用户名: 密码: 验证码:
河蚬多糖结构特征、生物活性及其对人体肠道菌群的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
河蚬(Corbicula fluminea)是双壳类软体动物,又称黄蚬,在我国的东部沿海地区多有分布。本草纲目记载河蚬作为中药的药材,具有开胃、通乳、明目、利尿、去湿毒、治疗肝病、麻疹、退热、止咳化痰、解酒等功效。目前对河蚬功能成份的研究主要集中在蛋白和脂类物质方面,对多糖的研究还较少,而且不够深入。本论文对河蚬多糖进行系统的研究,包括提取条件优化、分离纯化、结构特性、抗氧化活性、抗肿瘤活性以及对人体肠道菌群微生态的影响等方面。主要结果如下:
     1河蚬多糖超声辅助酶法提取条件的优化选择提取温度、提取时间、液料比及超声强度4个因素分别进行单因素实验,确定了各因素在RSM实验中的取值中心点。在单因素实验基础上,运用doehlert matrix (DM)设计对提取温度、提取时间、液料比及超声强度4个参数的实验组合进行优化。运用Matlab软件对实验数据进行处理分析,得出最优提取条件为提取温度60℃、提取时间30min、液料比35ml/g、超声强度300W。在此条件下,河蚬得率值为35.4%。
     2河蚬多糖的分离纯化及理化性质运用阴离子交换柱和凝胶层析柱对河蚬粗多糖进行分离纯化,得到CFPS-1和CFPS-2。采用HPSEC对CFPS-1和CFPS-2的纯度和分子量作近一步鉴定,其相对分子质量分别是283和22kDa。运用化学、物理的方法分别对粗CFPS、CFPS-N、 CFPS-1和CFPS-2的化学特征进行分析。其中CFPS-1的蛋白含量(10.8%)、糖醛酸含量(14.34%)相对较高,而CFPS-2的总糖含量(94.4%)及硫酸基含量(8.1%)相对较高。单糖分析表明粗CFPS、 CFPS-N. CFPS-1主要由葡萄糖组成,而CFPS-2主要由葡萄糖、半乳糖、岩藻糖、氨基半乳糖、氨基葡萄糖组成,各单糖比例分别是0.7:0.3:0.9:0.2:0.2。
     3河蚬多糖的结构解析运用原子力显微镜(AFM)对河蚬多糖进行观察,发现CFPS-N分子相互盘绕呈球形。CFPS-1和CFPS-2中可以看到单独游离于溶液中的糖链,糖链直径是在10-20nm之间,长度为1500-2000nm之间。结合多糖甲基化、GC-MS及核磁共振技术分析的结果,推测CFPS-1可能的结构是:CFPS-2可能的结构是:
     4河蚬多糖的抗氧化、抗肿瘤活性体外抗氧化活性研究发现,与河蚬粗糖(CFPS和CFPS-N)相比,纯化产物CFPS-1和CFPS-2有较强的抗氧化活性。体外抗肿瘤活性筛选结果表明,CFPS-1对人乳腺癌细胞(MDA-MB-231)的抗增殖效果最为显著。末端转移酶标记技术(TUNNEL)显示随着CFPS-1浓度的增加可以很好的诱导MDA-MB-231细胞的凋亡。因此,我们近一步采用蛋白质印记技术研究细胞周期相关蛋白的表达情况,结果表明其机制很可能是通过对ASK1蛋白的活化,进一步激活p38/p53途径。p53蛋白的增加一方面抑制Cyclin D1CDK4和PCNA蛋白的表达,最终诱导细胞周期阻滞,抑制癌症细胞过度增殖。同时,还可以使线粒体中Caspase-3酶原裂解成为活性蛋白Caspase-3酶,最终激活凋亡特异性核酸内切酶诱导肿瘤细胞发生凋亡。
     5河蚬多糖对人体肠道菌群微生态的影响我们发现在没有微生物参与的情况下,胃-肠道消化液对河蚬多糖CFPS-N的降解作用很有限。近一步研究肠道菌群与CFPS-N的代谢关系中发现,CFPS-N能够被肠道微生物所降解,并且发现代谢产物中乙酸、丙酸和丁酸的含量较高。DGGE的结果发现代谢多糖后的菌群结构主要由厚壁菌门、变形菌门、放线菌门和拟杆菌门组成。qPCR检测结果表明,参与多糖代谢的很可能包括双歧杆菌、肠球菌、梭菌、乳酸菌和拟杆菌。在对河蚬多糖降解菌的分离过程中,我们分离到的能够降解河蚬多糖的肠道微生物主要分布在双歧杆菌、乳酸菌和梭菌属中。其中双歧杆菌中的Bifidobacterium longum strain L-25和乳酸菌中的Lactobacillus fermentum GM-4降解效果最好。
Asian clam(Corbicula fluminea), commonly called Hunagxian, is currently one of the most economically important aquatic species in the south part of China. The extracts of C. fluminea have been reported to possess various activities including hepato-protective, antioxidant, anticancer, antihypertension, and hypocholesterolemic effects. However, few reports have focused on the active constituents of C. fluminea in a purified component form. In this paper, the purified polysaccharides of C. fluminea were studied systemically, including optimization of extraction parameters, isolation and purification, physicochemical characterization, antioxidant and antitumor activities, and the effect of crude polysaccharide fraction (CFPS) on human intestinal microflora. Main results are listed as follows:
     1Optimization of extraction parameters of crude C. fluminea polysaccharide
     The optimal parameters for extraction of crude C. fluminea polysaccharide were obtained by using a doehlert matrix (DM) design as follows:ratio of water to raw material35ml/g; extraction time of30min; ultrasound power of300W, and extraction temperature of60℃. In these extraction conditions, the maximum polysaccharide yield of35.4%was achieved.
     2Isolation, purification, and characterization of C. fluminea polysaccharides
     CFPS-1and CFPS-2were purified from Corbicula fluminea by anion-exchange and gel-permeation chromatography. They were homogenous with a molecular weight of283kDa and22kDa by HPSEC, respectively. Basic characterization of CFPS-1and CFPS-2were determined by using the methods of chemistry and physics. The protein content (10.8%) and uronic acid content (14.34%) of CFPS-1were higher than that of CFPS-2. However, CFPS-2had the highest content of sulfuric radical (8.1%) and sugar (94.4%). Monosaccharide composition showed that CFPS-1was mainly composed of glucose. While, CFPS-2was composed of glucose, galactose, fucose, galactosamine, glucosamine with a molar ratio of0.7:0.3:0.9:0.2:0.2.
