocatalyst for the Wacker reaction in supercritical carbon dioxide[J]. Green Chem. 2005, 7: 582-585
    [12] Backvall J. E.; Awasthi A. K.; Renko Z. D. Biomimetic Aerobic 1,4-Oxidation of 1,3-Dienes Catalyzed by Cobalt Tetraphenylporphyrin Hydroquinone Palladium(II). An Example of Triple Catalysis [J]. J. Am. Chem. Soc., 1987, 109: 4750-4752
    [13] Johansson M.; Purse B. W.; Terasaki O.; Backvall J. E. Aerobic Oxidations Catalyzed by Zeolite-Encapsulated Cobalt Salophen [J]. Adv. Synth. Catal. 2008, 350: 1807-1815
    [14] Piera J.; Narhi K.; Backvall J. E. PdII-Catalyzed Aerobic Allylic Oxidative Carbocyclization of Allene-Substituted Olefins: Immobilization of an Oxygen-Activating [J]. Catalyst Angew. Chem.; 2006, 118: 7068-7071
    [15] Peterson K. P.; Larock R. C. Palladium Catalyzed Oxidation of Primary and Secondary Allylic and Benzylic Alcohols [J]. J. Org. Chem., 1998, 63: 3185-3189
    [16] Larock, R. C.; Hightower, T. R. Synthesis of Unsaturated Lactones via Palladium Catalyzed Cyclization of Alkenoic Acids [J]. J. Org. Chem., 1993, 58: 5298 -5300
    [17] Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. Palladium(II)- Catalyzed Cyclization of Olefinic Tosylamides [J]. J. Org. Chem., 1996, 61: 3584-3585
    [18] Toyota, M.; Wada, T.; Fukumoto, K.; Ihara, M. Total Synthesis of (()-Methyl Atis-16-en-19-oate via Homoallyl-Homoallyl Radical Rearrangement [J]. J. Am. Chem. Soc., 1998, 120: 4916-4925
    [19] Toyota, M.; Odashima, T.; Wada, T.; Ihara, M. Application of Palladium-Catalyzed Cycloalkenylation Reaction to C20 Gibberellin Synthesis: Formal Syntheses of GA12, GA111, and GA112 [J]. J. Am. Chem. Soc. 2000, 122: 9036-9037
    [20] Toyota, M.; Wada, T.; Ihara, M. Total Syntheses of (-)-Methyl Atis-16-en-19-oate, (-)-Methyl Kaur-16-en-19-oate, and (-)-Methyl Trachyloban-19-oate by a Combination of Palladium-Catalyzed Cycloalkenylation and Homoallyl-Homoallyl Radical Rearrangement [J]. J. Org. Chem., 2000, 65: 4565– 4570
    [21] Toyota, M.; Ilangovan, A.; Okamoto, R.; Masaki, T.; Arakawa, M.; Ihara, M. Simple Construction of Bicyclo[4.3.0]nonane, Bicyclo[3.3.0]octane, and Related Benzo Derivatives by Palladium-Catalyzed Cycloalkenylation [J]. Org. Lett., 2002, 4: 4293-4296
    [22] Toyota, M.; Rudyanto, M.; Ihara, M. Some Aspects of Palladium-Catalyzed Cycloalkenylation: Developments of Environmentally Benign Catalytic Conditions and Demonstration of Tandem Cycloalkenylation [J]. J. Org. Chem., 2002, 67: 3374-3386
    [23] Toyota, M.; Sasaki, M.; Ihara, M. Diastereoselective Formal Total Synthesis of the DNA Polymeraser Inhibitor, Aphidicolin, Using Palladium-Catalyzed Cycloalkenylation and Intramolecular Diels-Alder Reactions [J]. Org. Lett., 2003, 5: 1193 -1195
    [24] Steinhoff B. A.; Fix S. R.; Stahl S. S. Mechanistic Study of Alcohol Oxidation by the Pd(OAc)2/O2/DMSO Catalyst System and Implications for the Development of Improved Aerobic Oxidation Catalysts [J]. J. Am. Chem. Soc., 2002, 124: 766-767
    [25] Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Pd(OAc)2-catalyzed oxidation of alcohols to aldehydes and ketones by molecular oxygen [J]. Tetrahedron Lett., 1998, 39: 6011-6014
    [26] Nishimura, T.; Maeda, Y.; Kakiuchi, N.; Uemura, S. Palladium(II)-catalyzed oxidation of alcohols under an oxygen atmosphere in a fluorous biphase system (FBS) [J]. J. Chem. Soc. Perkin Trans. 1, 2000: 4301-4305
    [27] Nishimura, T.; Onoue, T.; Ohe, K.; Uemura, S. Palladium (II) Catalyzed Oxidation ofAlcohols to Aldehydes and Ketones by Molecular Oxygen [J]. J. Org. Chem., 1999, 64: 6750-6755
    [28] Steinhoff, B. A.; Stahl, S. S. Ligand Modulated Palladium Oxidation Catalysis: Mechanistic Insights into Aerobic Alcohol Oxidation with the Pd(OAc)2/Pyridine Catalyst System [J]. Org. Lett., 2002, 4: 4179-4181
    [29] Ten Brink, G. J.; Arends, I. W. C. E.; Sheldon, R. A Green catalytic oxidation of alcohols in water [J]. Science 2000, 287: 1636-1639
    [30] Ten Brink, G. J.; Arends, I. W. C. E.; Sheldon, R. A. Catalytic conversions in water. Part 21: mechanistic investigations on the palladium-catalyzed aerobic oxidation of alcohols in water [J]. Adv. Synth. Catal., 2002, 344: 355-369
    [31] Ten Brink, G. J.; Arends, I. W. C. E.; Hoogenraad, M.; Verspui, G.; Sheldon, R. A. Catalytic conversions in water. Part 22: Electronic effects in the (diimine) palladium (II)-catalysed aerobic oxidation of alcohols [J]. Adv. Synth. Catal., 2003, 345: 497- 505
    [32] Jensen, D. R.; Pugsley, J. S.; Sigman, M. S. Palladium catalyzed enantioselective oxidations of alcohols using molecular oxygen [J]. J. Am. Chem. Soc., 2001, 123: 7475-7476
    [33] Jensen, D. R.; Sigman, M. S. Palladium Catalysts for Aerobic Oxidative Kinetic Resolution of Secondary Alcohols Based on Mechanistic Insight [J]. Org. Lett., 2003, 5: 63-65
    [34] Mandal, S. K.; D. R. Jensen, J. S. Pugsley, M. S. Sigman, Scope of Enantioselective Palladium (II)- Catalyzed Aerobic Alcohol Oxidations with (-)-Sparteine [J]. J. Org. Chem. 2003, 68: 4600-4603
    [35] Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Palladium catalyzed oxidative kinetic resolution with ambient air as the stoichiometric oxidation gas [J]. Org. Lett., 2003, 5: 835-837
    [36] Mueller, J. A.; Sigman, M. S. Mechanistic Investigations of the Palladium Catalyzed Aerobic Oxidative Kinetic Resolution of Secondary Alcohols Using (-)-Sparteine [J]. J. Am.Chem. Soc., 2003, 125: 7005-7013
    [37] Mandal, S. K.; Sigman, M. S. Palladium catalyzed aerobic oxidative kinetic resolution of alcohols with an achiral exogenous base [J].J. Org. Chem., 2003, 68: 7535-7537
    [38] Dearden, M. J.; Firkin, C. R.; Hermet, J. P. R.; Brien, P. O. A readily accessible (+)-sparteine surrogate [J]. J. Am. Chem. Soc. 2002, 124: 11870- 11871
    [39] Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. A well defined complex for palladium catalyzed aerobic oxidation of alcohols: Design, synthesis and mechanistic considerations [J]. Angew. Chem. Int. Ed., 2003, 42: 3810- 3813
    [40] Karimi, B.; Zamani, A. Clark, J. H. A Bipyridyl Palladium Complex Covalently Anchored onto Silica as an Effective and Recoverable Interphase Catalyst for the Aerobic Oxidation of Alcohols [J]. Organometallics, 2005, 24: 4695-4698
    [41] Karimi, B.; Abedi, S.; Clark, J. H.; Budarin, V. Highly Efficient Aerobic Oxidation of Alcohols Using a Recoverable Catalyst: The Role of Mesoporous Channels of SBA-15 in Stabilizing Palladium Nanoparticles [J]. Angew. Chem. Int. Ed., 2006, 45: 4776-4779
    [42] Hackett, S. F. J.; Brydson, R. M.; Gass, M. H.; Harvey, I.; Newman, A. D.; Wilson, K.; Lee, A. F. High-Activity, Single-Site Mesoporous Pd/Al2O3 Catalysts for Selective Aerobic Oxidation of Allylic Alcohols [J]. Angew. Chem. Int. Ed., 2007, 46: 8593–8596
    [43] Denney, M. C.; Smythe, N. A.; Cetto, K. L.; Kemp, R. A.; Goldberg, K. I. Insertion of Molecular Oxygen into a Palladium(II) Hydride Bond [J]. J. Am. Chem. Soc., 2006, 128: 2508-2509
    [44] Keith, J. M.; Nielsen, R. J.; Oxgaard, J.; Goddard, W. A., III Pd-Mediated Activation of Molecular Oxygen in a Nonpolar Medium [J]. J. Am. Chem. Soc., 2005, 127: 13172-13179
    [45] Beccalli, E. M.; Broggini, G.; Martinelli, M.; Sottocornola, S. C-C, C-O, C-N Bond Formation on sp2 Carbon by Pd(II)-Catalyzed Reactions Involving Oxidant Agents [J]. Chem. Rev., 2007, 107: 5318-5365
    [46] Hosokawa, Miyagi, T.; S.; Murahashi, S. I.; Sonoda, A. Oxidative cyclization of 2-allylphenols by palladium(II) acetate. Changes in product distribution [J]. J. Org. Chem. 1978, 43: 2752-2757
    [47] Hosokawa, T.; Ohta, T.; Murahashi, S.-I. Palladium(II)-catalyzed acetalization of terminal olefins bearing electron-withdrawing substituents with 1,3- and 1,2-diols [J]. J. Chem. Soc. Chem. Commun., 1983: 848-849
    [48] Larock, R. C.; Wei, L.; Hightower, T. R. Synthesis of 2H-1-benzopyrans by Pd-catalyzed cyclization of ortho-allylic phenols [J]. Synlett 1998: 522-524
    [49] Van Benthem, R. A. T. M.; Hiemstra, H.; Michels, J. J.; Speckamp, W. N. Palladium(II) catalyzed oxidation of allylic amines with molecular oxygen [J]. J. Chem. Soc. Chem. Commun., 1994: 357-359
    [50] Larock, R. C.; Hightower, T. R. Synthesis of unsaturated lactones via palladium catalyzed cyclization of alkenoic acids [J]. J. Org. Chem., 1993, 58: 5298-5300
    [51] Ten Brink, G. J.; Arends, I. W. C. E.; Papadogianakis, G.; Sheldon, R. A. Catalytic conversions in water. Part 10. Aerobic oxidation of terminal olefins to methyl ketones catalyzed by water soluble palladium complexes [J]. Chem. Commun., 1998: 2359-2360
    [52] Nishimura, T.; Kakiuchi, N.; Onoue, T.; Ohe, K.; Uemura, S. Palladium(II) catalyzedoxidation of terminal alkenes to methyl ketones using molecular oxygen [J]. J. Chem. Soc. Perkin Trans. 1, 2000: 1915-1918
    [53] Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Palladium catalyzed oxidative Wacker cyclizations in nonpolar organic solvents with molecular oxygen: A stepping stone to asymmetric aerobic cyclizations [J]. Angew. Chem. Int. Ed., 2003, 42: 2892-2895