     3Structural features of C. fluminea polysaccharide
     The molecular structure of Corbicula fluminea polysaccharides were observed by atomic force microscopy (AFM). CFPS-1and CFPS-2showed their single molecule stretching behavior in the solution. The diameter were about10-20nm, and the height were about1500-2000nm. According to the results of GC-MS and nuclear magnetic resonance (NMR) experiments, the structure of CFPS-1and CFPS-2were established: CFPS-1
     4Antioxidant and antitumor activities of C. fluminea polysaccharides
     Antioxidant activities in vitro showed that CFPS-1and CFPS-2exhibited much higher antioxidant activities than that of CFPS and CFPS-N. Methylene blue, TUNEL and western blot assays were performed to determine whether C. fluminea polysaccharides had antitumor activity and the mechanism of action. The results suggested that CFPS-1had slightly inhibitory effect on MDA-BD-231cells. Further analysis showed that the inhibitory effect was associated with an up-regulation of ASK1, p53, p21, Bax and caspase-3expression, and down-regulation of Cyclin D1, CDK4, PCNA and Bcl-2expression. Taken together, our studies indicate that CFPS-1is capable of inhibiting MDA-BD-231cell proliferation and inducing apoptosis in these cells.
     5Effect of crude polysaccharide (CFPS-N) on human intestinal microflora
     CFPS-N could not be degraded without intestinal microflora, suggesting that intestinal microflora may be responsive to CFPS-N digestion. The effect of CFPS-N on human fecal microflora in a batch culture system was investigated. CFPS-N can be fermented to short chain fatty acids (SCFAs) by human intestinal microflora. A significant amount of acetate, propionate and butyrate was generated in the CFPS-containing culture (p<0.05). Denaturing gradient gel electrophoresis (DGGE) and qPCR analysis revealed that the bacterial community structures were mainly affiliated with Bacteriodes prevotella, Bifidobacterium, Clostridium, Enterbacteriaceae, and Lactobacillus groups. Various bacteria isolated from human feces were screened for their capacity to utilize CFPS-N by measuring the Mw of polysaccharide. Most strains of Escherichia coil, Lactococcus lactis, Enterococcus feacalis, and Streptococcus thermophiles could not degrade CFPS-N, while only Bifidobacterium longum strain L-25,and Lactobacillus fermentum GM-4could efficiently utilize the polysaccharide.
引文
[1]舒凤月,王海军,潘保柱,刘学勤,王洪铸.长江中下游湖泊贝类物种濒危状况评估[J].水生生物学报,2009.33(6):1051-1057.
    [2]舒凤月,王海军,王洪铸.长江中下游湖泊软体动物的多样性及分布现状[J].生态科学,2008.27(5):437-438.
    [3]黄惟灏,李章来,刘月英,张文珍,王耀先.钱塘江流域的淡水贝类[J].动物学杂志,2003.38(4):50-56.
    [4]郑汉丰,李家乐.浙江地区3种淡水经济贝类的营养成分分析与评价[J].中国农学通报,2012,28(02):78-82.
    [5]何绪刚,张训蒲,徐勇,等.绢丝丽蚌软体部分营养成分分析及其评价[J].华中农业大学学报,2006,25(5):556-558.
    [6]戈志强,李伯华,沈爱英,等.太湖河蚬与2种蚌营养价值比较分析[J].水利渔业,2006,26(1):1-4.
    [7]周永灿,陈永福,曾水香,等.珍珠贝多糖肽对合浦珠母贝非特异性免疫的影响[J].海洋科学,2003,27(11):47-47.
    [8]湛孝东,王克霞,李朝品.贝类多糖生物学活性研究进展[J].时珍国医国药,2006,17(7):1285-1286.
    [9]Sentai Y Y Z M L, Zhencheng T X Z R W. Optimization of Ultrasonic-enzyme-assisted Extraction Technology of Polysaccharides from Longan Pulp[J]. Transactions of the Chinese Society for Agricultural Machinery,2010,5:0-26.
    [10]吴红棉,雷晓凌,洪鹏志等.珠母贝糖胺聚糖的结构初探及其生理活性[J].水产学报,2001,25(2):166-70.
    [11]顾谦群,王长云.栉孔扇贝糖蛋白的制备及其抗肿瘤活性初步研究[J].海洋科学,1998(5):63-64.
    [12]吴红棉,雷晓凌,洪鹏志,等.珠母贝糖胺聚糖的结构初探及其生理活性[J].水产学报,2001,25(2):166-170.
    [13]胡健饶,曹明富.三角帆蚌多糖抑瘤作用的实验研究[J].中国现代应用药学,2003,20(1):11-13.
    [14]崔悦礼,赵翠兰.三种贝类多糖MPa MPc和MPf药理作用的初步研究[J].云南大学学报:自然科学版,1998,20(3):172-174.
    [15]范秀萍,吴红棉,雷晓凌,等.菲律宾蛤仔氨基多糖的分离提取及其抗肿瘤活性的初步研究[J].食品工业科技,2003,24(9):73-76.
    [16]Qiao D, Ke C, Hu B, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate polymers,2009,78(2):199-204.
    [17]Zhang D, Wang C, Wu H, et al. Three sulfated polysaccharides isolated from the mucilage of mud snail, Bullacta exarata philippi:characterization and antitumor activity [J]. Food chemistry,2012,138(1):306-314.
    [18]林双喜.河蚌多糖的生物学活性研究[D].福建农林大学,2007.
    [19]赵巧灵.紫贻贝多糖提取分离,结构鉴定及其生物活性的初步研究[D].杭州:浙江工商大学,2010.
    [20]Ghosh T, Chattopadhyay K, Marschall M, et al. Focus on antivirally active sulfated polysaccharides:from structure-activity analysis to clinical evaluation[J]. Glycobiology, 2009,19(1):2-15.
    [21]姚静倩,吴皓,陈蕾.双壳贝类软体部位活性物质研究概况[J].中国中医药信息杂志,2008,15(10):98-100.
    [22]谢辉,钟正伟,朱文仓,等.文蛤药用价值研究进展[J].承德石油高等专科学校学报,2005,7(2).
    [23]许东晖,工兵.鲍鱼多糖对荷瘤小鼠腹腔巨噬细胞活性及迟发型超敏反应的作用[J].中药材,1999,22(2):88-89.
    [24]陈文星,吴皓,金亦涛.珠蚌多糖的免疫调节作用研究[J].中药药理与临床,2001,17(5):16-18.
    [25]崔悦礼,李开源,河蚌多糖(MPa)对巨噬细胞吞噬能力的影响与抗炎作用[J].云南大学学报:自然科学版,1998,20(3):185-186.
    [26]姚治,李扬.河蚌肉提取物的药理作用[J].中药材,1998,21(4):191-193.
    [27]刘小燕,李朝品,湛孝东.淡水贝类多糖提取工艺的优选[J].时珍国医国药,2007,18(3):656-657.
    [28]Humphrey J H, Grennan D. Different macrophage populations distinguished by means of fluorescent polysaccharides. Recognition and properties of marginal-zone macrophages[J]. European journal of immunology,1981,11(3):221-228.
    [29]Nagaoka M, Shibata H, Kimura-Takagi I, et al. Anti-ulcer effects and biological activities of polysaccharides from marine algae[J]. Biofactors,2000,12(1):267-274.
    [30]ZHENG L, SHEN Y, JI J, et al. The Antimutation and Antioxidation Effects of Phellinus Igniarius Intracellular Polysaccharide [J]. Carcinogenesis, Teratogenesis & Mutagenesis, 2006,6:014.
    [31]Misaki A, Kawaguchi K, Miyaji H, et al. Structure of pestalotan, a highly branched (1→ 3)-β-d-glucan elaborated by Pestalotia sp.815, and the enhancement of its antitumor activity by polyol modification of the side chains[J]. Carbohydrate research,1984,129: 209-227.
    [32]Yang L, Zhang L M. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources[J]. Carbohydrate polymers,2009, 76(3):349-361.
    [33]McCLURE M O, MOORE J P, BLANC D F, et al. Investigations into the mechanism by which sulfated polysaccharides inhibit HIV infection in vitro[J]. AIDS research and human retroviruses,1992,8(1):19-26.
    [34]Matsuoka H, Seo Y, Wakasugi H, et al. Lentinan potentiates immunity and prolongs the survival time of some patients[J]. Anticancer research,1996,17(4A):2751-2755.
    [35]Hiroako K, Norito T, Zhao J F, et al. Pectic polysaccharide from roots of Glycyrrhiza uralensis:possible contribution of neutral oligosaccharides in the galacturonase-resistant region to anti-complementary and mitogenic activities[J]. Planta Med,1996,62(1):14-19.
    [36]范秀萍,吴红棉,雷晓凌,等.珠母贝氨基多糖的分离纯化及其抗肿瘤活性的初步研究[J].中国海洋药物,2005,24(2):32-36.
    [37]张铂,吴梧桐,吴杰连.文蛤糖肽(MGP0405)的抗肿瘤活性及稳定性研究[J].药物生物技术,2006,13(1):24-28.
    [38]Zhang M, Cui S W, Cheung P C K, et al. Antitumor polysaccharides from mushrooms:a review on their isolation process, structural characteristics and antitumor activity [J]. Trends in Food Science & Technology,2007,18(1):4-19.
    [39]Nie S P, Xie M Y. A review on the isolation and structure of tea polysaccharides and their bioactivities[J]. Food Hydrocolloids,2011,25(2):144-149.
    [40]Brant D A. Novel approaches to the analysis of polysaccharide structures[J]. Current opinion in structural biology,1999,9(5):556-562.
    [41]Seymour G B, Colquhoun I J, Dupont M S, et al. Composition and structural features of cell wall polysaccharides from tomato fruits[J]. Phytochemistry,1990,29(3):725-731.
    [42]Aspinall G O, Monteiro M A, Pang H, et al. Lipopolysaccharide of the Helicobacter pylori type strain NCTC 11637 (ATCC 43504):structure of the O antigen chain and core oligosaccharide regions[J]. Biochemistry,1996,35(7):2489-2497.
    [43]Bao X F, Wang X S, Dong Q, et al. Structural features of immunologically active polysaccharides from Ganoderma lucidum[J]. Phytochemistry,2002,59(2):175-181.
    [44]Garozzo D, Spina E, Cozzolino R, et al. Studies on the primary structure of short polysaccharides using SEC MALDI mass spectroscopy[J]. Carbohydrate research,1999, 323(1):139-146.
    [45]Liu D, Liao N, Ye X, et al. Isolation and Structural Characterization of a Novel Antioxidant Mannoglucan from a Marine Bubble Snail, Bullacta exarata (Philippi)[J]. Marine drugs, 2013,11(11):4464-4477.
    [46]Mulloy B, Mourao P A S, Gray E. Structure/function studies of anticoagulant sulphated polysaccharides using NMR[J]. Journal of Biotechnology,2000,77(1):123-135.
    [47]Baumann H, Tzianabos A O, Brisson J R, et al. Structural elucidation of two capsular polysaccharides from one strain of Bacteroides fragilis using high-resolution NMR spectroscopy[J]. Biochemistry,1992,31(16):4081-4089.
    [48]Turnbaugh P J, Ley R E, Hamady M, et al. The human microbiome project[J]. Nature,2007, 449(7164):804-810.
    [49]Costello E K, Lauber C L, Hamady M, et al. Bacterial community variation in human body habitats across space and time[J]. Science,2009,326(5960):1694-1697.
    [50]Vrieze A, Holleman F, Zoetendal E G, et al. The environment within:how gut microbiota may influence metabolism and body composition[J]. Diabetologia,2010,53(4):606-613.
    [51]Lederberg J. Infectious history[J]. Science,2000,288(5464):287-293.