    [54] Ferreira, E. M.; Stoltz, B. M. The Palladium Catalyzed Oxidative Kinetic Resolution of Secondary Alcohols with Molecular Oxygen [J]. J. Am. Chem. Soc., 2001, 123: 7725-7726
    [55] Bagdanoff, J. T.; Ferreira, E. M.; Stoltz, B. M. Palladium-catalyzed enantioselective oxidation of alcohols: a dramatic rate acceleration by Cs2CO3 /t-BuOH [J]. Org. Lett., 2003, 5: 835-837
    [56] Arai, M. A.; Kuraishi, M.; Arai, T.; Sasai, H. A new asymmetric Wacker-type cyclization and tandem cyclization promoted by Pd(II)-spiro bis(isoxazoline) catalyst [J]. J. Am. Chem. Soc., 2001, 123: 2907-2908
    [57] Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. Oxidative Cyclizations in a Nonpolar Solvent Using Molecular Oxygen and Studies on the Stereochemistry of Oxypalladation [J]. J. Am. Chem. Soc., 2005, 127: 17778-17788
    [58] Ansari, I. A.; Joyasawal, S.; Gupta, M. K.; Yadav, J. S.; Gree, R.Wacker oxidation of terminal olefins in a mixture of [bmim][BF4] and water [J]. Tetrahedron Lett., 2005, 46: 7507-7510
    [59] Kwon, M. S.; Kim, N.; Park, C. M.; Lee, J. S.; Kang, K. Y.; Park, J. Palladium Nanoparticles Entrapped in Aluminum Hydroxide: Dual Catalyst for Alkene Hydrogenation and Aerobic Alcohol Oxidation [J]. Org. Lett., 2005, 7: 1077-1079
    [60] Mitsudome, T.; Umetani, T.; Nosaka, N.; Mori, K.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Convenient and efficient Pd-catalyzed regioselective oxyfunctionalization of terminal olefins by using molecular oxygen as sole reoxidant [J]. Angew. Chem. Int. Ed., 2006, 45: 481-485
    [61] Wang, J. L.; He, L. N.; Miao, C. X.; Li, Y. N. Ethylene carbonate as a unique solvent for palladium-catalyzed Wacker oxidation using oxygen as the sole oxidant [J]. Green Chem. 2009, 11: 1317-1320
    [62] Kulkarni, M. G.; Bagale, S. M.; Shinde, M. P.; Gaikwad, D. D.; Borhade, A. S.; Dhondge, A. P.; Chavhan, S. W.; Shaikh, Y. B.; Ningdale, V. B.; Desai, M. P.; Birhade, D. R. Pd(0)/C-catalyzed efficient Wacker oxidation of functionalized terminal olefins [J]. Tetrahedron Lett., 2009, 50: 2893-2894
    [63] Wang, A.; Jiang, H.; Chen, H. Palladium-Catalyzed Diacetoxylation of Alkenes withMolecular Oxygen as Sole Oxidant [J]. J. Am. Chem. Soc., 2009, 131: 3846-3847
    [64] Martinez, C.; Alvarez, R.; Aurrecoechea, J. M. Palladium Catalyzed Sequential Oxidative Cyclization/Coupling of 2-Alkynylphenols and Alkenes: A Direct Entry into 3-Alkenylbenzofurans [J]. Org. Lett., 2009, 11: 1083-1086
    [65] Henderson, W. H.; Check, C. T.; Proust, N.; Stambuli, J. P. Allylic Oxidations of Terminal Olefins Using a Palladium Thioether Catalyst [J]. Org. Lett., 2010, 12: 824-827
    [66] Naik, A.; Liu, M.; Zabel, M.; Reiser, O. Efficient Aerobic Wacker Oxidation of Styrenes Using Palladium Bis(isonitrile) Catalysts [J]. Eur. J. Org. Chem., 2010, 16: 1624-1628
    [67] Ohe, T.; Tanaka, T.; Kuroda, M.; Cho,C. S.; Ohe, K.; Uemura, S. Palladium(II) Catalyzed Aryl Coupling of Triarylbismuthines under Air [J]. Bull. Chem. Soc. Jpn., 1999, 72: 1851-1855
    [68] Parrish, J. P.; Jung, Y. C.; Shin, S. I.; Jung, K. W. Mild and Efficient Aryl-Alkenyl Coupling via Pd(II) Catalysis in the Presence of Oxygen or Cu(II) Oxidants [J]. J. Org. Chem., 2002, 67: 7127-7130
    [69] Jung, Y. C.; Mishra, R. K.; Yoon, C. H.; Jung, K.W. Oxygen-Promoted Pd(II) Catalysis for the Coupling of Organoboron Compounds and Olefins [J]. Org. Lett., 2003, 5: 2231-2234
    [70] Toyota, M.; Ihara, M. Development of palladium-catalyzed cycloalkenylation and its application to natural product synthesis [J].Synlett 2002: 1211-1222
    [71] Toyota, M.; Sasaki, M.; Ihara, M. Diastereoselective Formal Total Synthesis of the DNA Polymerase .alpha. Inhibitor, Aphidicolin, Using Palladium-Catalyzed Cycloalkenylation and Intramolecular Diels-Alder Reactions [J]. Org. Lett., 2003, 5: 1193 -1195
    [72] Van Benthem, R. A.; Hiemstra, T. M. H. P.; Van Leeuwen, W. N. M.; Geus, J. W.; Speckamp, W. N. Sulfoxide-stabilized giant palladium clusters in catalyzed oxidations [J]. Angew. Chem. Int. Ed., 1995, 34: 457-460
    [73] Davies, I. W.; Matty, L.; Hughes, D. L.; Reider, P. J. Are Heterogeneous Catalysts Precursors to Homogeneous Catalysts [J]. J. Am. Chem. Soc., 2001, 123: 10139 -10140
    [74] Dams, M.; De Vos, D. E.; Celen,S.; Jacobs, P. A. Toward waste-free production of Heck products with a catalytic palladium system under oxygen [J]. Angew. Chem. Int. Ed., 2003, 42: 3512-3515
    [75] Ferreira, E. M.; Stoltz, B. M. C-H Bond Functionalization with Palladium(II): Aerobic Oxidative Annulations of Indoles [J]., J. Am. Chem. Soc., 2003, 125: 9578-9579
    [76] Yoo, K. S.; Yoon, C. H.; Jung, Kyung W. Oxidative Palladium(II) Catalysis: A Highly Efficient and Chemoselective Cross-Coupling Method for Carbon-Carbon Bond Formation under Base-Free and Nitrogenous-Ligand Conditions [J]. J. Am. Chem. Soc., 2006, 128:16384-16393
    [77] Enquist, P. A.; Lindh, J.; Nilsson, P.; Larhed, M. Open-air oxidative Heck reactions at room temperature [J]. Green Chem., 2006, 8: 338-343
    [78] Lindh, J.; Enquist, P. A.; Pilotti, A.; Nilsson, P.; Larhed, M. Efficient Palladium(II) Catalysis under Air. Base Free Oxidative Heck Reactions at Room Temperature or with Microwave Heating [J]. J. Org. Chem., 2007, 72: 7957-7962
    [79] Zhou, C.; Larock, R. C. Tetrasubstituted Olefin Synthesis via Pd-Catalyzed Addition of Arylboronic Acids to Internal Alkynes Using O2 as an Oxidant [J]. J. Org. Chem., 2006, 71; 3184-3191
    [80] Momiyama, N.; Kanan, M. W.; Liu, D. R. Synthesis of Acyclic a, b-Unsaturated Ketones via Pd(II)-Catalyzed Intermolecular Reaction of Alkynamides and Alkenes [J]. J. Am. Chem. Soc., 2007, 129: 2230-2231
    [81] Bercaw, J. E.; Hazari, N.; Labinger, J. A. Oxidative Aromatization of Olefins with Dioxygen Catalyzed by Palladium Trifluoroacetate [J]. J. Org. Chem., 2008, 73: 8654-8657
    [82] Hibi, A.; Toyota, M. Development of palladium(II)-catalyzed oxidative cyclization of olefinic keto and/or lactone esters [J]. Tetrahedron Lett., 2009, 50: 4888-4891
    [83] Urkalan, K. B.; Sigman, M. S. Palladium-catalyzed oxidative intermolecular difunctionalization of terminal alkenes with organostannanes and molecular oxygen [J]. Angew. Chem. Int. Ed., 2009, 48: 3146-3149
    [84] Xu, Y. H.; Lu, J.; Loh, T. P. Direct Cross-Coupling Reaction of Simple Alkenes with Acrylates Catalyzed by Palladium Catalyst [J]. J. Am. Chem. Soc., 2009, 131:1372-1373
    [85] Tamaru, Y.; Hojo, M.; Higashimura, H.; Yoshida, Z. Urea as the most reactive and versatile nitrogen nucleophile for the palladium(II)-catalyzed cyclization of unsaturated amines [J]. J. Am. Chem. Soc., 1988, 110: 3994-4002
    [86] Larock, R. C.; Hightower, T. R. Synthesis of unsaturated lactones via palladium catalyzed cyclization of alkenoic acids [J]. J. Org. Chem., 1993, 58: 5298-5300
    [87] Larock, R. C.; Hightower, T. R.; Hasvold, L. A.; Peterson, K. P. Palladium(II)-Catalyzed Cyclization of Olefinic Tosylamides [J]. J. Org. Chem., 1996, 61: 3584-3585
    [88] Fix, S. R.; Brice, J. L.; Stahl, S. S. Efficient intramolecular oxidative amination of olefins through direct dioxygen-coupled palladium catalysis [J]. Angew. Chem. Int. Ed., 2002, 41: 164-166
    [89] Trend, R. M.; Ramtohul, Y. K.; Ferreira, E. M.; Stoltz, B. M. Palladium-catalyzed oxidative Wacker cyclizations in nonpolar organic solvents with molecular oxygen: A stepping stone to asymmetric aerobic cyclizations [J]. Angew. Chem., Int. Ed., 2003, 42:2892-2895
    [90] Trend, R. M.; Ramtohul, Y. K.; Stoltz, B. M. Oxidative cyclizations in a nonpolar solvent using molecular oxygen and studies on the stereochemistry of oxypalladation [J]. J. Am. Chem. Soc., 2005, 127: 17778-17788
    [91] Yip, K. T.; Yang, M.; Law, K. L.; Zhu, N. Y.; Yang, D. Pd(II)-catalyzed enantioselective oxidative tandem cyclization reactions: Synthesis of indolines through C-N and C-C bond formation [J]. J. Am. Chem. Soc., 2006, 128: 3130-3131
    [92] Brice, J. L.; Harang, J. E.; Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. Aerobic oxidative amination of unactivated alkenes catalyzed by palladium [J]. J. Am. Chem. Soc., 2005, 127: 2868-2869
    [93] Schultz M. J.; Sigman M.S. Palladium(II) Catalyzed Aerobic Dialkoxylation of Styrenes: A Profound Influence of an o-Phenol [J]. J. Am. Chem. Soc., 2006, 128: 1460-1461
    [94] Timokhin, V. I.; Anastasi, N. R.; Stahl, S. S. Dioxygen-coupled oxidative amination of styrene [J]. J. Am. Chem. Soc., 2003, 125: 12996-12997
    [95] Timokhin, V. I.; Stahl, S. S. Bronsted Base Modulated Regioselectivity in the Aerobic Oxidative Amination of Styrene Catalyzed by Palladium [J]. J. Am. Chem. Soc., 2005, 127: 17888-17893
    [96] Potekhin, V. V.; Matsura, V. A. Kinetics of oxidation of lower olefins with Fe(III) aqua ions in the presence of the Pd/ZrO2/SO4 precatalyst in a chloride-free system [J]. J. Am. Chem. Soc., 2006, 128: 12954-12962
    [97] Rogers, M. M.; Kotov, V.; Chatwichien, J.; Stahl, S. S. Palladium Catalyzed Oxidative Amination of Alkenes: Improved Catalyst Reoxidation Enables the Use of Alkene as the Limiting Reagent [J]. Org. Lett., 2007, 9: 4331-4334.