    [52]Sonnenburg E D, Zheng H, Joglekar P, et al. Specificity of polysaccharide use in intestinal bacteroides species determines diet-induced microbiota alterations[J]. Cell,2010,141(7): 1241-1252.
    [53]Schneider S M, Girard-Pipau F, Anty R, et al. Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota[J]. Clinical Nutrition, 2006,25(1):82-90.
    [54]Xu J, Bjursell M K, Himrod J, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis[J]. Science,2003,299(5615):2074-2076.
    [55]Burge C, Karlin S. Prediction of complete gene structures in human genomic DNA[J]. Journal of molecular biology,1997,268(1):78-94.
    [56]Gill S R, Pop M, DeBoy R T, et al. Metagenomic analysis of the human distal gut microbiome[J]. science,2006,312(5778):1355-1359.
    [56]Pavlostathis S G, Miller T L, Wolin M J. Cellulose fermentation by continuous cultures of Ruminococcus albus and Methanobrevibacter smithii[J]. Applied microbiology and biotechnology,1990,33(1):109-116.
    [57]Stecher B, Hardt W D. The role of microbiota in infectious disease[J]. Trends in microbiology,2008,16(3):107-114.
    [58]Maslowski K M, Mackay C R. Diet, gut microbiota and immune responses[J]. Nature immunology,2010,12(1):5-9.
    [59]Hill C, Sanders M E. Rethinking "probiotics"[J]. Gut microbes,2013,4(4):0--1.
    [60]陈清华,贺建华,刘祝英.牛膝多糖对仔猪肠道微生物及小肠黏膜形态的影响[J].湖南农业大学学报自然科学版,2007,33(6):723-726.
    [61]徐永杰,张波,张神腾.牛蒡多糖的提取及对小鼠肠道菌群的调节作用[J].食品科学,2009(23):428-431.
    [62]王庭欣,赵文,蒋东升,等.海带多糖对糖尿病小鼠血糖的调节作用[J].营养学报,2001,23(2):137-139.
    [63]王惠丽,王惠娟,王晶.猪苓多糖对腹泻小鼠肠道双歧杆菌调整的实验研究[J].黑龙江医药科学,2000,23(1):38-41.
    [64]沈思捷,姚旭,尚红梅,等.小刺猴头菌发酵浸膏多糖对肉仔鸡肠道菌群的影响[J].吉林农业大学学报,2012:11.
    [65]Mann G V, Spoerry A. Studies of a surfactant and cholesteremia in the Maasai[J]. The American journal of clinical nutrition,1974,27(5):464-469.
    [66]Mann G V. A factor in yogurt which lowers cholesteremia in man[J]. Atherosclerosis,1977, 26(3):335-340.
    [67]Nair C R, Mann G V. A factor in milk which influences cholesteremia in rats[J]. Atherosclerosis,1977,26(3):363-367.
    [68]Mann G V. Metabolic consequences of dietary trans fatty acids[J]. The Lancet,1994, 343(8908):1268-1271.
    [69]万德光,吴家荣.药用动物学[M].上海:上海科学技术出版社,1993:45-47.
    [70]韩鹏,王勤.河蚬软体部分营养成分分析及评价[J].厦门大学学报,2007,46(1):115-117.
    [71]庄平,宋超,章龙珍.长江口河蚬营养成分的分析与评价[J].营养学报,2009,31(3):304-306.
    [72]祝雯,林志铿,吴祖建,等.河蚬中活性蛋白CFp-a的分离纯化及其活性[J].中国水产科学,2004,11(4):349-353.
    [73]Huang Y T, Huang Y H, Hour T C, et al. Apoptosis-inducing active components from Corbicula fluminea through activation of caspase-2 and production of reactive oxygen species in human leukemia HL-60 cells[J]. Food and chemical toxicology,2006,44(8): 1261-1272.
    [74]徐明生,曾婷婷,蒋艳,等.河蚬免疫活性糖蛋白分离及结构初步分析[J].2008,29(11):157-160.
    [75]张延坤,张尔祥.浅谈生物活性多糖的抗病作用与临床应用[J].中国现代实用医学杂志,2008,7(5):35-39.
    [76]Yongjiang W, Zhong C, Jianwei M, et al. Optimization of ultrasonic-assisted extraction process of Poria cocos polysaccharides by response surface methodology[J]. Carbohydrate Polymers,2009,77(4):713-717.
    [77]Bhatti M S, Kapoor D, Kalia R K, et al. RSM and ANN modeling for electrocoagulation of copper from simulated wastewater:Multi objective optimization using genetic algorithm approach[J]. Desalination,2011,274(1):74-80.
    [78]Yin G, Dang Y. Optimization of extraction technology of the Lycium barbarum polysaccharides by Box-Behnken statistical design[J]. Carbohydrate Polymers,2008,74(3): 603-610.
    [79]Ferreira S L C, Dos Santos W N L, Quintella C M, et al. Doehlert matrix:a chemometric tool for analytical chemistry—review[J]. Talanta,2004,63(4):1061-1067.
    [80]Ferreira S L C, Dos Santos W N L, Bezerra M A, et al. Use of factorial design and Doehlert matrix for multivariate optimisation of an on-line preconcentration system for lead determination by flame atomic absorption spectrometry[J]. Analytical and bioanalytical chemistry,2003,375(3):443-449.
    [81]Pinkowska H, Wolak P, Oliveros E. Production of xylose and glucose from rapeseed straw in subcritical water-Use of Doehlert design for optimizing the reaction conditions[J]. Biomass and Bioenergy,2013,58:188-197.
    [82]Kim Y S, Jo Y Y, Chang I M, et al. A new glycosaminoglycan from the giant African snail Achatinafulica[J]. Journal of Biological Chemistry,1996,271(20):11750-11755.
    [83]Li J, Ding S, Ding X. Optimization of the ultrasonically assisted extraction of polysaccharides from Zizyphus jujuba cv. jinsixiaozao [J]. Journal of food engineering, 2007,80(1):176-183.
    [84]Braga M E M, Moreschi S R M, Meireles M A A. Effects of supercritical fluid extraction on Curcuma longa L. and Zingiber officinale R. starches[J]. Carbohydrate polymers,2006, 63(3):340-346.