    [98] Wang, J.; Yang, C.; Liu, L.; Guo, Q. Pd-catalyzed aerobic oxidative coupling of anilides with olefins through regioselective C-H bond activation [J]. Tetrahedron Lett., 2007, 48: 5449-5453
    [99] Qiu S.; Wei Y.; Liu G. Palladium Catalyzed Intramolecular Hydroamination of Allenes Coupled to Aerobic Alcohol Oxidation [J]. Chem. Eur. J., 2009, 15: 2751-2754
    [100] Wu, T.; Yin, G.; Liu, G. Palladium Catalyzed Intramolecular Aminofluorination of Unactivated Alkenes [J]. J. Am. Chem. Soc., 2009, 131: 16354-16355
    [101] Wu, L; Qiu, S.; Liu, G. Bronsted Base Modulated Regioselective Pd Catalyzed Intramolecular Aerobic Oxidative Amination of Alkenes: Formation of Seven-Membered Amides and Evidence for Allylic C-H Activation [J]. Org. Lett., 2009, 11: 2707-2710
    [102] Shimizu, Y.; Obora, Y.; Ishii, Y. Intermolecular Aerobic Oxidative Allylic Amination ofSimple Alkenes with Diarylamines Catalyzed by the Pd(OCOCF3)2/NPMoV/O2 System [J]. Org. Lett., 2010, 12: 1372-1374
    [103] Suffis, R.; Morton, L. B.; Ishida, K.; Sawano, K.; Van Loveren, A. G.; Tetsuo, N.; Green, C. B.; Reitz, G. A.; Kang, R. K. L.; Sato, T. Cosmetic compositions containing body activated fragrance for contacting the skin [P]. US 5626852, 1997
    [104] Da Silva Ferreira, A. C.; Barbe, J. C.; Bertrand, A. Heterocyclic Acetals from Glycerol and Acetaldehyde in Port Wines: Evolution with Aging [J]. J. Agric. Food Chem., 2002, 50: 2560-2564
    [105] Climent, M. J.; Velty, A.; Corma, A. Design of a solid catalyst for the synthesis of a molecule with orange blossom scent [J]. Green Chem., 2002, 4: 565-569
    [106] Iwamoto, M.; Tanaka, Y.; Sawamura, N.; Namba, S. Remarkable effect of pore size on the catalytic activity of mesoporous silica for the acetalization of cyclohexanone with methanol [J]. J. Am. Chem. Soc., 2003, 125: 13032-13033
    [107] Jia, L. Q.; Jiang, H. F.; Li, J. H. Palladium(II) catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide [J]. Chem. Commun., 1999: 985-986
    [108] Yamamura, S.; Nakamura, M.; Tanaka, K. Synthesis and properties of acetal containing surface active alkanolamines and aminopolyethers [J]. J. Jpn. Oil Chem. Soc., 1991, 40: 104-108
    [109] Li, D. M.; Shi, F.; Peng, J. J.; Guo, S.; Deng, Y. Q. Application of Functional Ionic Liquids Possessing Two Adjacent Acid Sites for Acetalization of Aldehydes [J]. J. Org. Chem. 2004, 69: 3582-3585
    [110] de Lijser, H. J. P.; Rangel, N. A. Photochemical Acetalization of Carbonyl Compounds in Protic Media Using an in Situ Generated Photocatalyst [J]. J. Org. Chem., 2004, 69: 8315-8322
    [111] Climent, M. J.; Velty, A.; Corma, A. Design of a solid catalyst for the synthesis of a molecule with orange blossom scent [J]. Green Chem., 2002, 4: 565-569
    [112] Iwamoto, M.; Namba, S. Remarkable Effect of Pore Size on the Catalytic Activity of Mesoporous Silica for the Acetalization of Cyclohexanone with Methanol [J]. J. Am. Chem. Soc., 2003, 125: 13032-13033
    [113] Harmer, M. A.; Sun, Q.; Vega, A. J.; Farneth, W. E.; Heidekum, A.; Hoelderich, W. F. Nafion resin-silica nanocomposite solid acid catalysts. Microstructure processing property correlations [J]. Green Chem., 2000, 2: 7-14
    [114] Ledneczki, I.; Daranyi, M.; Fulop, F.; Molnar, A. SAC-13 silica nanocomposite solid acid catalyst in organic synthesis [J]. Catal. Today, 2005, 100: 437-440
    [115] Heravi, M. M.; Bakhtiari, K.; Bamoharram, F. F [J]. An efficient and chemoselective synthesis of acylals from aromatic aldehydes and their regeneration catalyzed by 12-molybdophosphoric acid [J]. Catal. Commun., 2006, 7: 499-501
    [116] Kawabata, T.; Kaneda, K. Highly efficient heterogeneous acetalization of carbonyl compounds catalyzed by a titanium cation-exchanged montmorillonite [J]. Tetrahedron Lett., 2001, 42: 8329-8332
    [117] Moghaddam, F. M.; Oskoui, A. A.; Boinee, H. Z. Lett. Rapid and selective acetalization of aldehydes using anhydrous copper sulfate supported on silica gel (CuSO4/SiO2) under microwave irradiation in solvent-free conditions [J]. Org. Chem., 2005, 2: 151-155
    [118] Kotke, M.; Schreiner, P. R. Acid-free, organocatalytic acetalization Tetrahedron 2006, 62, 434-439.
    [119] Hosokawa, T.; Ohta, T.; Murahashi, S. I. Palladium(II) catalyzed acetalization of terminal olefins bearing electron-withdrawing substituents with 1,3- and 1,2-diols [J]. J. Chem. Soc. Chem. Commum., 1983: 848-849
    [120] Hosokawa, T.; Aoki, S.; Murahashi, S. I. Palladium(II) catalyzed acetalization of allylic acetates and its utilization for the synthesis of 2-cyanovinyl ketones [J]. Synthesis, 1991, 6: 558-561
    [121] Hosokawa, T.; Nakajima, F.; Iwasa, S.; Murahashi, S. I. Palladium(II) catalyzed diastereoselective acetalization of hydroxyalkenes [J]. Chem. Lett., 1990, 8: 1387-1390
    [122] Jia, L. Q.; Jiang, H. F.; Li, J. H. Palladium(II) catalyzed oxidation of acrylate esters to acetals in supercritical carbon dioxide [J]. Chem. Commun., 1999: 985-986
    [123] Wang, Z.; Lu, X. Palladium Catalyzed Nucleophile Alkyne alpha- beta.-Unsaturated Carbonyl Coupling through Tandem Nucleopalladation and Conjugate Addition [J]. J. Org. Chem., 1996, 61: 2254-2255
    [124] Wang, Z.; Zhang, Z.; Lu, X. Role of halide ion in palladium(II) catalyzed carbon-carbon coupling reactions [J]. Organometallics, 1997, 19: 775-780
    [125] Wang, Z. Y.; Jiang, H. F.; Ouyang, X. Y.; Qi, C. R.; Yang, S. R. Pd(II)-catalyzed acetalization of terminal olefins with electron-withdrawing groups in supercritical carbon dioxide: selective control and mechanism [J]. Tetrahedron, 2006, 62: 9846-9854
    [126] Shohreh, S. M.; Francesca, M. K.; Jason, M. L.; Christopher, M. R. Formation and catalytic activity of Pd nanoparticles on silica in supercritical CO2 [J]. Green Chem., 2006, 8: 965-971
    [127] Juta, K.; Yuichiro, M.; Shu, K. Hydrogenation reactions using scCO2 as a solvent in microchannel reactors [J]. Chem. Commun., 2005, 5: 2567-2568
    [128] Jensen, D. R.; Schultz, M. J.; Mueller, J. A.; Sigman, M. S. A well-defined complex for palladium-catalyzed aerobic oxidation of alcohols: Design, synthesis and mechanistic considerations [J]. Angew. Chem., Int. Ed., 2003, 42: 3810-3183
    [129] Zou, B.; Jiang, H. F.; Wang, Z. Y. alladium-catalyzed C-N bond activation: the synthesis of .beta.-amino acid derivatives from triethylamine and acrylates [J]. Eur. J. Org. Chem., 2007: 4600-4604
    [130] Chopade, P. R.; Louie, J. [2+2+2] Cycloaddition reactions catalyzed by transition metal complexes. [J]. Adv. Synth. Catal., 2006, 348: 2307–2327
    [131] Pena, D.; Perez, D.; Guitian, E.; Castedo, L., Synthesis of Hexabenzotriphenylene and Other Strained Polycyclic Aromatic Hydrocarbons by Palladium Catalyzed Cyclotrimerization of Arynes [J]. Org. Lett., 1999: 1555-1557
    [132] Li, J.; Jiang, H.; Chen, M., CuCl2 Induced Regiospecifical Synthesis of Benzene Derivatives in the Palladium-Catalyzed Cyclotrimerization of Alkynes [J]. J. Org. Chem., 2001, 66: 3627-3629
    [133] Oleg, V. O.; Folami, T. L.; Brian, O. P. Highly Regioselective Alkyne Cyclotrimerization Catalyzed by Titanium Complexes Supported by Proximally Bridged p-tert-Butylcalix arene Ligands [J]. J. Am. Chem. Soc., 1999, 121: 7941-7942
    [134] Matthew, S. S.; Anson, W. F.; Bruce, E. E., Cobalt Catalyzed Cyclotrimerization of Alkynes in Aqueous Solution [J]. J. Am. Chem. Soc., 1998, 120: 5130-5131
    [135] Van der Linden, A. J.; Schaverien, C. J.; Meijboom, N.; Ganten, C.; Orpen, A. G., Polymerization of .alpha.-Olefins and Butadiene and Catalytic Cyclotrimerization of 1-Alkynes by a New Class of Group IV Catalysts. Control of Molecular Weight and Polymer Microstructure via Ligand Tuning in Sterically Hindered Chelating Phenoxide Titanium and Zirconium Species [J]. J. Am. Chem. Soc., 1995, 117: 3008-3021
    [136] Bernhard, W.; Thomas, S. Rhodium(I) Catalyzed [2+2+2] Cycloadditions with N-Functionalized 1-Alkynylamides: A Conceptually New Strategy for the Regiospecific Synthesis of Substituted Indolines [J]. Angew. Chem., Int. Ed., 1999, 38: 2426-2430
    [137] Kakeya, M.; Fujihara, T.; Kasaya, T.; Nagasawa, A. Dinuclear Niobium (III) Complexes [{NbCl2(L)}2(m-Cl)2(m-L)] (L = tetrahydrothiophene, dimethyl sulfide): Preparation, Molecular Structures, and the Catalytic Activity for the Regioselective Cyclotrimerization of Alkynes [J]. Organometallics, 2006, 25: 4131-4137
    [138] Smith, D. P.; Stricker, J. R.; Gray, S. D.; Bruck, M. A.; Holmes, R. S.; Wigley, D. E. Early-transition-metal-mediated [2+2+2] cycloadditions: formation and fragmentation of a reactive metallacyclopentadiene and its direct conversion to .eta.6-arene and .eta.2-pyridinecomplexes of tantalum [J]. Organometallics, 1992, 11: 1275-1288