    [85]Braga M E M, Leal P F, Carvalho J E, et al. Comparison of yield, composition, and antioxidant activity of turmeric (Curcuma longa L.) extracts obtained using various techniques[J]. Journal of Agricultural and Food Chemistry,2003,51(22):6604-6611.
    [86]Braga M E M, Ehlert P A D, Ming L C, et al. Supercritical fluid extraction from Lippia alba global yields, kinetic data, and extract chemical composition[J]. The Journal of supercritical fluids,2005,34(2):149-156.
    [87]Chen X P, Wang W X, Li S B, et al. Optimization of ultrasound-assisted extraction of Lingzhi polysaccharides using response surface methodology and its inhibitory effect on cervical cancer cells [J]. Carbohydrate Polymers,2010,80(3):944-948.
    [88]Liu J, Li J, Tang J. Ultrasonically assisted extraction of total carbohydrates from Stevia rebaudiana Bertoni and identification of extracts [J]. Food and bioproducts processing, 2010,88(2):215-221.
    [89]Spigno G, Tramelli L, De Faveri D M. Effects of extraction time, temperature and solvent on concentration and antioxidant activity of grape marc phenolics[J]. Journal of Food Engineering,2007,81(1):200-208.
    [90]Claver I P, Zhang H, Li Qin Z K, et al. Optimization of ultrasonic extraction of polysaccharides from Chinese malted sorghum using response surface methodology[J]. Pakistan Journal of Nutrition,2010,9(4):336-342.
    [91]Hou P Z, Regenstein J M. Optimization of extraction conditions for pollock skin gelatin[J]. Journal of food science,2004,69(5):C393-C398.
    [100]Cai W, Gu X, Tang J. Extraction, purification, and characterization of the polysaccharides from Opuntia milpa alta[J]. Carbohydrate polymers,2008,71(3):403-410.
    [101]Qiao D, Hu B, Gan D, et al. Extraction optimized by using response surface methodology, purification and preliminary characterization of polysaccharides from Hyriopsis cumingii [J]. Carbohydrate Polymers,2009,76(3):422-429.
    [102]XuJie H, Wei C. Optimization of extraction process of crude polysaccharides from wild edible BaChu mushroom by response surface methodology [J]. Carbohydrate Polymers, 2008,72(1):67-74.
    [103]Wu Y, Cui S W, Tang J, et al. Optimization of extraction process of crude polysaccharides from boat-fruited sterculia seeds by response surface methodology[J]. Food Chemistry, 2007,105(4):1599-1605.
    [104]Zhong K, Wang Q. Optimization of ultrasonic extraction of polysaccharides from dried longan pulp using response surface methodology[J]. Carbohydrate Polymers,2010,80(1): 19-25.
    [105]Liu J, Miao S, Wen X, et al. Optimization of polysaccharides (ABP) extraction from the fruiting bodies of Agaricus blazei Murill using response surface methodology (RSM)[J]. Carbohydrate Polymers,2009,78(4):704-709.
    [106]Sun Y, Liu J, Kennedy J F. Application of response surface methodology for optimization of polysaccharides production parameters from the roots of Codonopsis pilosula by a central composite design [J]. Carbohydrate polymers,2010,80(3):949-953.
    [107]Renjie L. Optimization of extraction process of Glycyrrhiza glabra polysaccharides by response surface methodology[J]. Carbohydrate Polymers,2008,74(4):858-861.
    [108]王卫国,赵永亮,韩山宝.香菇多糖分离纯化技术研究[J].中国食用菌,2002,21(2): 30-32.
    [109]Atmani F, Lacour B, Drileke T, et al. Isolation and purification of a new glycoprotein from human urine inhibiting calcium oxalate crystallization[J]. Urological research,1993,21(1): 61-66.
    [110]Saravanan R, Shanmugam A. Isolation and characterization of low molecular weight glycosaminoglycans from marine mollusc Amussium pleuronectus (linne) using chromatography[J]. Applied biochemistry and biotechnology,2010,160(3):791-799.
    [111]张全斌,徐祖洪.几种褐藻中褐藻多糖硫酸酯的分离及分析[J].海洋科学,1997,3:55-55.
    [112]吴红棉,雷晓凌,洪鹏志,等.珠母贝糖胺聚糖的纯化及其化学性质[J].水产学报,2000,24(6):570-574.
    [113]Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical chemistry,1956,28(3):350-356.
    [114]Bradford M M.A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding[J]. Analytical biochemistry,1976, 72(1):248-254.
    [115]Karamanos N K, Hjerpe A, Tsegenidis T, et al. Determination of iduronic acid and glucuronic acid in glycosaminoglycans after stoichiometric reduction and depolymerization using high-performance liquid chromatography and ultraviolet detection[J]. Analytical biochemistry,1988,172(2):410-419.
    [116]Dodgson K S, Price R G. A note on the determination of the ester sulphate content of sulphated polysaccharides[J]. Biochemical Journal,1962,84(1):106.
    [117]Yang X, Zhao Y, Wang Q, et al. Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography[J], Analytical sciences,2005, 21(10):1177-1180.
    [118]Alsop R M, Vlachogiannis G J. Determination of the molecular weight of clinical dextran by gel permeation chromatography on TSK PW type columns[J]. Journal of Chromatography A,1982,246(2):227-240.
    [119]顾伟钢,张进杰,辛梅,等.柱前衍生反相高效液相色谱法测定不同方法煮制的猪肉及其汤汁中的游离氨基酸[J].色谱,2011,29(10):1041-1045.
    [120]Ng T B.A review of research on the protein-bound polysaccharide (polysaccharopeptide, PSP) from the mushroom Coriolus versicolor (basidiomycetes:Polyporaceae)[J]. General Pharmacology:The Vascular System,1998,30(1):1-4.
    [121]Tao Y, Zhang Y, Zhang L. Chemical modification and antitumor activities of two polysaccharide-protein complexes from Pleurotus tuberregium [J]. International journal of biological macromolecules,2009,45(2):109-115.
    [122]Quanhong L, Caili F, Yukui R, et al. Effects of protein-bound polysaccharide isolated from pumpkin on insulin in diabetic rats[J]. Plant Foods for Human Nutrition,2005,60(1): 13-16.