    [139] Bianchini, C.; Caulton, K. G.; Chardon, C.; Doublet, M. L.; Eisenstein, O.; Jackson, T. J.; Meil, A.; Peruzzini, M.; Streib, W. E.; Vacca, A.; Vizza, F. The Mechanism of Acetylene Cyclotrimerization Catalyzed by the fac-IrP3+ Fragment: The Relationship between Fluxionality and Catalysis [J]. Organomettallics, 1994, 13: 2010-2023
    [140] Reppe, W.; Schweckendiek, W. J. Cyclisierende Polymerisation von Acetylen I ber Cyclooctatetraen Justus [J]. Liebigs Ann. Chem., 1948, 560: 104-116
    [141] Saito, S.; Yamamoto, Y. Recent Advances in the Transition Metal Catalyzed Regioselective Approaches to Polysubstituted Benzene Derivatives [J]. Chem. Rev., 2000, 100: 2901-2915
    [142] Galan, B. R.; Rovis, T. Beyond Reppe: building substituted arenes by [2+2+2] cycloadditions of alkynes [J]. Angew. Chem., Int. Ed., 2009, 48: 2830-2834
    [143] Kezuka, S.; Tanaka, S.; Ohe, T.; Nakaya, Y.; Takeuchi, R. Iridium Complex Catalyzed [2+2+2] Cycloaddition of .alpha. omega. Diynes with Monoynes and Monoenes [J]. J. Org. Chem. [J]. 2006, 71: 543-552
    [144] Shibata, T.; Fujimoto, T.; Yokota, K.; Takagi, K. Iridium complex-catalyzed highly enantio- and diastereoselective [2+2+2] cycloaddition for the synthesis of axially chiral teraryl compounds [J]. J. Am. Chem. Soc., 2004, 126: 8382-8383
    [145] Novak, P.; Pohl, R.; Kotora, M.; Hocek, M. Synthesis of C Aryl deoxy ribosides by [2+2+2] Cyclotrimerization Catalyzed by Rh, Ni, Co, and Ru Complexes [J]. Org. Lett., 2006, 8: 2051-2054
    [146] Wu, Y. T.; Hayama, T.; Baldridge, K. K.; Linden, A.; Siegel, J. S. Synthesis of Fluoranthenes and Indenocorannulenes: Elucidation of Chiral Stereoisomers on the Basis of Static Molecular Bowls [J]. J. Am. Chem. Soc., 2006, 128: 6870-6884
    [147] Tanaka, K.; Toyoda, K.; Wada, A.; Shirasaka, K.; Hirano, M. Chemo- and regioselective intermolecular cyclotrimerization of terminal alkynes catalyzed by cationic rhodium(I)/ modified BINAP complexes: application to one-step synthesis of paracyclophanes [J]. Chem. Eur. J., 2005, 11: 1145-1156
    [148] Sato, Y.; Tamura, T.; Mori, M. Arylnaphthalene Lignans through Pd Catalyzed [2+2+2] Cocyclization of Arynes and Diynes: Total Synthesis of Taiwanins C and E [J]. Angew. Chem., Int. Ed., 2004, 43: 2436-2440
    [149] Yamamoto, Y.; Ishii, J.; Nishiyama, H.; Itoh, K. CpRuCl Catalyzed Formal Intermolecular Cyclotrimerization of Three Unsymmetrical Alkynes through a Boron Temporary Tether: Regioselective Four Component Coupling Synthesis of Phthalides [J]. J.Am. Chem. Soc., 2005, 127: 9625–9631
    [150] Takeuchi, R.; Nakaya, Y. Iridium Complex-Catalyzed Highly Selective Cross [2+2+2] Cycloaddition of Two Different Monoynes: 2:1 Coupling versus 1:2 Coupling [J]. Org. Lett., 2003, 5: 3659–3662
    [151] Tanaka, K.; Shirasaka, K. Highly Chemo and Regioselective Intermolecular Cyclotrimerization of Alkynes Catalyzed by Cationic Rhodium (I) /Modified BINAP Complexes [J]. Org. Lett., 2003, 5: 4697-4699
    [152] Tsuji, H.; Yamagata, K.; Fujimoto, T.; Nakamura, E. Manganese Catalyzed Benzene Synthesis by [2+2+2] Coupling of 1,3-Dicarbonyl Compound and Terminal Acetylene [J]. J. Am. Chem. Soc., 2008, 130: 7792-7793
    [153] Kuninobu, Y.; Nishi, M.; Yudha, S.; Takai, K. Manganese-Catalyzed Construction of Tetrasubstituted Benzenes from 1, 3-Dicarbonyl Compounds and Terminal Acetylenes [J]. Org. Lett., 2008, 10; 3009-3011
    [154] Kuninobu, Y.; Takata, H.; Kawata, A.; Takai, K. Rhenium-Catalyzed Synthesis of Multisubstituted Aromatic Compounds via C-C Single-Bond Cleavage [J]. Org. Lett., 2008, 10: 3133-3135
    [155] Sugi, R.; Hitaka, Y.; Yokoyama, A.; Yokozawa, T. Well-Defined Star-Shaped Aromatic Polyamides from Chain-Growth Polymerization of Phenyl 4-(Alkylamino)benzoate with Multifunctional Initiators [J]. Macromolecules, 2005, 38: 5526-5531
    [156] Miller, T. M.; Kwock, E. W.; Neenan, T. X. Synthesis of four generations of monodisperse aryl ester dendrimers based on 1, 3, 5-benzenetricarboxylic acid [J]. Macromolecules, 1992, 25: 3143-3148
    [157] Jiang, H. F.; Shen, Y. X.; Wang, Z. Y. A simple PdCl2/O2/DMF catalytic system for highly regioselective cyclotrimerization of olefins with electron- withdrawing groups [J]. Tetrahedron Lett., 2007, 48: 7542–7545
    [158] Li, J. H.; Jiang, H. F.; Chen, M. C. CuCl2 Induced Regiospecific Synthesis of Benzene Derivatives in the Palladium-Catalyzed Cyclotrimerization of Alkynes [J]. J. Org. Chem., 2001, 66: 3627-3629