    [123]Zhao J L, Zhou L G, Wu J Y. Promotion of Salvia miltiorrhiza hairy root growth and tanshinone production by polysaccharide-protein fractions of plant growth-promoting rhizobacterium Bacillus cereus [J]. Process Biochemistry,2010,45(9):1517-1522.
    [124]Sun L, Zhu B, Li D, et al. Purification and bioactivity of a sulphated polysaccharide conjugate from viscera of abalone Haliotis discus hannai Ino[J]. Food and Agricultural Immunology,2010,21(1):15-26.
    [125]Khowala L R S. EFFECT OF PRETREATMENT ON HEXAVALENT CHROMIUM BIOSORPTION AND MULTIMETAL BIOSORPTION EFFICIENCY OF TERMITOMYCES CLYPEATUS BIOMASS[J]. Int. J. Int sci. Inn. Tech. Sec. B,2012,1(1): 7-15.
    [126]Abirami S, Srisudha S, Gunasekaran P. COMPARATIVE STUDY OF CHROMIUM BIOSORPTION USING BROWN, RED AND GREEN MACRO ALGAE[J].2013; 4(2): 115-129.
    [127]Qingyao Q X Y. The Extraction and Identification of Malate Produced by Fermentation of Schizophyllum commune [J]. Acta Edulis Fungi,1994,2:007.
    [128]张文清,左萍萍,徐辰,等.海带中岩藻多糖的分离纯化与结构分析[J].食品科学,2012,33(001):68-71.
    [129]Villena J F, Dominguez E, Heredia A. Monitoring biopolymers present in plant cuticles by FT-IR spectroscopy[J]. Journal of plant physiology,2000,156(3):419-422.
    [130]Marszalek P E, Li H, Oberhauser A F, et al. Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM[J]. Proceedings of the National Academy of Sciences,2002,99(7):4278-4283.
    [131]Carpita N C, Shea E M. Linkage structure of carbohydrates by gas chromatography-mass spectrometry (GC-MS) of partially methylated alditol acetates[J]. Analysis of Carbohydrates by GLC and MS,1989:157-216.
    [132]Guadalupe Z, Martinez-Pinilla O, Garrido A, et al. Quantitative determination of wine polysaccharides by gas chromatography-mass spectrometry (GC-MS) and size exclusion chromatography (SEC)[J]. Food Chemistry,2012,131(1):367-374.
    [133]Hedenstrom M, Wiklund-Lindstrom S, Oman T, et al. Identification of lignin and polysaccharide modifications in Populus wood by chemometric analysis of 2D NMR spectra from dissolved cell walls[J]. Molecular plant,2009,2(5):933-942.
    [134]Buchanan C M, Hyatt J A, Lowman D W.2D-NMR of polysaccharides:spectral assignments of cellulose triesters[J]. Macromolecules,1987,20(11):2750-2754.
    [135]Kang J, Cui S W, Phillips G O, et al. New studies on gum ghatti (Anogeissus latifolia) Part Ⅲ:Structure characterization of a globular polysaccharide fraction by 1D,2D NMR spectroscopy and methylation analysis[J]. Food Hydrocolloids,2011,25(8):1999-2007.
    [136]Li H, Rief M, Oesterhelt F, et al. Single-molecule force spectroscopy on polysaccharides by AFM-nanomechanical fingerprint of a-(1,4)-linked polysaccharides[J]. Chemical physics letters,1999,305(3):197-201.
    [137]睦红卫.天然抗氧化剂的开发研究与应用前景[J].武汉商业服务学院学报,2006,20(3):82-84.
    [138]Van Esch G J. Toxicology of tert-butylhydroquinone (TBHQ)[J]. Food and Chemical Toxicology,1986,24(10):1063-1065.
    [139]Kashanian S, Dolatabadi J. DNA binding studies of 2-tert-butylhydroquinone (TBHQ) food additive[J]. Food Chemistry,2009,116(3):743-747.
    [140]Lin C C S, Fung D Y C. Effect of BHA, BHT, TBHQ and PG on growth and toxigenesis of selected aspergilla[J]. Journal of Food Science,1983,48(2):576-580.
    [141]Amornrut C, Toida T, Imanari T, et al. A new sulfated β-galactan from clams with anti-HIV activity[J]. Carbohydrate research,1999,321(1):121-127.
    [142]Kim Y S, Jo Y Y, Chang I M, et al. A new glycosaminoglycan from the giant African snail Achatina fulica[J]. Journal of Biological Chemistry,1996,271(20):11750-11755.
    [143]Huang D, Ou B, Hampsch-Woodill M, et al. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format[J]. Journal of Agricultural and Food Chemistry,2002,50(16):4437-4444.
    [144]Chen Y, Xie M Y, Nie S P, et al. Purification, composition analysis and antioxidant activity of a polysaccharide from the fruiting bodies of Ganoderma atrum [J]. Food Chemistry, 2008,107(1):231-241.
    [145]Zhang Q, Yu P, Li Z, et al. Antioxidant activities of sulfated polysaccharide fractions from Porphyra haitanesis[J]. Journal of applied phycology,2003,15(4):305-310.
    [146]Ruperez P, Ahrazem O, Leal J A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus[J]. Journal of Agricultural and Food Chemistry,2002,50(4):840-845.
    [147]Aghdai M H, Jamshidzadeh A, Nematizadeh M, et al. Evaluating the Effects of Dithiothreitol and Fructose on Cell Viability and Function of Cryopreserved Primary Rat Hepatocytes and HepG2 Cell Line[J]. Hepatitis monthly,2013,13(1).
    [148]Viau C J, Curren R O, Wallace K. Cytotoxicity of tacrine and velnacrine metabolites in cultured rat, dog and human hepatocytes[J]. Drug and chemical toxicology,1993,16(3): 227-240.
    [149]Park Y J, Lee E K, Lee Y K, et al. Opposing regulation of cytochrome P450 expression by CAR and PXR in hypothyroid mice[J]. Toxicology and applied pharmacology,2012,263(2): 131-137.
    [150]Schneider J, Huh M M, Bradlow H L, et al. Antiestrogen action of 2-hydroxyestrone on MCF-7 human breast cancer cells[J]. Journal of Biological Chemistry,1984,259(8): 4840-4845.
    [151]Felice D L, Sun J, Liu R H. A modified methylene blue assay for accurate cell counting[J]. Journal of functional foods,2009,1(1):109-118.
    [152]Whiteside G, Cougnon N, Hunt S P, et al. An improved method for detection of apoptosis in tissue sections and cell culture, using the TUNEL technique combined with Hoechst stain[J]. Brain Research Protocols,1998,2(2):160-164.
    [153]Raghavendra P B, Pathak N, Manna S K. Novel role of thiadiazolidine derivatives in inducing cell death through Myc-Max, Akt, FKHR, and FasL pathway[J]. Biochemical pharmacology,2009,78(5):495-503.
    [154]Davis R, Pillai S, Lawrence N, et al. TNF-a-mediated proliferation of vascular smooth muscle cells involves Raf-1-mediated inactivation of Rb and transcription of E2F1-regulated genes[J]. Cell Cycle,2012,11(1):109-118.
    [155]Cardaci S, Filomeni G, Rotilio G, et al. p38MAPK/p53 signalling axis mediates neuronal apoptosis in response to tetrahydrobiopterin-induced oxidative stress and glucose uptake inhibition:implication for neurodegeneration[J]. Biochem. J,2010,430:439-451.
    [156]Davalos A, G6mez-Cordoves C, Bartolome B. Extending applicability of the oxygen radical absorbance capacity (ORAC-fluorescein) assay[J]. Journal of Agricultural and Food Chemistry,2004,52(1):48-54.
    [157]Ruperez P, Ahrazem O, Leal J A. Potential antioxidant capacity of sulfated polysaccharides from the edible marine brown seaweed Fucus vesiculosus[J]. Journal of Agricultural and Food Chemistry,2002,50(4):840-845.
    [158]Wang J, Zhang Q, Zhang Z, et al. Potential antioxidant and anticoagulant capacity of low molecular weight fucoidan fractions extracted from Laminaria japonica [J]. International journal of biological macromolecules,2010,46(1):6-12.
    [159]Mensor L L, Menezes F S, Leitao G G, et al. Screening of Brazilian plant extracts for antioxidant activity by the use of DPPH free radical method[J]. Phytotherapy research,2001, 15(2):127-130.
    [160]Sharma O P, Bhat T K. DPPH antioxidant assay revisited[J]. Food Chemistry,2009,113(4): 1202-1205.
    [161]Benzie IFF, Strain J J. The ferric reducing ability of plasma (FRAP) as a measure of "antioxidant power":the FRAP assay[J]. Analytical biochemistry,1996,239(1):70-76.
    [162]邱乒乒,戴燕燕,李华亮,等.河蚬提取物对人肝癌细胞SMMC-7721的抑制作用[J].厦门大学学报(自然科学版),2009,3:022.
    [163]Chow L W C, Lo C S Y, Loo W T Y, et al. Polysaccharide peptide mediates apoptosis by up-regulating p21 gene and down-regulating cyclin D 1 gene[J]. The American journal of Chinese medicine,2003,31(01):1-9.
    [164]Wang H X, Ooi V E C, Chang S T, et al. A polysaccharide-peptide complex from cultured mycelia of the mushroom Tricholoma mongolicum with immunoenhancing and antitumor activities[J]. Biochemistry and cell biology,1996,74(1):95-100.
    [165]Dong Y, Kwan C Y, Chen Z N, et al. Antitumor effects of a refined polysaccharide peptide fraction isolated from Coriolus versicolor:in vitro and in vivo studies[J]. Research communications in molecular pathology and pharmacology,1996,92(2):140.
    [166]Evan G I, Vousden K H. Proliferation, cell cycle and apoptosis in cancer[J]. Nature,2001, 411(6835):342-348.
    [167]Gavrieli Y, Sherman Y, Ben-Sasson S A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation[J]. The Journal of cell biology,1992, 119(3):493-501.
    [168]Thornberry N A, Rano T A, Peterson E P, et al. A combinatorial approach defines specificities of members of the caspase family and granzyme B Functional relationships established for key mediators of apoptosis[J]. Journal of Biological Chemistry,1997, 272(29):17907-17911.
    [169]Fan T J, Han L H, Cong R S, et al. Caspase family proteases and apoptosis[J]. Acta biochimica et biophysica Sinica,2005,37(11):719-727.
    [170]Porter A G, Janicke R U. Emerging roles of caspase-3 in apoptosis[J]. Cell death and differentiation,1999,6(2):99.
    [171]Korsmeyer S J, Shutter J R, Veis D J, et al. Bcl-2/Bax:a rheostat that regulates an anti-oxidant pathway and cell death[C]//Seminars in cancer biology.1993,4(6):327-332.
    [172]Dimova I, Zaharieva B, Raicheva S, et al. Association of CyclinDl copy number changes with histological type in ovarian tumors[J]. Acta Oncologica,2004,43(7):675-679.
    [173]Kitagawa M, Higashi H, Jung H K, et al. The consensus motif for phosphorylation by cyclin D1-Cdk4 is different from that for phosphorylation by cyclin A/E-Cdk2[J]. The EMBO journal,1996,15(24):7060.
    [174]Connell-Crowley L, Harper J W, Goodrich D W. Cyclin D1/Cdk4 regulates retinoblastoma protein-mediated cell cycle arrest by site-specific phosphorylation[J]. Molecular biology of the cell,1997,8(2):287.
    [175]Li Y, Jenkins C W, Nichols M A, et al. Cell cycle expression and p53 regulation of the cyclin-dependent kinase inhibitor p21[J]. Oncogene,1994,9(8):2261.
    [176]Kelman Z. PCNA:structure, functions and interactions[J]. Oncogene,1997,14(6):629-640.
    [177]Wang C Y, Mayo M W, Korneluk R G, et al. NF-κB antiapoptosis:induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation[J]. Science,1998, 281(5383):1680-1683.
    [178]Ichijo H, Nishida E, Irie K, et al. Induction of apoptosis by ASK1, a mammalian MAPKKK that activates SAPK/JNK and p38 signaling pathways[J]. Science,1997,275(5296):90-94.