    [159] Cejudo, R.; Alzuet, G.; Borras, J.; Liu, G. M.; Sanz-Ruiz, F. Crystal structure, magnetic and spectroscopic properties of copper(II) formato dimethylformamide: a new tetracarboxylato-bridged copper(II) dimmer [J]. Polyhedron, 2002, 21: 1057-1061
    [160] Hunt, G. W.; Griffith, E.; Amma, E. Structure of bis(2-thiouracil) chlorocopper(I) dimethylformamide solvate, a reaction product of copper(II) chloride with thiouracil [J]. Inorg. Chem., 1976, 15: 2993-2997
    [161] Kim, J.; Cho, J.; Kim, H.; Lough, A. Isolation and characterization of the first stable bicarbonato complex in a nickel(II) system: identification of unusual monodentate coordination [J]. Chem. Commun., 2004: 1796-1797
    [162] Kim, J.; Cho, J.; Lough, A. Syntheses, isolation, and structures of nickel(II) and copper(II) coordination polymers with a tetraaza macrocyclic ligand [J]. Inorg. Chim. Acta., 2001, 317: 252-258
    [163] Cho, J.; Kim, J.; Lough, A. An infinite 1D hydrogen-bonded polymer built from an azido cobalt(III) tetraaza macrocyclic complex [J]. Inorg. Chem. Commun., 2003, 6: 284-287
    [164] Wang, X. Y.; Wei, H. Y.; Wang, Z. M.; Chen, Z. D.; Gao, S. Formate-The Analogue of Azide: Structural and Magnetic Properties of M(HCOO)2(4,4'-bpy)n H2O (M = Mn, Co, Ni; n = 0, 5) [J]. Inorg. Chem., 2005, 44: 572-583
    [165] Wang, X. Y.; Gan, L.; Zhang, S. W.; Gao, S. Perovskite like Metal Formates with Weak Ferromagnetism and as Precursors to Amorphous Materials [J]. Inorg. Chem., 2004, 43: 4615-4625
    [166] Burrows, A. D.; Cassar, K.; Friend, R.; Mahon, M.; Rigby, S.; Warren, J. Solvent hydrolysis and templating effects in the synthesis of metal-organic frameworks [J]. Cryst. Eng. Commun., 2005, 7, 548-550
    [167] Fan, S. R.; Zhu, L. G. In situ 5-sulfosalicylate decarboxylation or dimethylformamide hydrolysis generating supramolecular assembly architectures [J]. Inorg. Chim. Acta., 2009, 362: 2962-2976
    [168] Kulesa, P. M.; Stark D. A.; Steen, J.; Lansford, R.; Kasemeier K. J. C. Watching the assembly of an organ a single cell at a time using confocal multi-position photoactivation and multi-time acquisition [J]. Organogenesis, 2009, 5: 156-165
    [169] Liu, S.; Wang, C.; Zhai, H.; Li, D. Hydrolysis of N, N-dimethylformamide catalyzed by the Keggin H3[PMo12O40]: isolation and crystal structure analysis of [(CH3)2NH2]3[PMo12O40]. [J]. J. Mol. Struct., 2003, 654: 215-221
    [170] Kim, J.; Roh, J.; Lough, A. solation and crystal structure of [Cu(L1)(O2CH)](ClO4)H2O: hydrolysis of DMF (N,N-dimethylformamide) by a copper(II) tetraazamacrocycle [J]. J. Chem. Crystallogr., 2007, 37: 615-618
    [171] Fahey, D. R.; Zuech, E. A. Aqueous sulfolane as solvent for rapid oxidation of higher .alpha.-olefins to ketones using palladium chloride [J]. J. Org. Chem., 1974, 39: 3276-3277
    [172] Heller, B.; Hapke, M. The fascinating construction of pyridine ring systems by transition metal-catalysed [2+2+2] cycloaddition reactions [J]. Chem. Soc. Rev., 2007, 36:1085-1094
    [173] Hosokawa, T.; Calvo, C.; Lee, H. B.; Maithlis, P. M. Reactions of acetylenes with noble-metal halides X Reaction of phenylpalladium chloride with 2-butyne and the structure and stereochemical nonrigidity of a dihaptocyclopentadiene, [dihapto-.sigma.,.pi.-1- (1-arylethylene)pentamethylcyclopentadiene]acetylacetonatopalladium(II) [J]. J. Am. Chem. Soc., 1973, 95: 4914-4923
    [174] Han, X. L.; Liu, G. X.; Lu, X. Y. beta.-Hydride elimination in palladium-catalyzed reactions [J]. Chin. J. Org. Chem., 2005, 10: 1182-1197
    [175] Dietl, H.; Moffat, R. J.; Maitlis, P. M. Reactions of acetylenes with noble-metal halides. VIII. Palladium cgloride catalyzed trimerization of 2-butyne and 1-phenyl-1-propyne [J]. J. Am. Chem. Soc., 1970, 92: 2276-2285
    [176] Li, J. H.; Jiang, H. F.; Feng, A. Q.; Jia, L. Q. Novel Stereospecific Synthesis of 3-Chloroacrylate Esters via Palladium-Catalyzed Carbonylation of Terminal Acetylenes [J]. J. Org. Chem., 1999, 64: 5984-5987
    [177] Jiang, H. F.; Shen, Y. X.; Wang, Z. Y. Palladium catalyzed aerobic oxidation of terminal olefins with electron-withdrawing groups in scCO2 [J]. Tetrahedron, 2008, 64; 508-514
    [178] Zhang, L.; Zetterberg, K. The concept of geometrical rigidity around a transition-metal center, a significant factor in improving thermal stability for sigma.-alkyl transition-metal complexes [J].Organometallics, 1991, 10: 3806-3813

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700