    [179]Levine A J, Momand J, Finlay C A. The p53 tumour suppressor gene[J]. Nature,1991, 351(6326):453-456.
    [180]Xiong Y, Hannon G J, Zhang H, et al. p21 is a universal inhibitor of cyclin kinases[J]. Nature,1993,366(6456):701-704.
    [181]尹业师.肠道菌群——一个被遗忘的“功能器官”[J].生命奥秘,2013,9(58):1-47.
    [182]Hamer H M, De Preter V, Windey K, et al. Functional analysis of colonic bacterial metabolism:relevant to health?[J]. American Journal of Physiology-Gastrointestinal and Liver Physiology,2012,302(1):G1-G9.
    [183]Turnbaugh P J, Ley R E, Mahowald M A, et al. An obesity-associated gut microbiome with increased capacity for energy harvest[J]. Nature,2006,444(7122):1027-131.
    [184]Salyers A A, Vercellotti J R, West S E, et al. Fermentation of mucin and plant polysaccharides by strains of Bacteroides from the human colon[J]. Applied and Environmental Microbiology,1977,33(2):319-322.
    [185]Englyst H N, Hay S, Macfarlane G T. Polysaccharide breakdown by mixed populations of human faecal bacteria[J]. FEMS Microbiology Letters,1987,45(3):163-171.
    [186]Backhed F, Ley R E, Sonnenburg J L, et al. Host-bacterial mutualism in the human intestine[J]. science,2005,307(5717):1915-1920.
    [187]Cummings J H, Macfarlane G T. Role of intestinal bacteria in nutrient metabolism[J]. Clinical nutrition,1997,16(1):3-11.
    [188]陈祥娥.Heparosan的提取分离及其对肠道菌作用的研究[D].山东大学,2012.
    [189]Miller D D, Schricker B R, Rasmussen R R, et al. An in vitro method for estimation of iron availability from meals[J]. The American Journal of Clinical Nutrition,1981,34(10): 2248-2256.
    [190]Lin B, Gong J, Wang Q, et al. In-vitro assessment of the effects of dietary fibers on microbial fermentation and communities from large intestinal digesta of pigs [J]. Food Hydrocolloids,2011,25(2):180-188.
    [191]Child M W, Kennedy A, Walker A W, et al. Studies on the effect of system retention time on bacterial populations colonizing a three-stage continuous culture model of the human large gut using FISH techniques [J]. FEMS microbiology ecology,2006,55(2):299-310.
    [192]Vazquez C, Botella-Carretero J I, Garcia-Albiach R, et al. Screening in a Lactobacillus delbrueckii subsp. bulgaricus Collection to select a strain able to survive to the human intestinal tract[J]. Nutricion hospitalaria,2013,28(4).
    [193]Abu A1-Soud W, Stenram U, Ljungh A, et al. DNA of< i> Helicobacter spp. and common gut bacteria in primary liver carcinoma[J]. Digestive and Liver Disease,2008, 40(2):126-131.
    [194]Liao N, Yin Y, Sun G, et al. Colonization and distribution of segmented filamentous bacteria (SFB) in chicken gastrointestinal tract and their relationship with host immunity[J]. FEMS microbiology ecology,2012,81(2):395-406.
    f 195] Ramirez-Farias C, Slezak K, Fuller Z, et al. Effect of inulin on the human gut microbiota: stimulation of Bifidobacterium adolescentis and Faecalibacterium prausnitzii[J]. British Journal of Nutrition,2009,101(04):541-550.
    [196]Abu Al-Soud W, Stenram U, Ljungh A, et al. DNA of Helicobacter spp. and common gut bacteria in primary liver carcinoma[J]. Digestive and Liver Disease,2008,40(2):126-131.
    [197]Lu H, Wu Z, Xu W, et al. Intestinal microbiota was assessed in cirrhotic patients with hepatitis B virus infection[J]. Microbial ecology,2011,61(3):693-703.
    [198]Nemoto H, Kataoka K, Ishikawa H, et al. Reduced diversity and imbalance of fecal microbiota in patients with ulcerative colitis[J]. Digestive Diseases and Sciences,2012, 57(11):2955-2964.
    [199]颜军,郭晓强,李晓光,等.TLC快速分析多糖的单糖组成[J].食品科学,2006,27(12):603-607.
    [200]谭力,鞠烷先,黎介寿.生物样品中短链脂肪酸的提取与测定[J].色谱,2006,24(1).33-35.
    [201]Alander M, De Smet I, Nollet L, et al. The effect of probiotic strains on the microbiota of the Simulator of the Human Intestinal Microbial Ecosystem (SHIME)[J]. International journal of food microbiology,1999,46(1):71-79.
    [202]Vrieze A, Holleman F, Zoetendal E G, et al. The environment within:how gut microbiota may influence metabolism and body composition[J]. Diabetologia,2010,53(4):606-613.
    [203]Zhang H, DiBaise J K, Zuccolo A, et al. Human gut microbiota in obesity and after gastric bypass[J]. Proceedings of the National Academy of Sciences,2009,106(7):2365-2370.
    [204]Loh G, Eberhard M, Brunner R M, et al. Inulin alters the intestinal microbiota and short-chain fatty acid concentrations in growing pigs regardless of their basal diet[J]. The Journal of nutrition,2006,136(5):1198-1202.
    [205]Macfarlane S, Macfarlane G T. Regulation of short-chain fatty acid production[C] PROCEEDINGS-NUTRITION SOCIETY OF LONDON. CABI Publishing; 1999,2003, 62(1):67-72.
    [206]Pultz N J, Hoskins L C, Donskey C J. Vancomycin-resistant Enterococci may obtain nutritional support by scavenging carbohydrate fragments generated during mucin degradation by the anaerobic microbiota of the colon[J], Microbial Drug Resistance,2006, 12(1):63-67.
    [207]Macfarlane G T, Blackett K L, Nakayama T, et al. The gut microbiota in inflammatory bowel disease[J]. Current pharmaceutical design,2009,15(13):1528-1536.
    [208]Xu J, Bjursell M K, Himrod J, et al. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis[J]. Science,2003,299(5615):2074-2076.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700